[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3712495B2 - Process for producing hardened calcium silicate hydrate - Google Patents

Process for producing hardened calcium silicate hydrate Download PDF

Info

Publication number
JP3712495B2
JP3712495B2 JP7159997A JP7159997A JP3712495B2 JP 3712495 B2 JP3712495 B2 JP 3712495B2 JP 7159997 A JP7159997 A JP 7159997A JP 7159997 A JP7159997 A JP 7159997A JP 3712495 B2 JP3712495 B2 JP 3712495B2
Authority
JP
Japan
Prior art keywords
calcium silicate
silicic acid
cured
calcium
amorphous silicic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7159997A
Other languages
Japanese (ja)
Other versions
JPH10265258A (en
Inventor
嗣也 増田
能彦 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP7159997A priority Critical patent/JP3712495B2/en
Publication of JPH10265258A publication Critical patent/JPH10265258A/en
Application granted granted Critical
Publication of JP3712495B2 publication Critical patent/JP3712495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • C04B14/062Microsilica, e.g. colloïdal silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/107Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ケイ酸カルシウム系水和物硬化体の製造方法に関し、更に詳細には、保温材、耐火被覆材、不燃性建材、調湿材等の建材のほか、臭いの担体や触媒として有用な多孔体ケイ酸カルシウム系水和物硬化体の製造方法に関する。
【0002】
【従来の技術】
建材としての従来のオートクレーブ処理ケイ酸カルシウム製品としては、ALC(Autoclaved Light-weight Concrete)、ケイ酸カルシウム板(人造木材)、ケイ酸カルシウム保温材等が挙げられる。これら製品はいずれも250℃以下の水熱反応で生成したケイ酸カルシウム水和物の集合体で形成された多孔体であり、その生産工程は複雑である。例えば、ALCの場合、原料の珪石、生石灰、ポルトランドセメント、二水セッコウ、金属アルミニウムに水を混合してスラリー状態とし、型枠で成形し、脱型後180℃の飽和蒸気圧下でオートクレーブ処理を5〜10時間行うことにより得られる。ケイ酸カルシウム板やケイ酸カルシウム保温材の場合、静態的反応法では原料のケイ酸原料、石灰原料、補強繊維に水を混合してスラリー状態とし、成形後オートクレーブ中で静置下に水熱反応させ成形体を硬化させ、次いで硬化体を乾燥させることにより得られる。動態的反応法では原料のケイ酸原料、石灰原料、補強繊維に水を混合しスラリー状態とし、これをオートクレーブ中で反応させ得られたケイ酸カルシウム結晶スラリーをプレス脱水成形後乾燥することにより硬化成形体が得られる。
【0003】
このように、オートクレーブ処理ケイ酸カルシウム製品の製造工程では、スラリー処理、オートクレーブ処理及び乾燥処理の工程が必須であり、これらの工程では多量の水を使用するため、消費するエネルギーも大きいという問題がある。
【0004】
【発明が解決しようとする課題】
従って、本発明は、従来の生産プロセス、例えばスラリー処理、オートクレーブ処理、脱水プレス処理、乾燥処理等を簡略化し、消費するエネルギーの少ない省エネルギータイプのケイ酸カルシウム系水和物硬化体の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
かかる実情において、本発明者らは鋭意研究を重ねた結果、NH4 +を吸着した非晶質ケイ酸と消石灰等とを原料とし、これらの粉状混合物を水熱ホットプレスすることにより、従来用いられているスラリー処理、オートクレーブ処理、脱水プレス、乾燥処理等、多くの工程を簡略化してケイ酸カルシウム系水和物硬化体を製造し得ることを見いだし、本発明を完成した。
【0006】
すなわち本発明は、NH4 +が吸着した非晶質ケイ酸と、消石灰、生石灰及び焼成ドロマイトから選ばれるカルシウム原料との粉状混合物を水熱ホットプレスすることを特徴とするケイ酸カルシウム系水和物硬化体の製造方法を提供するものである。
【0007】
【発明の実施の形態】
本発明において、原料として用いられるNH4 +の吸着した非晶質ケイ酸としては、NH4 +の吸着量が5〜100ppm、平均粒径が10μm以下、窒素吸着によるBET比表面積が1m2/g以上、含水率が30重量%以上、特に50重量%以上であるものが好ましい。非晶質ケイ酸のNH4 +の吸着量が5ppm未満では反応の進行が悪く、100ppmを超えると発生するアンモニアが大量となり作業環境が悪化し好ましくない。平均粒径が10μmを超えると表層と内部との反応の進行の差が大きくなり、得られた硬化体が層状に剥離してしまうため好ましくない。BET比表面積が1m2/g未満では反応の進行が悪くなる。また含水率は30重量%以上の範囲で可能だが、この下限に近い場合には反応時の密封性を高くする必要がある。
【0008】
このような条件を満たす非晶質ケイ酸の好適な例としては、氷晶石製造工程で副産されるシリカが挙げられる。また、珪藻土のようにNH4 +の吸着していない非晶質ケイ酸、又はNH4 +の吸着量が不十分な非晶質ケイ酸でも、硝酸アンモニウム水溶液中で湿式粉砕することにより、同等のNH4 +を吸着した非晶質ケイ酸とすることができる。
【0009】
また、本発明において用いられるカルシウム原料は、消石灰、生石灰及び焼成ドロマイトから選択して使用することができるが、中でも消石灰が好ましく、特にJIS R 9001の工業用消石灰の品質を満たすものが好ましい。生石灰を使用する場合には、軟焼のものが好ましく、また反応時の水を多めに用いる必要がある。
【0010】
これらの原料は、十分に粉砕混合して、Ca/Siモル比〔焼成ドロマイトを用いる場合には(Ca+Mg)/Siモル比〕が0.02〜3.00、特に0.3〜3.0の範囲の粉状混合物とするのが好ましい。この粉状混合物を水熱ホットプレスに付することにより、ケイ酸カルシウム系水和物と未反応の出発物質からなる硬化体が得られる。水熱ホットプレスの条件は、反応温度100〜300℃、特に120〜180℃が好ましく、またプレス圧は190kgf/cm2以上、反応時間は硬化体中心温度が100℃以上、特に120℃以上に達するまでとするのが好ましい。反応温度が100℃に満たないと硬化体の強度が低くなり、300℃を超えてもそれ以上強度は向上せず、頭打ちになる。またプレス圧が190kgf/cm2に満たないと硬化体の強度が低くなる。
【0011】
以上のようにして得られるケイ酸カルシウム系硬化体は、微細な結晶の集合体であり、軽量、断熱、ガス吸放出性など優れた性質を有し、保温材、耐火被覆材、不燃性建材、調湿材等の建材のほか、臭いの担体や触媒として有用である。また原料に焼成ドロマイトを用いた場合には、得られる硬化体の強度は石灰を用いた場合に比べて劣るが、ガス吸着性に優れるため、調湿材、臭いの担体、触媒等として好適である。
【0012】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例において、ケイ酸カルシウムの生成は29Si-NMRにて確認した。
【0013】
実施例1
出発物質として氷晶石製造工程で副産する高純度ケイ酸(NH4 +の吸着量10ppm、平均粒径1.0μm、窒素吸着によるBET比表面積3m2/g、含水率50重量%)と消石灰(JIS R 9001の工業用消石灰の品質を満たす市販の試薬特級)を用い、Ca/Siモル比を0.8に調整して十分混合したものを水熱ホットプレスに供した。水熱ホットプレスの条件は、反応温度を180℃、プレス圧3000kgf/cm2、反応時間を20分とした。得られた硬化体のX線回折による定性分析の結果、未反応出発物質のほかに非晶質ケイ酸カルシウム系水和物が見られた。
【0014】
実施例2
出発物質として実施例1で用いた氷晶石製造工程で副産する高純度ケイ酸と消石灰を用い、Ca/Siモル比を0.04、0.81及び1.62に調整し、十分混合したものを水熱ホットプレスに供した。水熱ホットプレスの条件は、プレス圧1500kgf/cm2、反応時間を5分とし、反応温度を100、120、140、160、180、200℃と様々に変化させた。得られた硬化体の圧縮強度を図1に示す。
図1より、混合する消石灰の添加量の増加及び反応温度の上昇により圧縮強度を増進させることができることがわかる。また、反応温度100〜120℃、180〜200℃では圧縮強度の増進は見られない。
【0015】
実施例3
出発物質として実施例1で用いた氷晶石製造工程で副産する高純度ケイ酸と消石灰を用い、Ca/Siモル比を0.8に調整し、十分混合したものを水熱ホットプレスに供した。水熱ホットプレスの条件は、反応温度を200℃、反応時間を5分とし、プレス圧を190〜3000kgf/cm2まで様々に変化させた。得られた硬化体の圧縮強度を図2に示す。
図2より、プレス圧の増加に伴い、硬化体の圧縮強度が増進することがわかる。またプレス圧が190kgf/cm2より下ではケイ酸カルシウム系水和物硬化体は得られなかった。
【0016】
実施例4
出発物質として、珪藻土を水で湿式粉砕したもの(平均粒径4μm,窒素吸着によるBET比表面積3m2/g,含水率50重量%)と、珪藻土を10重量%硝酸アンモニウム水溶液中で湿式粉砕したもの(NH4 +の吸着量50ppm,平均粒径4μm,窒素吸着によるBET比表面積3m2/g以上,含水率50重量%)と、実施例1で用いた消石灰を用い、それぞれの珪藻土に対してCa/Siモル比を0〜0.5まで様々に調整し、十分混合したものを水熱ホットプレスに供した。水熱ホットプレスの条件は、反応温度を180℃、プレス圧3000kgf/cm2、反応時間を5分とした。 得られた硬化体の圧縮強度を図3に示す。
図3より、いずれの珪藻土を用いても混合する消石灰の添加量の増加に伴い圧縮強度は増進することがわかる。しかし、珪藻土を水で湿式粉砕したものを用いた場合には、水熱ホットプレスの後の脱型時に硬化体のかけ、割れなどの不良をきたす。これに対し、珪藻土を硝酸アンモニウム水溶液で湿式粉砕したものを用いた場合には、サンプルを容易に取り出すことができ、かけ、割れなどの不良は見られなかった。
【0017】
実施例5
出発物質として実施例1で用いた氷晶石製造工程で副産する高純度ケイ酸と生石灰(アルカリ分析用炭酸カルシウム試薬特級を1050℃で3時間仮焼し、粒度を600μm以下に調整したもの)を用い、実施例2と同様に、Ca/Siモル比を0.04、0.81及び1.62に調整し、十分混合したものを水熱ホットプレスに供した。水熱ホットプレスの条件は、反応温度を180℃、反応時間を5分とし、プレス圧を1500kgf/cm2とした。
この結果、出発物質を生石灰に変えても、氷晶石製造工程で副産する高純度ケイ酸が生石灰の消化に必要な水分を十分保有しているため水熱ホットプレスで反応は進行し、実施例2と同等の硬化体強度が得られた。
【0018】
実施例6
出発物質として実施例1で用いた氷晶石製造工程で副産する高純度ケイ酸と仮焼ドロマイト(ドロマイトを1050℃で3時間仮焼し、粒度を600μm以下に調整したもの)を用い、実施例2と同様に、(Ca+Mg)/Siモル比を0.04、0.81及び1.62に調整し、十分混合したものを水熱ホットプレスに供した。水熱ホットプレスの条件は、反応温度を180℃、反応時間を5分とし、プレス圧を1500kgf/cm2とした。
この結果、出発物質を焼成ドロマイトに変えても、氷晶石製造工程で副産する高純度ケイ酸が仮焼ドロマイトの消化に必要な水分を十分保有しているため、水熱ホットプレスで反応は進行し、ケイ酸マグネシウム水和物を含むケイ酸カルシウム水和物の硬化体が得られ、しかもこの硬化体は、実施例2と同等の硬化体強度を有していた。
【0019】
【発明の効果】
本発明のケイ酸カルシウム系水和物硬化体の製造方法は、従来の製造工程、例えば、出発物質のスラリー処理、加熱熟成処理、プレス脱水処理、オートクレーブ処理による結晶化、硬化成形体の乾燥など硬化体作製のための多くの工程の簡略化が可能であり、かつ、多くのエネルギー消費量を削減することができる。従って本発明方法は、省エネルギー型のケイ酸カルシウム系水和物硬化体の製造方法であるといえる。
【図面の簡単な説明】
【図1】実施例2で得られたケイ酸カルシウム系水和物硬化体のCa/Siモル比、水熱ホットプレスの反応温度及び圧縮強度の関係を示す図である。
【図2】実施例3で得られたケイ酸カルシウム系水和物硬化体の水熱ホットプレスのプレス圧の違いと圧縮強度の関係を示す図である。
【図3】実施例4で得られたケイ酸カルシウム系水和物硬化体の出発物質の処理の違いと圧縮強度の関係を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a cured calcium silicate hydrate, and more particularly useful as a building material such as a heat insulating material, a fireproof coating material, a noncombustible building material, and a humidity control material, as well as an odor carrier or catalyst. The present invention relates to a method for producing a cured porous calcium silicate hydrate.
[0002]
[Prior art]
Examples of conventional autoclaved calcium silicate products as building materials include ALC (Autoclaved Light-weight Concrete), calcium silicate plates (artificial wood), and calcium silicate heat insulating materials. Each of these products is a porous body formed of an aggregate of calcium silicate hydrates generated by a hydrothermal reaction at 250 ° C. or less, and the production process is complicated. For example, in the case of ALC, water is mixed with raw material silica, quicklime, Portland cement, dihydrated gypsum, and metallic aluminum to form a slurry, molded in a mold, and after demolding, autoclaved under a saturated vapor pressure of 180 ° C. It is obtained by performing for 5 to 10 hours. In the case of calcium silicate plates and calcium silicate heat insulators, the static reaction method mixes the raw silicate raw material, lime raw material, and reinforcing fiber with water to form a slurry, which is then hydrothermally left standing in the autoclave. It is obtained by reacting and curing the molded body, and then drying the cured body. In the kinetic reaction method, water is mixed with the raw silicate raw material, lime raw material, and reinforcing fiber to form a slurry, and the calcium silicate crystal slurry obtained by reacting this in an autoclave is press dehydrated and then cured by drying. A molded body is obtained.
[0003]
Thus, in the production process of autoclaved calcium silicate products, the steps of slurry treatment, autoclave treatment and drying treatment are indispensable, and since these processes use a large amount of water, there is a problem that large energy is consumed. is there.
[0004]
[Problems to be solved by the invention]
Therefore, the present invention simplifies conventional production processes, such as slurry processing, autoclave processing, dehydration press processing, drying processing, etc., and provides a method for producing an energy-saving calcium silicate hydrate cured body that consumes less energy. The purpose is to provide.
[0005]
[Means for Solving the Problems]
In such a situation, the present inventors conducted extensive research, and as a result, using amorphous silicic acid adsorbing NH 4 + and slaked lime as raw materials, and hydrothermal hot pressing these powdery mixtures, It has been found that a calcium silicate hydrate cured product can be produced by simplifying many steps such as slurry treatment, autoclave treatment, dehydration press, and drying treatment used, and the present invention has been completed.
[0006]
That is, the present invention is a calcium silicate water characterized by hydrothermally hot pressing a powdery mixture of amorphous silicic acid adsorbed with NH 4 + and a calcium raw material selected from slaked lime, quicklime and calcined dolomite A method for producing a Japanese cured product is provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the amorphous silicic acid adsorbed with NH 4 + used as a raw material has an adsorption amount of NH 4 + of 5 to 100 ppm, an average particle size of 10 μm or less, and a BET specific surface area by nitrogen adsorption of 1 m 2 / Those having a water content of g or more and a water content of 30% by weight or more, particularly 50% by weight or more are preferred. If the amount of NH 4 + adsorbed on the amorphous silicic acid is less than 5 ppm, the reaction progresses poorly, and if it exceeds 100 ppm, the amount of ammonia generated becomes large and the working environment deteriorates. When the average particle size exceeds 10 μm, the difference in the progress of reaction between the surface layer and the inside becomes large, and the obtained cured product is peeled off in a layered manner, which is not preferable. When the BET specific surface area is less than 1 m 2 / g, the reaction proceeds poorly. The moisture content can be in the range of 30% by weight or more, but if it is close to this lower limit, it is necessary to increase the sealing property during the reaction.
[0008]
As a suitable example of the amorphous silicic acid which satisfies such conditions, silica produced as a by-product in the cryolite production process can be mentioned. In addition, amorphous silicic acid not adsorbed with NH 4 + like diatomaceous earth or amorphous silicic acid with insufficient NH 4 + adsorbed amount can be equivalent by wet milling in aqueous ammonium nitrate solution. Amorphous silicic acid adsorbing NH 4 + can be obtained.
[0009]
The calcium raw material used in the present invention can be selected from slaked lime, quick lime and calcined dolomite. Among them, slaked lime is preferable, and those satisfying the quality of industrial slaked lime of JIS R 9001 are particularly preferable. When quicklime is used, it is preferably soft-fired and requires a large amount of water during the reaction.
[0010]
These raw materials are sufficiently pulverized and mixed to obtain a powdery mixture having a Ca / Si molar ratio [(Ca + Mg) / Si molar ratio when using calcined dolomite] of 0.02 to 3.00, particularly 0.3 to 3.0. Is preferred. By subjecting this powdery mixture to a hydrothermal hot press, a cured product comprising a calcium silicate hydrate and an unreacted starting material is obtained. The hydrothermal hot press conditions are preferably a reaction temperature of 100 to 300 ° C., particularly preferably 120 to 180 ° C., a press pressure of 190 kgf / cm 2 or more, and a reaction time of a cured product center temperature of 100 ° C. or more, particularly 120 ° C. or more. It is preferable to reach it. If the reaction temperature is less than 100 ° C., the strength of the cured product is lowered, and even if it exceeds 300 ° C., the strength does not improve any more and reaches a peak. If the press pressure is less than 190 kgf / cm 2 , the strength of the cured product is lowered.
[0011]
The calcium silicate-based cured product obtained as described above is an aggregate of fine crystals, and has excellent properties such as light weight, heat insulation, gas absorption / release properties, heat insulation material, fireproof coating material, non-combustible building material. In addition to building materials such as humidity conditioning materials, they are useful as odor carriers and catalysts. Also, when calcined dolomite is used as the raw material, the strength of the resulting cured product is inferior to that of using lime, but because of its excellent gas adsorption, it is suitable as a humidity control material, odor carrier, catalyst, etc. is there.
[0012]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these. In the following examples, the formation of calcium silicate was confirmed by 29Si-NMR.
[0013]
Example 1
High-purity silicic acid by-produced in cryolite production process as the starting material (NH 4 + adsorption amount 10 ppm, an average particle diameter of 1.0 .mu.m, BET ratio by the nitrogen adsorption surface area 3m 2 / g, water content 50 wt%) and hydrated lime (A commercially available reagent special grade satisfying the quality of industrial slaked lime of JIS R 9001) was used, and the Ca / Si molar ratio was adjusted to 0.8 and sufficiently mixed was subjected to a hydrothermal hot press. The hydrothermal hot press conditions were a reaction temperature of 180 ° C., a press pressure of 3000 kgf / cm 2 , and a reaction time of 20 minutes. As a result of qualitative analysis of the obtained cured product by X-ray diffraction, amorphous calcium silicate hydrate was found in addition to the unreacted starting material.
[0014]
Example 2
Using high-purity silicic acid and slaked lime by-produced in the cryolite production process used in Example 1 as starting materials, adjusting the Ca / Si molar ratio to 0.04, 0.81 and 1.62, and mixing them well with hydrothermal hot Used for press. The hydrothermal hot press conditions were a press pressure of 1500 kgf / cm 2 , a reaction time of 5 minutes, and a reaction temperature of 100, 120, 140, 160, 180, and 200 ° C. in various ways. The compression strength of the obtained cured product is shown in FIG.
1 that the compressive strength can be increased by increasing the amount of slaked lime to be mixed and increasing the reaction temperature. Further, no increase in compressive strength is observed at reaction temperatures of 100 to 120 ° C. and 180 to 200 ° C.
[0015]
Example 3
Using high-purity silicic acid and slaked lime by-produced in the cryolite production process used in Example 1 as starting materials, the Ca / Si molar ratio was adjusted to 0.8, and the mixture was subjected to a hydrothermal hot press. . The hydrothermal hot press conditions were such that the reaction temperature was 200 ° C., the reaction time was 5 minutes, and the press pressure was varied from 190 to 3000 kgf / cm 2 . The compression strength of the obtained cured product is shown in FIG.
FIG. 2 shows that the compressive strength of the cured body increases as the press pressure increases. Further, when the press pressure was lower than 190 kgf / cm 2, a cured calcium silicate hydrate was not obtained.
[0016]
Example 4
As starting materials, wet pulverized diatomaceous earth with water (average particle size 4μm, BET specific surface area of nitrogen adsorption 3m 2 / g, water content 50% by weight), and wet pulverized diatomaceous earth in 10% ammonium nitrate aqueous solution (NH 4 + adsorption amount 50ppm, average particle size 4μm, BET specific surface area 3m 2 / g or more by nitrogen adsorption, water content 50% by weight) and slaked lime used in Example 1 to each diatomaceous earth The Ca / Si molar ratio was variously adjusted from 0 to 0.5, and the mixture was sufficiently mixed and subjected to a hydrothermal hot press. The hydrothermal hot press conditions were a reaction temperature of 180 ° C., a press pressure of 3000 kgf / cm 2 , and a reaction time of 5 minutes. The compressive strength of the obtained cured product is shown in FIG.
It can be seen from FIG. 3 that the compressive strength increases with an increase in the amount of slaked lime to be mixed regardless of which diatomaceous earth is used. However, when diatomaceous earth wet-ground with water is used, defects such as cracking and cracking of the cured body occur during demolding after hydrothermal hot pressing. On the other hand, when diatomaceous earth was wet pulverized with an aqueous ammonium nitrate solution, the sample could be easily taken out, and no defects such as cracking and cracking were observed.
[0017]
Example 5
High-purity silicic acid and quicklime produced as by-products in the cryolite production process used in Example 1 as starting materials (calcium carbonate reagent grade for alkali analysis was calcined at 1050 ° C. for 3 hours, and the particle size was adjusted to 600 μm or less. In the same manner as in Example 2, the Ca / Si molar ratio was adjusted to 0.04, 0.81 and 1.62, and the resulting mixture was subjected to a hydrothermal hot press. The hydrothermal hot press conditions were a reaction temperature of 180 ° C., a reaction time of 5 minutes, and a press pressure of 1500 kgf / cm 2 .
As a result, even if the starting material is changed to quick lime, the reaction proceeds in a hydrothermal hot press because the high-purity silicic acid produced as a by-product in the cryolite manufacturing process has sufficient moisture to digest quick lime, A cured product strength equivalent to that of Example 2 was obtained.
[0018]
Example 6
Using high-purity silicic acid and calcined dolomite by-produced in the cryolite production process used in Example 1 as starting materials (calculated dolomite at 1050 ° C. for 3 hours and adjusted to a particle size of 600 μm or less) In the same manner as in Example 2, the (Ca + Mg) / Si molar ratio was adjusted to 0.04, 0.81 and 1.62, and the resulting mixture was subjected to a hydrothermal hot press. The hydrothermal hot press conditions were a reaction temperature of 180 ° C., a reaction time of 5 minutes, and a press pressure of 1500 kgf / cm 2 .
As a result, even if the starting material is changed to calcined dolomite, the high-purity silicic acid produced as a by-product in the cryolite production process retains sufficient water necessary for digestion of calcined dolomite. The cured product of calcium silicate hydrate containing magnesium silicate hydrate was obtained, and this cured product had a cured product strength equivalent to that of Example 2.
[0019]
【The invention's effect】
The manufacturing method of the calcium silicate hydrate cured product of the present invention is a conventional manufacturing process, for example, starting material slurry treatment, heat aging treatment, press dehydration treatment, crystallization by autoclave treatment, drying of the cured molded product, etc. Many processes for producing a cured body can be simplified, and much energy consumption can be reduced. Therefore, it can be said that the method of the present invention is a method for producing an energy-saving calcium silicate hydrate cured product.
[Brief description of the drawings]
1 is a graph showing the relationship between the Ca / Si molar ratio, the hydrothermal hot press reaction temperature, and the compressive strength of the cured calcium silicate hydrate obtained in Example 2. FIG.
FIG. 2 is a diagram showing the relationship between the difference in pressing pressure and the compressive strength of a hydrothermal hot press of a cured calcium silicate hydrate obtained in Example 3.
FIG. 3 is a graph showing the relationship between the difference in the treatment of the starting material of the calcium silicate hydrate cured product obtained in Example 4 and the compressive strength.

Claims (5)

NH4 +が吸着した非晶質ケイ酸と、消石灰、生石灰及び焼成ドロマイトから選ばれるカルシウム原料との粉状混合物を水熱ホットプレスすることを特徴とするケイ酸カルシウム系水和物硬化体の製造方法。A calcium silicate hydrate cured product comprising hydrothermal hot pressing a powdery mixture of amorphous silicic acid adsorbed with NH 4 + and a calcium raw material selected from slaked lime, quicklime and calcined dolomite Production method. 用いる非晶質ケイ酸が、NH4 +の吸着量5〜100ppm、平均粒径10μm以下、窒素吸着によるBET比表面積1m2/g以上、含水率30重量%以上のものである請求項1記載のケイ酸カルシウム系水和物硬化体の製造方法。The amorphous silicic acid to be used is one having an NH 4 + adsorption amount of 5 to 100 ppm, an average particle size of 10 µm or less, a BET specific surface area of 1 m 2 / g or more by nitrogen adsorption and a water content of 30 wt% or more. The manufacturing method of the calcium silicate type hydrate hardening body of this. 用いる非晶質ケイ酸が、NH4 +の吸着量が0ppm以上5ppm未満である非晶質ケイ酸を硝酸アンモニウム溶液中で湿式粉砕することにより得られたものである請求項1又は2記載のケイ酸カルシウム系水和物硬化体の製造方法。The silicic acid according to claim 1 or 2, wherein the amorphous silicic acid used is obtained by wet-grinding amorphous silicic acid having an NH 4 + adsorption amount of 0 ppm or more and less than 5 ppm in an ammonium nitrate solution. A method for producing a cured calcium acid hydrate. 原料の非晶質ケイ酸とカルシウム原料との粉状混合物のCa/Siモル比又は(Ca+Mg)/Siモル比が、0.02〜3.00である請求項1〜3のいずれかに記載のケイ酸カルシウム系水和物硬化体の製造方法。The calcium silicate according to any one of claims 1 to 3, wherein a Ca / Si molar ratio or (Ca + Mg) / Si molar ratio of a powder mixture of the raw amorphous silicic acid and the calcium raw material is 0.02 to 3.00. A method for producing a cured hydrated product. 水熱ホットプレスの条件が、反応温度100〜300℃、プレス圧190kgf/cm2以上である請求項1〜4のいずれかに記載のケイ酸カルシウム系水和物硬化体の製造方法。The method for producing a cured calcium silicate hydrate according to any one of claims 1 to 4, wherein hydrothermal hot pressing conditions are a reaction temperature of 100 to 300 ° C and a pressing pressure of 190 kgf / cm 2 or more.
JP7159997A 1997-03-25 1997-03-25 Process for producing hardened calcium silicate hydrate Expired - Fee Related JP3712495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7159997A JP3712495B2 (en) 1997-03-25 1997-03-25 Process for producing hardened calcium silicate hydrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7159997A JP3712495B2 (en) 1997-03-25 1997-03-25 Process for producing hardened calcium silicate hydrate

Publications (2)

Publication Number Publication Date
JPH10265258A JPH10265258A (en) 1998-10-06
JP3712495B2 true JP3712495B2 (en) 2005-11-02

Family

ID=13465293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7159997A Expired - Fee Related JP3712495B2 (en) 1997-03-25 1997-03-25 Process for producing hardened calcium silicate hydrate

Country Status (1)

Country Link
JP (1) JP3712495B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4850325B2 (en) * 2000-01-21 2012-01-11 株式会社エーアンドエーマテリアル Architectural board
JP2002348776A (en) * 2001-05-25 2002-12-04 Nippon Cerapure Kk Fabric material excellent in heat retaining property or the like
DE102005018423A1 (en) * 2005-04-21 2006-10-26 Forschungszentrum Karlsruhe Gmbh Process for the production of components
JP5019450B2 (en) * 2007-11-06 2012-09-05 ロンシール工業株式会社 Antibacterial and crosslinkable vinyl chloride resin paste composition and antibacterial crosslinked vinyl chloride resin sheet

Also Published As

Publication number Publication date
JPH10265258A (en) 1998-10-06

Similar Documents

Publication Publication Date Title
US3501324A (en) Manufacturing aqueous slurry of hydrous calcium silicate and products thereof
US6139620A (en) Calcium silicate board and method of manufacturing same
KR20180113621A (en) Synthetic formulations and methods of manufacturing and using thereof
EP0562112B1 (en) High-strength molding of calcium silicate and production thereof
US3957522A (en) Process for preparing fire-resisting moldings
JP5190399B2 (en) Method for producing calcium silicate plate
JP3712495B2 (en) Process for producing hardened calcium silicate hydrate
WO1987001370A1 (en) Silica molding and process for its production
US4033783A (en) Method for making lime-silica insulation from perlite
JP3212586B1 (en) Humidity control building materials
JPH06263510A (en) Production of carbonated hardened body of calcium silicate
JP3373883B2 (en) Light refractory structural material of zeolite-magnesia system
KR100455472B1 (en) Calcium silicate board and method of manufacturing same
JPH0627022B2 (en) Method for producing calcium silicate-based compact
EP1338579B1 (en) Method of manufacturing a calcium silicate board
JP3989366B2 (en) Building material composition and building material
JP4633067B2 (en) Composition for building materials
JPH08259343A (en) Calcium silicate plate and its production
JPH09328374A (en) Perlite hardened form and its production
JP4027081B2 (en) Composition for building materials
JP4197363B2 (en) Humidity control plaster, method for producing the same, and cured gypsum
SU1174415A1 (en) Raw mixture for manufacturing heat-insulating material
JPH0158147B2 (en)
JP2003146719A (en) Composition for building material
JPH08253375A (en) Calcium silicate slab and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050817

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees