[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3799974B2 - Piston for direct-injection spark ignition internal combustion engine - Google Patents

Piston for direct-injection spark ignition internal combustion engine Download PDF

Info

Publication number
JP3799974B2
JP3799974B2 JP2000221710A JP2000221710A JP3799974B2 JP 3799974 B2 JP3799974 B2 JP 3799974B2 JP 2000221710 A JP2000221710 A JP 2000221710A JP 2000221710 A JP2000221710 A JP 2000221710A JP 3799974 B2 JP3799974 B2 JP 3799974B2
Authority
JP
Japan
Prior art keywords
piston
cylinder
cavity
intake valve
exhaust valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000221710A
Other languages
Japanese (ja)
Other versions
JP2002038956A (en
Inventor
宣久 神宮
岳夫 榎本
一宏 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000221710A priority Critical patent/JP3799974B2/en
Publication of JP2002038956A publication Critical patent/JP2002038956A/en
Application granted granted Critical
Publication of JP3799974B2 publication Critical patent/JP3799974B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、直噴火花点火式内燃機関のピストン、特にその冠面形状に関するものである。
【0002】
【従来の技術】
従来の直噴火花点火式内燃機関のピストンとして、ピストン冠面に、最外周側に最小限の幅の環状の平面部を残して、上面視で円形の外形を有し、中央部に向かって例えば円錐状に隆起する隆起部を形成し、この隆起部の吸気弁寄りに凹状のキャビティを形成するようにしたものがあり、シリンダ内にスワール(横渦)成分を付与した状態で、吸気弁側に配置された燃料噴射弁から、圧縮行程にて燃料噴射を行うことにより、点火プラグ回りに集中的に層状の混合気を形成して、成層燃焼を実現する一方、シリンダ内にタンブル(縦渦)成分を付与した状態で、吸気行程にて燃料噴射を行うことにより、燃焼室全体に燃料を拡散させ均質な混合気を形成して、均質燃焼を実現するようにしている(特開平10−331644号、特開平11−210470号参照)。
【0003】
【発明が解決しようとする課題】
ところで、例えば、現行エンジンのピストンストロークを延長して行程容積(排気量)を増大する際に所定の圧縮比を維持するために、又は、現行エンジンの圧縮比を低圧縮比化するために、燃焼室容積を大きくする場合に、キャビティ径を大きくすると、成層燃焼時のシリンダ内スワールの流速は変わらないものの、シリンダ内スワールによって誘起されるキャビティ内スワールの流速が低下(同じ誘起エネルギーであれば、キャビティ径が大きい分、流速が低下)し、両スワールのバランスが崩れて、点火プラグへの燃料輸送がうまくいかなくなるなどの不都合を生じ、成層燃焼性能が悪化することがある。
【0004】
このような場合に、上死点付近でのシリンダ内スワールの流路を見直すなどして、シリンダ内スワールの流速を調整(例えば低下)する必要を生じるが、均質燃焼性能への影響も考慮する必要があり、従来技術のように、ピストン冠面の隆起部の外形が単純な円形であると、各種要求に対し、設計上の自由度が少ないという問題点があった。
【0005】
本発明は、このような従来の問題点に鑑み、各種仕様のエンジンへの適合を考え、ピストン冠面の隆起部の形状を見直すことにより、成層燃焼性能及び均質燃焼性能の向上を図ることができるようにすることを目的とする。
【0006】
【課題を解決するための手段】
このため、請求項1に係る発明では、シリンダヘッドに凹設された燃焼室の壁面の略中央に点火プラグを有し、この点火プラグを挟んで吸気弁及び排気弁を有し、かつ、吸気弁側にシリンダ内に直接燃料を噴射する燃料噴射弁を有し、シリンダ内にスワール成分を付与した状態で圧縮行程付近で燃料噴射を行うことにより成層燃焼を実現し、シリンダ内にタンブル成分を付与した状態で吸気行程付近で燃料噴射を行うことにより均質燃焼を実現するようにした直噴火花点火式内燃機関のピストンにおいて、ピストン冠面に、最外周側に平面部を残して、上面視で吸気弁側と排気弁側とを結ぶ直線方向に長い略楕円状の外形を有し、中央部に向かって山型に隆起する隆起部を形成し、かつ、この隆起部を、上面視で前記直線方向と直角方向の幅が、吸気弁側に対し、排気弁側において、狭くなるように形成し、この隆起部の吸気弁寄りに凹状のキャビティを形成したことを特徴とする。
【0007】
請求項2に係る発明では、前記隆起部の前記直線方向で排気弁側の部分に、前記隆起部の山型の傾斜より緩傾斜の傾斜面を形成したことを特徴とする。
尚、「吸気弁側と排気弁側とを結ぶ直線方向」を本明細書では以下「クロスフロー方向」という。
【0008】
【発明の効果】
請求項1に係る発明によれば、ピストン冠面の隆起部を上面視でクロスフロー方向に長い略楕円状の外形を有する形状とすることで、ピストン冠面の吸気弁側に成層燃焼のためのキャビティの壁を確保し、かつ、ピストン冠面の排気弁側に均質燃焼のためのタンブル保持用の隆起を確保した上で、隆起部のクロスフロー方向と直角方向の幅を減少させることにより、上死点付近でのシリンダ内スワールの流路面積を増大させることができ、これにより、成層燃焼時のシリンダ内スワールの流速を調整することが可能となり、設計自由度が向上するという効果が得られる。
【0009】
従って、例えばキャビティ径の拡大により、キャビティ内スワールの流速が低下する場合に、これに合わせてシリンダ内スワールの流速を低下させることができ、両スワールのバランスを適切に維持することが可能となる。
また、隆起部の吸気弁側は成層燃焼のためにキャビティの壁を確実に確保する必要があるのに対し、排気弁側は均質燃焼時のタンブルを保持するために必要な幅があればよいことから、吸気弁側の幅に対し、排気弁側の幅をより狭くすることで、性能上必須なキャビティ容積を確保した上で、シリンダ内スワールの流路面積を最大限増大し、上記の効果を最大限発揮させることができる。
【0010】
請求項2に係る発明によれば、隆起部において均質燃焼時のタンブルを保持する部分を緩傾斜の傾斜面とすることで、タンブルの整流効果を高めることができる。
【0011】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示すピストン冠面の平面図、図2は図1のA−A断面に相当するピストンを含むエンジンの断面図である。
これらの図において、1はシリンダヘッド、2はシリンダブロック、3はピストンである。
【0012】
シリンダヘッド1には、ペントルーフ型燃焼室4が凹設され、その燃焼室4壁面の略中央(僅かに排気弁9寄り)に点火プラグ5が配置されている。
また、シリンダヘッド1には、点火プラグ5を挟んで、各2本の吸気ポート6及び排気ポート7が対向配置され、燃焼室4への各開口部には吸気弁8及び排気弁9が配置されている。ここで、スワール生成手段として、2本の吸気ポート6のうち一方に、その少なくとも一部を閉止し得るスワール制御弁10が設けられている。
【0013】
また、シリンダヘッド1には、2本の吸気ポート6間で、かつ吸気ポート6より周縁部側に位置させて、燃料噴射弁11が吸気弁8側から排気弁9側に斜め下向きに取付けられ、シリンダ内に直接燃料を噴射するようにしてある。
次にピストン3の冠面形状について説明する。
ピストン3の冠面には、最外周側に環状の平面部12を残して、上面視でクロスフロー方向(吸気弁8−排気弁9方向)に長い略楕円状の外形13aを有し、中央部に向かって山型に隆起する隆起部13を形成してある。
【0014】
また、隆起部13の略楕円状の外形13aのクロスフロー方向と直角方向の幅について、図3を参照し、吸気弁8側の幅W1より、排気弁9側の幅W2を狭くしてあり、言い換えれば、吸気弁8側の平面部12の幅より、排気弁9側の平面部12の幅を広くしてある。
尚、ここでは、隆起部13の外形を「略楕円状」と表現しているが、吸気弁8側と排気弁9側とで幅が異なることからわかるように、完全な楕円ではなく、卵型に近く、実際には、図3を参照し、片側は、点aを中心とする半径r1の円弧と、点bを中心とする半径r2の円弧と、点cを中心とする半径r3の円弧とを、つないだ形状をしており、反対側はこれと対称になっている。
【0015】
そして、この隆起部13には、吸気弁8寄りに、凹状で底面14aが前記平面部12より低いキャビティ14を形成してある。すなわち、このキャビティ14は、ピストン3の中心から吸気弁8側にオフセットした位置に中心を有し、上面視で略円形の外形を有している。従って、キャビティ14の周縁部の稜線14bは吸気弁8側が低く、排気弁9側(ピストン3中心側)が高くなっており、キャビティ14内のピストン3中心側の周縁部の上方に点火プラグ5が位置するようにしてある。
【0016】
また、隆起部13のクロスフロー方向で排気弁9側の部分(キャビティ14のピストン3中心側の周縁部の稜線14bの外側)を斜めに削り落として、ピストン3の最高部の高さを抑えると共に、均質燃焼時のタンブルをより良好に保持する目的で、隆起部13の山形の傾斜より緩傾斜の傾斜面(タンブル保持面)15を形成してある。また、この傾斜面15をより長くすると共に、排気弁9側の平面部12を確保すべく、傾斜面15より急傾斜の傾斜面16で、平面部12と傾斜面15とをつないでいる。
【0017】
更に、キャビティ14内の底面14aと側面(内周面)とは基本的にはアール14cによってつなぐが、本実施形態では、キャビティ14内の燃料噴射弁11側の側面については、肉盛りして、ピストン3中心線を中心軸とする円錐面からなり、成層燃焼時に燃料噴射弁11からの燃料噴霧をスムーズに点火プラグ5側へ輸送すべく案内する傾斜面(噴霧案内面)17を形成してある。ここで、図8を参照し、この傾斜面17の傾斜角θ2は、燃料噴射弁11の噴射方向線の傾斜角θ1より緩傾斜としてある(θ2<θ1)。
【0018】
次に作用を説明する。
主に低負荷領域での成層燃焼時には、2本の吸気ポート6のうち一方をスワール制御弁10により閉止して、1本の吸気ポート6から吸気することにより、図4に示すように、シリンダ内にスワールS1を形成し、また、このシリンダ内スワールS1により、キャビティ14内にスワールS2を誘起する。そして、これらのスワールS1,S2を圧縮行程以降も維持して、圧縮行程後期に燃料噴射弁11よりキャビティ14内に燃料を噴射し、噴射燃料をキャビティ14内のスワールS2に乗せて、点火プラグ5近傍に輸送することで、点火プラグ5回りに燃料を集めて、成層燃焼を行わせる。
【0019】
ここにおいて、ピストン3冠面の隆起部13を上面視でクロスフロー方向に長い略楕円状の外形13aを有する形状とすることで、ピストン3冠面の吸気弁8側にキャビティ14の十分な容積とその壁を確保し、かつ、ピストン3冠面の排気弁9側に後述する均質燃焼時のタンブルを保持するための隆起(傾斜面15)を確保した上で、隆起部13のクロスフロー方向と直角方向の幅を減少させることにより、また特に、隆起部13の吸気弁8側はキャビティ14の壁を確実に確保する必要があるのに対し、排気弁9側は均質燃焼時のタンブルを保持するために必要な幅があればよいことから、隆起部13の吸気弁8側の幅W1に対し、排気弁9側の幅W2をより狭くすることにより、性能上必須な形状を確保した上で、上死点付近でのシリンダ内スワールS1の流路面積を最大限増大させ、もって、シリンダ内スワールS1の流速を低下させることが可能となる。
【0020】
従って、キャビティ14の径の拡大により、キャビティ内スワールS2の流速が低下する場合にも、これに合わせてシリンダ内スワールS1の流速を十分に低下させることができ、両スワールS1,S2のバランスを適切に維持することが可能となり、成層燃焼性能を向上させることができる。
一方、主に高負荷領域での均質燃焼時には、前記スワール制御弁10を開いて、2本の吸気ポート6から吸気することにより、図5に示すように、タンブルを生成する一方、吸気行程にて燃料噴射弁11よりシリンダ内に燃料を噴射し、噴射燃料をタンブルに乗せて、燃焼室4全体に拡散させ、均質な混合気を形成することで、均質燃焼を行わせる。
【0021】
ここにおいて、隆起部13の排気弁9側の部分、特に傾斜面15は、図5に示すように、タンブルを整流・保持する働きをもち、これにより均質燃焼性能を向上させることができる。
尚、本発明は、キャビティ14の径を拡大する場合に特にその効果を発揮するものであり、図6に示すキャビティ面積Acとボア面積Abとの比率Ra=Ac/Ab、図7に示すキャビティ容積Vcと隆起部(凸部)容積Vtとの比率Rv=Vc/Vtでみれば、従来一般的には、Ra=0.28〜0.33程度、Rv=0.7〜1.6程度であり、本発明は、Ra≧0.35、Rv≧2.0の場合に特にその効果を発揮する。
【0022】
次にキャビティ14内の燃料噴射弁11側に傾斜面17(図8参照)を形成する理由について説明する。
キャビティ14内の燃料噴射弁11側の側面と底面14aとを参考例である図10に示すようにアール20によってつなぐと、燃料噴射弁11直下のキャビティ14隅部に燃料噴霧が溜まりやすく、未燃HCの増加を招くという問題点がある。
【0023】
また、キャビティ14の径を拡大する場合、主に燃料噴射弁11側にキャビティ14の径を拡大するため、キャビティ14とピストンリング溝18との間の肉厚が不足して、ピストンリング溝18部の温度が上昇し、異常摩耗などの不具合を起こしたり、肉厚不足を解消するために、ピストンリング溝18の位置を下げると、クレビス容積が増大して、未燃HCの増加を招いたりするという問題点がある。
【0024】
そこで、燃料噴射弁11直下のキャビティ14隅部に燃料噴霧が溜まることを防止でき、キャビティ14の径が大きい場合でも、ピストンリング溝18の位置を下げることなく、キャビティ14とピストンリング溝18との間の肉厚を確保できるようにする必要がある。
このため、キャビティ14内の燃料噴射弁11側に傾斜面(噴霧案内面)17を設け、特にその傾斜面17を燃料噴射弁1の噴射方向線と平行(θ2=θ1)ないし噴射方向線よりも緩傾斜(θ2<θ1)とすることで、図9に示すように、燃料噴霧が燃料噴射弁11直下のキャビティ14隅部に溜まることを防止できるのみならず、燃料噴霧がスムーズに点火プラグ5側に進行することを助け、良好な成層化を実現している。この場合、傾斜面17を燃料噴射弁1の噴射方向線よりも緩傾斜(θ2<θ1)とすることで、より効果を上げる得る。
【0025】
また、前記傾斜面17により、肉盛りできるので、図9(H1)と図10(H2)との比較から明らかなように、ピストンリング溝18の位置を下げることなく、キャビティ14とピストンリング溝18との肉厚を確保できる。
更に、前記傾斜面17を円錐面とすることにより、平面とする場合に比べ、キャビティ内スワールS2の流れを阻害することをより防止できると共に、ピストンリング溝18との間の肉厚を効率的に確保できる。
【図面の簡単な説明】
【図1】 本発明の一実施形態を示すピストン冠面の平面図
【図2】 図1のA−A断面に相当するピストンを含むエンジンの断面図
【図3】 隆起部外形の説明図
【図4】 シリンダ内及びキャビティ内スワールの説明図
【図5】 タンブル生成時の説明図
【図6】 キャビティ面積及びボア面積の説明図
【図7】 キャビティ容積及び隆起部容積の説明図
【図8】 燃料噴射弁及び噴霧案内面の説明図
【図9】 燃料噴霧の案内効果を示す図
【図10】 参考例での問題点を示す図
【符号の説明】
1 シリンダヘッド
2 シリンダブロック
3 ピストン
4 ペントルーフ型燃焼室
5 点火プラグ
6 吸気ポート
7 排気ポート
8 吸気弁
9 排気弁
10 スワール制御弁
11 燃料噴射弁
12 平面部
13 隆起部
13a 略楕円状の外形
14 キャビティ
14a 底面
14b 稜線
14c アール
15 傾斜面(タンブル保持面)
16 傾斜面
17 傾斜面(噴霧案内面)
18 ピストンリング溝
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piston of a direct-injection spark-ignition internal combustion engine, and particularly to the crown shape of the piston.
[0002]
[Prior art]
As a piston of a conventional direct-injection spark-ignition internal combustion engine, it has a circular outer shape when viewed from above, leaving an annular flat surface portion with a minimum width on the outermost peripheral side on the piston crown surface, toward the center portion For example, a conical bulge is formed, and a concave cavity is formed near the bulge in the intake valve. With the swirl component in the cylinder, the intake valve Fuel injection in the compression stroke is performed from the fuel injection valve arranged on the side to form a stratified mixture intensively around the spark plug, realizing stratified combustion, while tumble (vertical) in the cylinder By injecting fuel during the intake stroke with the vortex component added, the fuel is diffused throughout the combustion chamber to form a homogeneous air-fuel mixture, thereby realizing homogeneous combustion (Japanese Patent Laid-Open No. 10-1999). No. 331644, JP-A-11- See No. 10470).
[0003]
[Problems to be solved by the invention]
By the way, for example, in order to maintain a predetermined compression ratio when extending the piston stroke of the current engine to increase the stroke volume (displacement), or to reduce the compression ratio of the current engine, When increasing the cavity diameter when increasing the combustion chamber volume, the flow speed of the swirl in the cylinder during stratified combustion does not change, but the flow speed of the swirl in the cavity induced by the swirl in the cylinder decreases (if the induced energy is the same) As the cavity diameter increases, the flow velocity decreases), the balance between the two swirls is lost, and inconveniences such as failure to transport the fuel to the spark plug may occur, and the stratified combustion performance may deteriorate.
[0004]
In such a case, it is necessary to adjust (for example, reduce) the flow rate of the swirl in the cylinder by reviewing the flow path of the swirl in the cylinder near the top dead center. However, the influence on the homogeneous combustion performance is also considered. When the external shape of the raised portion of the piston crown surface is a simple circle as in the prior art, there is a problem that the degree of freedom in design is small for various requirements.
[0005]
In view of such conventional problems, the present invention can improve the stratified combustion performance and the homogeneous combustion performance by reviewing the shape of the raised portion of the piston crown surface in consideration of adaptation to engines of various specifications. The purpose is to be able to.
[0006]
[Means for Solving the Problems]
For this reason, in the invention according to claim 1, the ignition plug is provided at the approximate center of the wall surface of the combustion chamber recessed in the cylinder head, the intake valve and the exhaust valve are sandwiched between the ignition plug, and the intake air It has a fuel injection valve that directly injects fuel into the cylinder on the valve side, and stratified combustion is realized by injecting fuel near the compression stroke with the swirl component applied in the cylinder, and the tumble component is injected into the cylinder. In a piston of a direct-injection spark ignition internal combustion engine that achieves homogeneous combustion by injecting fuel near the intake stroke in the applied state, leaving a flat surface on the outermost circumferential side of the piston crown, top view Has a substantially elliptical outer shape that is long in a straight line connecting the intake valve side and the exhaust valve side , and forms a ridge that rises in a mountain shape toward the center, and this ridge is viewed from above. Width in the direction perpendicular to the linear direction , To the intake valve side, in the exhaust valve side, it is formed to be narrower, and characterized by forming a concave cavity to the intake valve toward the ridge.
[0007]
The invention according to claim 2 is characterized in that an inclined surface that is more gently inclined than a mountain-shaped inclination of the raised portion is formed in a portion on the exhaust valve side in the linear direction of the raised portion.
The “linear direction connecting the intake valve side and the exhaust valve side” is hereinafter referred to as “cross flow direction” in the present specification.
[0008]
【The invention's effect】
According to the first aspect of the present invention, the ridged portion of the piston crown surface has a substantially elliptical shape that is long in the crossflow direction when viewed from above, so that the stratified combustion is performed on the intake valve side of the piston crown surface. By securing the wall of the cavity and securing the tumble-holding ridge for homogeneous combustion on the exhaust valve side of the piston crown, and reducing the width of the ridge in the direction perpendicular to the crossflow direction The flow area of the swirl in the cylinder near the top dead center can be increased, which makes it possible to adjust the flow speed of the swirl in the cylinder during stratified combustion, which improves the design freedom. can get.
[0009]
Therefore, for example, when the flow velocity of the swirl in the cavity decreases due to the enlargement of the cavity diameter, the flow velocity of the swirl in the cylinder can be decreased accordingly, and the balance between both swirls can be appropriately maintained. .
In addition, the intake valve side of the raised portion needs to ensure a cavity wall for stratified combustion, whereas the exhaust valve side only needs to have a width necessary to hold the tumble during homogeneous combustion. Therefore, by narrowing the width on the exhaust valve side relative to the width on the intake valve side, while ensuring the required cavity volume for performance, the flow area of the swirl in the cylinder is maximized, and the above-mentioned The effect can be maximized.
[0010]
According to the invention which concerns on Claim 2 , the rectification | straightening effect of a tumble can be heightened by making the part which hold | maintains the tumble at the time of homogeneous combustion in a protruding part into a gently inclined surface.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a plan view of a piston crown surface showing an embodiment of the present invention, and FIG. 2 is a sectional view of an engine including a piston corresponding to the AA section of FIG.
In these drawings, 1 is a cylinder head, 2 is a cylinder block, and 3 is a piston.
[0012]
In the cylinder head 1, a pent roof type combustion chamber 4 is recessed, and an ignition plug 5 is disposed in the approximate center of the wall surface of the combustion chamber 4 (slightly close to the exhaust valve 9).
The cylinder head 1 has two intake ports 6 and exhaust ports 7 facing each other with an ignition plug 5 interposed therebetween, and an intake valve 8 and an exhaust valve 9 are arranged at each opening to the combustion chamber 4. Has been. Here, a swirl control valve 10 capable of closing at least a part of one of the two intake ports 6 is provided as a swirl generating means.
[0013]
A fuel injection valve 11 is attached to the cylinder head 1 obliquely downward from the intake valve 8 side to the exhaust valve 9 side, between the two intake ports 6 and on the peripheral edge side of the intake port 6. The fuel is directly injected into the cylinder.
Next, the shape of the crown surface of the piston 3 will be described.
The crown surface of the piston 3 has a substantially elliptical outer shape 13a that is long in the crossflow direction (intake valve 8-exhaust valve 9 direction) when viewed from above, leaving an annular flat surface portion 12 on the outermost peripheral side. A raised portion 13 that rises in a mountain shape toward the portion is formed.
[0014]
In addition, referring to FIG. 3, the width W2 on the exhaust valve 9 side is made narrower than the width W1 on the intake valve 8 side with respect to the width of the substantially elliptical outer shape 13a of the raised portion 13 in the direction perpendicular to the crossflow direction. In other words, the width of the flat portion 12 on the exhaust valve 9 side is made wider than the width of the flat portion 12 on the intake valve 8 side.
Here, the outer shape of the raised portion 13 is expressed as “substantially elliptical”, but as shown by the difference in width between the intake valve 8 side and the exhaust valve 9 side, it is not a complete ellipse, but an egg shape. FIG. 3 is actually close to the mold, and one side has an arc of radius r1 centered on point a, an arc of radius r2 centered on point b, and a radius r3 centered on point c. It has a shape that connects arcs, and the opposite side is symmetrical.
[0015]
The raised portion 13 is formed with a cavity 14 that is concave and has a bottom surface 14 a lower than the flat portion 12, near the intake valve 8. That is, the cavity 14 has a center at a position offset from the center of the piston 3 toward the intake valve 8 and has a substantially circular outer shape in a top view. Therefore, the ridge line 14b at the peripheral edge of the cavity 14 is low on the intake valve 8 side and high on the exhaust valve 9 side (piston 3 center side), and the spark plug 5 is located above the peripheral edge on the piston 3 center side in the cavity 14. Is located.
[0016]
Further, the portion on the exhaust valve 9 side in the cross flow direction of the raised portion 13 (outside of the ridge line 14b on the peripheral side of the piston 3 at the center of the cavity 14) is cut off obliquely to suppress the height of the highest portion of the piston 3. At the same time, an inclined surface (tumble holding surface) 15 that is more gently inclined than the angle of the mountain-shaped inclination of the raised portion 13 is formed for the purpose of better holding the tumble during homogeneous combustion. Further, in order to make the inclined surface 15 longer and to secure the flat portion 12 on the exhaust valve 9 side, the flat portion 12 and the inclined surface 15 are connected by an inclined surface 16 that is steeper than the inclined surface 15.
[0017]
In addition, the bottom surface 14a and the side surface (inner peripheral surface) in the cavity 14 are basically connected by a radius 14c, but in this embodiment, the side surface on the fuel injection valve 11 side in the cavity 14 is overlaid. And an inclined surface (spray guide surface) 17 which is formed of a conical surface having the central axis of the piston 3 as a central axis and guides the fuel spray from the fuel injection valve 11 to smoothly transport to the spark plug 5 side during stratified combustion. It is. Here, referring to FIG. 8, the inclination angle θ2 of the inclined surface 17 is set to be gentler than the inclination angle θ1 of the injection direction line of the fuel injection valve 11 (θ2 <θ1).
[0018]
Next, the operation will be described.
At the time of stratified combustion mainly in a low load region, one of the two intake ports 6 is closed by the swirl control valve 10 and sucked from one intake port 6, as shown in FIG. The swirl S1 is formed therein, and the swirl S2 is induced in the cavity 14 by the in-cylinder swirl S1. Then, these swirls S1 and S2 are maintained after the compression stroke, and fuel is injected into the cavity 14 from the fuel injection valve 11 in the latter half of the compression stroke, and the injected fuel is put on the swirl S2 in the cavity 14 and the ignition plug By transporting to the vicinity of 5, the fuel is collected around the spark plug 5 and stratified combustion is performed.
[0019]
Here, a sufficient volume of the cavity 14 is provided on the side of the intake valve 8 on the crown surface of the piston 3 by forming the raised portion 13 on the crown surface of the piston 3 into a shape having a substantially elliptical outer shape 13a that is long in the cross flow direction in a top view. And the wall of the piston 3 and the exhaust valve 9 on the crown surface of the piston 3 are secured with a bulge (inclined surface 15) for holding a tumble during homogeneous combustion, which will be described later. In particular, it is necessary to secure the wall of the cavity 14 on the intake valve 8 side of the raised portion 13, while the exhaust valve 9 side performs tumble during homogeneous combustion. Since the width required for holding is sufficient, the width W2 on the exhaust valve 9 side is made narrower than the width W1 on the intake valve 8 side of the raised portion 13, thereby securing a shape essential for performance. Above, Siri near top dead center The flow area of the dust in the swirl S1 is maximally increased, with, it becomes possible to reduce the flow rate of the cylinder swirl S1.
[0020]
Therefore, even when the flow velocity of the swirl S2 in the cavity decreases due to the enlargement of the diameter of the cavity 14, the flow velocity of the swirl S1 in the cylinder can be sufficiently reduced accordingly, and the balance between the swirls S1 and S2 can be balanced. It becomes possible to maintain appropriately, and the stratified combustion performance can be improved.
On the other hand, at the time of homogeneous combustion mainly in a high load region, the swirl control valve 10 is opened and the air is sucked from the two intake ports 6 to generate a tumble as shown in FIG. Then, fuel is injected into the cylinder from the fuel injection valve 11, and the injected fuel is placed in a tumble and diffused throughout the combustion chamber 4 to form a homogeneous mixture, thereby performing homogeneous combustion.
[0021]
Here, the portion of the raised portion 13 on the exhaust valve 9 side, in particular, the inclined surface 15 has a function of rectifying and holding the tumble as shown in FIG. 5, thereby improving the homogeneous combustion performance.
The present invention is particularly effective when the diameter of the cavity 14 is enlarged. The ratio Ra = Ac / Ab between the cavity area Ac and the bore area Ab shown in FIG. 6, and the cavity shown in FIG. When the ratio Rv = Vc / Vt between the volume Vc and the raised portion (convex portion) volume Vt is generally known, Ra = 0.28 to 0.33 and Rv = 0.7 to 1.6 are generally used. The present invention exhibits its effect particularly when Ra ≧ 0.35 and Rv ≧ 2.0.
[0022]
Next, the reason why the inclined surface 17 (see FIG. 8) is formed on the fuel injection valve 11 side in the cavity 14 will be described.
When the side surface on the fuel injection valve 11 side in the cavity 14 and the bottom surface 14a are connected by a radius 20 as shown in FIG. 10, which is a reference example, fuel spray tends to accumulate at the corner of the cavity 14 directly below the fuel injection valve 11, There is a problem that the fuel HC increases.
[0023]
Further, when the diameter of the cavity 14 is enlarged, the diameter of the cavity 14 is mainly enlarged on the fuel injection valve 11 side, so that the wall thickness between the cavity 14 and the piston ring groove 18 is insufficient, and the piston ring groove 18 If the piston ring groove 18 is lowered in order to cause problems such as abnormal wear due to an increase in the temperature of the part, or a lack of wall thickness, the clevis volume will increase, leading to an increase in unburned HC. There is a problem of doing.
[0024]
Therefore, fuel spray can be prevented from accumulating at the corner of the cavity 14 immediately below the fuel injection valve 11, and even when the diameter of the cavity 14 is large, the cavity 14 and the piston ring groove 18 are not lowered without lowering the position of the piston ring groove 18. It is necessary to be able to secure the wall thickness between.
Therefore, an inclined surface (spray guide surface) 17 is provided on the fuel injection valve 11 side in the cavity 14, and in particular, the inclined surface 17 is parallel to the injection direction line of the fuel injection valve 1 (θ2 = θ1) or from the injection direction line. In addition, the gentle inclination (θ2 <θ1) not only prevents the fuel spray from collecting in the corner of the cavity 14 immediately below the fuel injection valve 11 as shown in FIG. Helps to go to the 5th side and realizes good stratification. In this case, the effect can be further improved by setting the inclined surface 17 to a gentler inclination (θ2 <θ1) than the injection direction line of the fuel injection valve 1.
[0025]
Further, since the surface can be built up by the inclined surface 17, as is clear from comparison between FIG. 9 (H1) and FIG. 10 (H2), the cavity 14 and the piston ring groove are not lowered without lowering the position of the piston ring groove 18. A wall thickness of 18 can be secured.
Further, by making the inclined surface 17 a conical surface, it is possible to prevent the flow of the swirl S2 in the cavity from being obstructed more than when the inclined surface 17 is a flat surface, and the wall thickness between the piston ring groove 18 can be efficiently reduced. Can be secured.
[Brief description of the drawings]
FIG. 1 is a plan view of a piston crown surface showing an embodiment of the present invention. FIG. 2 is a cross-sectional view of an engine including a piston corresponding to the AA cross section of FIG. FIG. 4 is an explanatory diagram of swirl in a cylinder and in a cavity. FIG. 5 is an explanatory diagram at the time of tumble generation. FIG. 6 is an explanatory diagram of a cavity area and a bore area. FIG. ] Illustration of fuel injection valve and spray guide surface [FIG. 9] Diagram showing fuel spray guidance effect [FIG. 10] Diagram showing problems in reference example [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cylinder head 2 Cylinder block 3 Piston 4 Pent roof type combustion chamber 5 Spark plug 6 Intake port 7 Exhaust port 8 Intake valve 9 Exhaust valve 10 Swirl control valve 11 Fuel injection valve 12 Planar part 13 Raised part 13a Substantially elliptical outline 14 Cavity 14a Bottom surface 14b Ridge line 14c R 15 Inclined surface (tumble holding surface)
16 Inclined surface 17 Inclined surface (spray guide surface)
18 Piston ring groove

Claims (2)

シリンダヘッドに凹設された燃焼室の壁面の略中央に点火プラグを有し、この点火プラグを挟んで吸気弁及び排気弁を有し、かつ、吸気弁側にシリンダ内に直接燃料を噴射する燃料噴射弁を有し、シリンダ内にスワール成分を付与した状態で圧縮行程付近で燃料噴射を行うことにより成層燃焼を実現し、シリンダ内にタンブル成分を付与した状態で吸気行程付近で燃料噴射を行うことにより均質燃焼を実現するようにした直噴火花点火式内燃機関のピストンにおいて、
ピストン冠面に、最外周側に平面部を残して、上面視で吸気弁側と排気弁側とを結ぶ直線方向に長い略楕円状の外形を有し、中央部に向かって山型に隆起する隆起部を形成し、
かつ、この隆起部を、上面視で前記直線方向と直角方向の幅が、吸気弁側に対し、排気弁側において、狭くなるように形成し、
この隆起部の吸気弁寄りに凹状のキャビティを形成したことを特徴とする直噴火花点火式内燃機関のピストン。
An ignition plug is provided at the approximate center of the wall of the combustion chamber recessed in the cylinder head, and an intake valve and an exhaust valve are provided across the ignition plug, and fuel is directly injected into the cylinder on the intake valve side. It has a fuel injection valve and realizes stratified combustion by injecting fuel near the compression stroke with a swirl component in the cylinder, and injecting fuel near the intake stroke with a tumble component in the cylinder In a direct-injection spark-ignition internal combustion engine piston that achieves homogeneous combustion by performing
On the piston crown surface, leaving a flat part on the outermost peripheral side, it has a substantially elliptical shape that is long in the linear direction connecting the intake valve side and the exhaust valve side when viewed from above, and rises in a mountain shape toward the center part Forming a raised ridge,
And this ridge is formed so that the width in the direction perpendicular to the linear direction in the top view is narrower on the exhaust valve side than on the intake valve side,
A piston of a direct-injection spark-ignition internal combustion engine, wherein a concave cavity is formed near the intake valve of the raised portion.
前記隆起部の前記直線方向で排気弁側の部分に、前記隆起部の山型の傾斜より緩傾斜の傾斜面を形成したことを特徴とする請求項1記載の直噴火花点火式内燃機関のピストン。The direct-injection spark-ignition internal combustion engine according to claim 1 , wherein an inclined surface that is more gently inclined than a mountain-shaped inclination of the raised portion is formed in a portion of the raised portion on the exhaust valve side in the linear direction . piston.
JP2000221710A 2000-07-24 2000-07-24 Piston for direct-injection spark ignition internal combustion engine Expired - Lifetime JP3799974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000221710A JP3799974B2 (en) 2000-07-24 2000-07-24 Piston for direct-injection spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000221710A JP3799974B2 (en) 2000-07-24 2000-07-24 Piston for direct-injection spark ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002038956A JP2002038956A (en) 2002-02-06
JP3799974B2 true JP3799974B2 (en) 2006-07-19

Family

ID=18716066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000221710A Expired - Lifetime JP3799974B2 (en) 2000-07-24 2000-07-24 Piston for direct-injection spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP3799974B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10304167A1 (en) * 2003-02-03 2004-08-05 Bayerische Motoren Werke Ag Direct petrol injection, lifting cylinder combustion engine has concave piston region with spherical section, substantially flat surface with center of area between ignition device, injection valve
JP6515941B2 (en) 2017-03-27 2019-05-22 マツダ株式会社 Spark-ignition type internal combustion engine
JP6519603B2 (en) 2017-03-27 2019-05-29 マツダ株式会社 Spark-ignition type internal combustion engine

Also Published As

Publication number Publication date
JP2002038956A (en) 2002-02-06

Similar Documents

Publication Publication Date Title
US6209514B1 (en) Direct injection gasoline engine
WO2014030319A1 (en) Engine combustion chamber structure
US6971379B2 (en) Combustion chamber structure in an internal combustion engine
US6615789B2 (en) Piston for internal combustion engines
JPH02153222A (en) Combustion chamber construction of two-cycle internal combustion engine
US6019079A (en) Piston for internal combustion engines
JP2572728B2 (en) Combustion chamber of internal combustion engine
JP3799974B2 (en) Piston for direct-injection spark ignition internal combustion engine
JP3327168B2 (en) Piston for in-cylinder injection internal combustion engine
JPH10317975A (en) Direct cylinder injection spark ignition engine
JPS5838610B2 (en) internal combustion engine
JP3775038B2 (en) In-cylinder injection spark ignition internal combustion engine piston
JP3817910B2 (en) Piston for in-cylinder internal combustion engine
JP3029839B2 (en) Engine combustion chamber
JPH077544Y2 (en) Engine combustion chamber structure
JPS6017222A (en) Combustion chamber structure of engine
JP4075471B2 (en) In-cylinder direct injection internal combustion engine
JP3644230B2 (en) Piston for in-cylinder internal combustion engine
JP3284922B2 (en) Piston for in-cylinder injection internal combustion engine
JP3799929B2 (en) Direct-injection spark ignition internal combustion engine
JP3690384B2 (en) In-cylinder injection spark ignition internal combustion engine piston
JP3644359B2 (en) Piston for in-cylinder internal combustion engine
JPH0814048A (en) Stratified combustion internal combustion engine
JP2563943B2 (en) Engine combustion chamber structure
JPH11210467A (en) Reentrant type combustion chamber for diesel engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Ref document number: 3799974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

EXPY Cancellation because of completion of term