JP3799659B2 - Exhaust gas purification catalyst, exhaust gas purification filter using the same, and exhaust gas purification apparatus using the same - Google Patents
Exhaust gas purification catalyst, exhaust gas purification filter using the same, and exhaust gas purification apparatus using the same Download PDFInfo
- Publication number
- JP3799659B2 JP3799659B2 JP12128796A JP12128796A JP3799659B2 JP 3799659 B2 JP3799659 B2 JP 3799659B2 JP 12128796 A JP12128796 A JP 12128796A JP 12128796 A JP12128796 A JP 12128796A JP 3799659 B2 JP3799659 B2 JP 3799659B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- sulfate
- gas purification
- catalyst
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003054 catalyst Substances 0.000 title claims description 60
- 238000000746 purification Methods 0.000 title claims description 39
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 14
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 14
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 13
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 claims description 12
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 8
- RBFRVUKIVGOWND-UHFFFAOYSA-L oxygen(2-);vanadium(4+);sulfate Chemical compound [O-2].[V+4].[O-]S([O-])(=O)=O RBFRVUKIVGOWND-UHFFFAOYSA-L 0.000 claims description 8
- 239000011810 insulating material Substances 0.000 claims description 6
- 229910052878 cordierite Inorganic materials 0.000 claims description 5
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 3
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 229910052863 mullite Inorganic materials 0.000 claims description 3
- 229910000505 Al2TiO5 Inorganic materials 0.000 claims description 2
- 239000003779 heat-resistant material Substances 0.000 claims description 2
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 92
- 238000002485 combustion reaction Methods 0.000 description 36
- 230000000694 effects Effects 0.000 description 22
- 229960000355 copper sulfate Drugs 0.000 description 11
- 238000005259 measurement Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- VLOPEOIIELCUML-UHFFFAOYSA-L vanadium(2+);sulfate Chemical compound [V+2].[O-]S([O-])(=O)=O VLOPEOIIELCUML-UHFFFAOYSA-L 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 229910052936 alkali metal sulfate Inorganic materials 0.000 description 2
- FLJPGEWQYJVDPF-UHFFFAOYSA-L caesium sulfate Chemical compound [Cs+].[Cs+].[O-]S([O-])(=O)=O FLJPGEWQYJVDPF-UHFFFAOYSA-L 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 1
- -1 lithium oxide vanadium sulfate Chemical compound 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- ICYJJTNLBFMCOZ-UHFFFAOYSA-J molybdenum(4+);disulfate Chemical compound [Mo+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ICYJJTNLBFMCOZ-UHFFFAOYSA-J 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 229910000344 rubidium sulfate Inorganic materials 0.000 description 1
- GANPIEKBSASAOC-UHFFFAOYSA-L rubidium(1+);sulfate Chemical compound [Rb+].[Rb+].[O-]S([O-])(=O)=O GANPIEKBSASAOC-UHFFFAOYSA-L 0.000 description 1
- YPNVIBVEFVRZPJ-UHFFFAOYSA-L silver sulfate Chemical compound [Ag+].[Ag+].[O-]S([O-])(=O)=O YPNVIBVEFVRZPJ-UHFFFAOYSA-L 0.000 description 1
- 229910000367 silver sulfate Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Exhaust Silencers (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はディーゼル機関等の燃焼機関から排出される排気ガス中に含まれる固体状炭素微粒子、液体あるいは固体状の高分子量炭化水素微粒子(以下、パーティキュレートと言う)を酸化反応させ、除去する性能に優れた排ガス浄化用触媒とその触媒を担持した排ガス浄化フィルター及びその触媒を担持した排ガス浄化フィルターを用いた排ガス浄化装置に関するものである。
【0002】
【従来の技術】
ディーゼル機関の排ガス中のパーティキュレートはその粒子径のほとんどが1μm以下であり、大気中に浮遊し易く呼吸時に人体に取り込まれやすい。しかもこの微粒子は発ガン性物質を含んでいることから、このパーティキュレートの処理が種々検討されている。
【0003】
近年、このパーティキュレートの除去方法として耐熱性のセラミックフィルターを用いて、排ガス中のパーティキュレートを補足した後、バーナーあるいはヒーターなどでパーティキュレートを燃焼させる方法が開発されている。特に最近はバーナーあるいはヒーターなどによる燃焼操作の軽減化を図った。耐熱性セラミックフィルターにあらかじめ燃焼触媒を担持させておき、パーティキュレートの捕集とともに、燃焼反応を行わせる方法が研究されている。
【0004】
フィルター担持用触媒としては、コスト、活性の高さからABO3型の複合酸化物(特開平5−76762号公報)や卑金属−貴金属系触媒(特開昭61−57223)が開示されている。これらの触媒を担持するフィルター部としては、コスト、物理的あるいは化学的性質が適当であることから、コーディエライト(2MgO・5SiO2・2Al2O3)、ムライト、(2Al2O3・3SiO2)等のアルミナを含んだ耐熱性セラミックスが用いられている。
【0005】
【発明が解決しようとする課題】
しかしながらディーゼルエンジンの排ガス温度はガソリンエンジンの場合と比較して格段に低く、しかも燃料として軽油を用いるために排ガス中にはSOX量も多いことからこれらの触媒は排ガス中のSOX成分により被毒され触媒の活性が劣化してしまい、排ガス温度でパーティキュレートを燃焼させるだけの十分な活性を得られないという問題点がある。さらに排ガス温度やパーティキュレート燃焼時における燃焼熱による触媒の熱的劣化も触媒活性の失活の原因となる。
【0006】
一般にディーゼル排ガス浄化触媒としては高活性に加え、排ガス中のSOX成分に対する耐久性および排ガス温度やパーティキュレートの燃焼熱に対する耐熱性が要求されている。
【0007】
また、ディーゼル排ガス中のパーティキュレートを排ガス温度にて燃焼除去できれば特殊な装置を必要とせず、排ガスを浄化する方法として最も有効な方法であり、よってより低温で活性を有する燃焼触媒が開発されればシステムの簡素化によりコスト軽減が可能であり、実用の面で極めて有用で強く要望されている。
【0008】
本発明は上記従来の問題点を解決するもので、ディーゼル排ガス中のパーティキュレートの燃焼触媒として高活性を達成するとともに排ガス中のSOx成分に対する耐久性および排ガス温度やパーティキュレート燃焼熱に対する耐熱性,耐熱衝撃性に優れた排ガス浄化触媒の提供、及び高活性を有する排ガス浄化触媒を担持し耐熱性や耐熱機械的強度に優れ高い燃焼率を達成できる排ガス浄化用フィルターの提供、高活性な触媒を担持し耐熱性に優れ高燃焼率のフィルターを備えディーゼル排ガス中のパーティキュレートを極めて高い浄化率で浄化することのできる排ガス浄化装置の提供を目的とする。
【0009】
【課題を解決するための手段】
本発明の排ガス浄化用触媒は、酸化硫酸バナジウムと硫酸リチウムを含有し、硫酸銅とアルミナが添加され、酸化硫酸バナジウムと硫酸リチウムと硫酸銅の金属の硫酸塩の合計(x)に対するアルミナ(y)のモル比(x)/(y)が、0.1〜2である構成よりなり、これによりディーゼル排ガス中のパーティキュレートを燃焼させる高活性触媒を得られることに加え、排ガス中に含まれるSOx成分に対する耐久性さらに排ガス温度やパーティキュレート燃焼時における燃焼熱に対する耐熱性を得ることができるという作用を有する。
【0010】
本発明の排ガス浄化用フィルターは、上記高活性触媒が耐熱性、耐熱衝撃性に優れた材質からなるハニカム状又は板状の多孔質担体に担持された構成よりなり、これにより、捕集量が増加しても圧力の変化がほとんどなく排ガス浄化用フィルターが捕集されたパーティキュレートが排ガス温度で燃焼し浄化することができるという作用を有する。
【0011】
本発明の排ガス浄化装置は、高活性触媒を担持した排ガス浄化用フィルターを収納したケースと、ケースに配設された排ガス流出入口を備え、排ガス流入口がエンジンマニホールド側に近接して取付られている構成よりなり、これにより、パーティキュレートを排ガス温度で燃焼除去する場合にも排ガス温度を高温のまま排ガス浄化用フィルター内に流入するため触媒の燃焼活性の必要温度を上げることができる。という作用を有する。
【0012】
【発明の実施の形態】
本発明の請求項1に記載の排ガス浄化触媒は、(a)成分として酸化硫酸バナジウムと(b)成分として硫酸リチウムを含有し(c)成分として硫酸銅が添加され(d)成分としてアルミナが添加され、(a)成分の酸化硫酸バナジウムと、(b)成分の硫酸リチウムと、(c)成分の硫酸銅の金属の硫酸塩の合計(x)に対する前記(d)成分のアルミナ(y)のモル比(x)/(y)が、0.1〜2である構成を有している。
【0013】
ここで、モル比(x)/(y)が0.1よりも小さくなるにつれ、活性の低下という傾向が現れ、また、モル比(x)/(y)が2よりも大きくなると活性の低下という傾向が現れるので、いずれも好ましくない。
【0014】
この構成により、耐熱性を向上させるとともに、SOXの耐毒性に優れ高活性を持続できるという作用を有する。
【0015】
本発明の請求項2に記載の排ガス浄化用フィルターは、請求項1に記載の排ガス浄化触媒がコージェライトやムライト、チタン酸アルミニウム等の耐熱性を有する材料でハニカム状あるいは板状に形成された多孔質担体に担持されている構成を有している。
【0016】
この構成により、SOxに対する耐毒性に優れ、かつ耐熱衝撃性を向上させるという作用を有する。
【0017】
本発明の請求項3に記載の排ガス浄化装置は、請求項2に記載の排ガス浄化用フィルターを収納したケースと、ケースに形成された排ガス流入口と、ケースに形成され浄化されたガスが流出する流出口と、を備え、排ガス流入口がエンジンマニホールドに近接して、取り付けられている構成を有している。
【0018】
この構成により、より高温の排ガス排出部に設置したので、パーティキュレートの燃焼効率を高めることができる。
【0019】
本発明の請求項4に記載の排ガス浄化装置は、請求項3において、ケースおよび排ガス流入口が断熱材や真空層を有する中空板状を材質として形成されている構成を有している。
【0020】
この構成により、排ガス温度の低下を防ぐことができるという作用を有する。この作用の結果、高温の排ガス気流中に排ガス浄化用フィルターを設置できパーティキュレートの燃焼効率を高めることができる。
【0021】
本発明の請求項5に記載の排ガス浄化装置は、ケース内に電気ヒーター、バーナー及びマイクロ波等の加熱によりパーティキュレートを除去する加熱手段を備えている構成を有している。
【0022】
この構成により、排ガス浄化用フィルターを加熱できトラップされたパーティキュレートを完全に燃焼させることができるという作用を有する。
【0023】
【実施例】
以下本発明の実施例について説明をする。
【0024】
(参考例1〜23、比較例1)
(a)成分として酸化硫酸バナジウム、(b)成分として硫酸リチウム,硫酸カリウム,硫酸ルビジウム,硫酸セシウム、(c)成分として硫酸銅,硫酸マンガン,硫酸コバルト,硫酸鉄,硫酸鉛,硫酸モリブデン,硫酸亜鉛,硫酸銀の試薬を準備し、(表1)に示す組成比で、水に溶解し混合水溶液をつくり、蒸発乾固させてのち得られた固体を乳鉢で粉末化し、各実施例の排ガス浄化触媒を得た。
【0025】
【表1】
【0026】
次に得られた各実施例の排ガス浄化触媒を用い、ディーゼル排ガスパーティキュレートの燃焼開始温度を測定した。また、参考例1〜8と16〜19のディーゼル排ガスパーティキュレートの燃焼率について測定した。測定は触媒とパーティキュレートを粉末状態で混合したものを内径12mmφの石英ガラス反応管中に充填し、これに酸素=5vol%、SO2=50ppmの模擬ガスを流量500cc/minで流し管状電気炉にて温度を一定の割合で上昇させて、炭酸ガスセンサーにより燃焼開始温度、燃焼率の測定を行った。触媒の各組成比における燃焼開始温度の測定結果を(表2)乃至(表7)に、燃焼率のアルカリ金属に対する依存性を図1に、また、燃焼率のリチウム硫酸塩依存性を図2に示した。
【0027】
【表2】
【0028】
【表3】
【0029】
【表4】
【0030】
【表5】
【0031】
【表6】
【0032】
【表7】
【0033】
なお、燃焼開始温度は2%のパーティキュレートが燃焼したときの温度としている。
【0034】
また、従来例1として触媒を含まない他は上記実施例と同様にしてパーティキュレートの燃焼実験を行った。
【0035】
この(表2)〜(表7)及び図1,図2の結果から明らかなように、本参考例の触媒は、従来例1と比べてSOxを含む排ガス中においても優れた活性が得られることが分かった。また、(a)成分のバナジウムの硫酸塩と(b)成分のアルカリ金属の硫酸塩のモル比が(a)/(b)=2.5〜12.5のものが特に優れた活性を示しており、また(a)成分のバナジウムの硫酸塩と(c)成分の硫酸銅とのモル比が(a)/(c)≧0.5のものが特に優れた性能を示していることが分かった。さらに(b)成分のアルカリ金属の硫酸塩としては硫酸リチウムが、(c)成分の金属としては硫酸銅が特に優れた活性を示していることがわかった。
【0036】
(実施例1)
(a)成分として酸化硫酸バナジウム、(b)成分として硫酸リチウム、(c)成分として硫酸銅、(d)成分としてアルミナを準備し、モル比で(a):(b):(c):(d)=5:1:5:10の割合で混合水溶液をつくり蒸発乾固させた。次いで、得られた固体を乳鉢で粉末化し、電気炉にて900℃、5時間で焼成して触媒を得た。得られた触媒を1000℃、で100時間熱処理し、参考例1と同じ方法で燃焼開始温度の測定を行った。その測定結果を(表8)に示した。
【0037】
【表8】
【0038】
(参考例24)
(c)成分のアルミナの添加量を0とした他は実施例1と同一の方法で触媒を得た。得られた触媒を実施例24と同じ方法で燃焼開始温度の測定を行った。その測定結果を(表8)に示した。
【0039】
この(表8)の結果から明らかなように、本参考例の触媒で硫酸リチウムと硫酸銅と酸化硫酸バナジウムからなる触媒にアルミナを加えることにより熱処理による活性の劣化が抑えられ活性が維持されていることが分かった。
【0040】
(参考例25)
アルミナの添加量をモル比で1.1に変えた他は実施例1と同一の方法で触媒を得た。得られた触媒を実施例1と同じ方法で燃焼開始温度の測定を行った。その測定結果を(表8)に示した。
【0041】
(参考例26)アルミナの添加量をモル比で22に変えた他は実施例1と同一の方法で触媒を得た。得られた触媒を実施例1と同じ方法で燃焼開始温度の測定を行った。その測定結果を(表8)に示した。
【0042】
この(表8)の結果から明らかなように、本実施例の触媒で硫酸リチウムと硫酸銅と酸化硫酸バナジウムからなる触媒にアルミナを加えて耐熱性が得られるのは触媒に対するアルミナのモル比が0.1〜2の範囲であることが分かった。
【0043】
(参考例27)
次に触媒を含有した水溶液として純水3000mlに対して、(b)成分として、硫酸リチウムを80g、(c)成分として硫酸銅を100g、(d)成分として酸化硫酸バナジウムを250gの割合で溶解させた混合水溶液を作り、排ガス浄化用のフィルターとしてハニカム状のコージェライトフィルター(ブリジストン製)を上記の触媒溶液に含浸し、触媒溶液を含んだフィルターを液体窒素で凍結させた後、共和真空(株)製の真空凍結乾燥装置にてフィルター中の水分を固体の状態から直接気化させて水分を取り除き、均一に触媒をフィルターに担持させ、電気炉にて500℃で5時間の焼成を行い排ガス浄化用フィルターを得た。触媒の担持量はフィルターの重量に対して略10%であった。
【0044】
次いで、得られた排ガス浄化用フィルターを排気量3431ccのディーゼルエンジンの排気系に設置し1500rpm、トルク21kg・mで1時間の運転を行いパーティキュレートの捕集と排ガス温度でのパーティキュレートの燃焼実験を行い、排ガス浄化用フィルター前部でのパーティキュレートの蓄積による圧力の変化を確認するため差圧計で圧力の測定を行った。その結果を図3に示した。図3はフィルター前部でのパーティキュレートの蓄積による差圧の変化を示す。
【0045】
(従来例2)
触媒を担持していないハニカム状のコージェライト製の排ガス浄化用フィルターを用いて、参考例27と同等の方法でパーティキュレートの捕集および圧力上昇の測定を行った。その結果を図3に示した。
【0046】
この図3の結果から明らかなように、従来例の触媒を担持させていない排ガス浄化用フィルターがパーティキュレートの捕集量が増加するに従ってフィルター前部での圧力が増加しているのに対し、本参考例27の触媒を担持させた排ガス浄化用フィルターでは初期の差圧は触媒を担持している分大きいが、捕集量が増加しても圧力の変化がほとんどなくフィルターに捕集されたパーティキュレートが排ガス温度で燃焼し浄化されていることが分かった。
【0047】
(参考例28)
次に排気量3431ccのディーゼルエンジンの排気系に、参考例2の触媒を担持した排ガス浄化用フィルターを収納した排ガス浄化装置を設置し、排気流入口を断熱材で覆い、回転数1500rpm、トルク21kg・mで1時間の運転を行い、排ガス温度の測定を行った。その結果を(表9)に示した。
【0048】
【表9】
【0049】
(参考例29)
参考例28と同様に排気量3431ccのディーゼルエンジンの排気系に参考例2の触媒を担持した排ガス浄化用フィルターを収納した排ガス浄化装置を設置し、断熱材を使わず、回転数1500rpm、トルク21kg・mで1時間の運転を行い、排ガス温度の測定を行った。その結果を(表9)に示した。
【0050】
この(表9)の結果からディーゼルエンジンの排ガス流入口を断熱材で覆うことにより、排ガス温度をおよそ50℃上昇させることができ、排ガス浄化用フィルターにトラップされたパーティキュレートをヒーターなどの加熱装置を使って燃焼除去する際の加熱エネルギーを軽減させることができることがわかった。また、ヒーターなどの加熱装置を使わずにパーティキュレートを排ガス温度で燃焼除去する場合にも排ガス温度を高温のまま排ガス浄化用フィルター内に流入するため触媒の燃焼活性の必要温度を上げることができる。このように排ガス温度を高温のまま維持するには断熱材を用いる他、排ガス流入口の周りに中空の板材に真空層を設けることにより断熱層を作ったり、排ガス浄化用フィルターを収納した排ガス浄化装置の排ガス流入口をエンジンマニホールドに近づける方法も有効であることがわかった。
【0051】
【発明の効果】
以上のように本発明の排ガス浄化触媒によれば、ディーゼル排ガス中のSOx成分による活性の失活がなく、排ガス温度やパーティキュレートの燃焼による燃焼熱に対し、高い耐熱性を有し高活性を持続することができる。
【0052】
また本発明の排ガス浄化用フィルターによれば、ディーゼルエンジンを長期間運転しても目詰りやクラック等を起こすことがなく極めて高い浄化性と耐久性を維持することができる。
【0053】
また、ディーゼルエンジンの排ガス温度でパーティキュレートを燃焼し浄化することができ高い省エネルギー特性を達成できる。
【0054】
また、本発明の排ガス浄化装置によれば、パーティキュレートの高い捕集率と高い浄化率を有し、優れた省エネルギー性を実現できる。
【図面の簡単な説明】
【図1】 アルカリ硫酸塩の種類を変えた場合における温度に対するパーティキュレートの燃焼率を示す図
【図2】 温度に対するパーティキュレート燃焼率の触媒組成比の依存性を示す図
【図3】 排ガス浄化用フィルターの実動時間に対する差圧の変化を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention has the ability to oxidize and remove solid carbon fine particles, liquid or solid high molecular weight hydrocarbon fine particles (hereinafter referred to as particulates) contained in exhaust gas discharged from a combustion engine such as a diesel engine. The present invention relates to an exhaust gas purification catalyst excellent in the above, an exhaust gas purification filter carrying the catalyst, and an exhaust gas purification device using the exhaust gas purification filter carrying the catalyst.
[0002]
[Prior art]
Particulates in the exhaust gas of a diesel engine have a particle size of most 1 μm or less, and are easily floated in the atmosphere and easily taken into the human body during breathing. Moreover, since the fine particles contain a carcinogenic substance, various treatments for the particulates have been studied.
[0003]
In recent years, a method of removing particulates by using a heat-resistant ceramic filter and supplementing the particulates in the exhaust gas and then burning the particulates with a burner or a heater has been developed. Recently, the combustion operation with a burner or heater has been reduced. Research has been conducted on a method in which a combustion catalyst is supported in advance on a heat-resistant ceramic filter and a combustion reaction is performed along with the collection of particulates.
[0004]
As the catalyst for supporting the filter, ABO 3 type composite oxide (Japanese Patent Laid-Open No. 5-76762) and base metal-noble metal based catalyst (Japanese Patent Laid-Open No. 61-57223) are disclosed because of high cost and high activity. The filter unit carrying these catalysts, cost, physical or chemical properties to be suitable, cordierite (2MgO · 5SiO 2 · 2Al 2 O 3), mullite, (2Al 2 O 3 · 3SiO 2 ) Heat-resistant ceramics containing alumina are used.
[0005]
[Problems to be solved by the invention]
However, the exhaust gas temperature of a diesel engine is much lower than that of a gasoline engine, and since light oil is used as a fuel, the amount of SO X in the exhaust gas is large, so these catalysts are covered by the SO X component in the exhaust gas. As a result, the activity of the catalyst is deteriorated, and there is a problem that sufficient activity for burning the particulates at the exhaust gas temperature cannot be obtained. Furthermore, thermal degradation of the catalyst due to exhaust gas temperature and combustion heat during particulate combustion also causes deactivation of the catalyst activity.
[0006]
In general, diesel exhaust gas purification catalysts are required to have high activity, durability against SO X components in exhaust gas, and heat resistance against exhaust gas temperature and particulate combustion heat.
[0007]
Also, if particulates in diesel exhaust gas can be combusted and removed at the exhaust gas temperature, it is the most effective method for purifying exhaust gas without the need for a special device, and therefore a combustion catalyst having activity at a lower temperature has been developed. The cost can be reduced by simplification of the system, which is extremely useful and highly demanded in terms of practical use.
[0008]
The present invention solves the above-mentioned conventional problems, achieves high activity as a combustion catalyst for particulates in diesel exhaust gas, and has durability against SO x components in exhaust gas and heat resistance against exhaust gas temperature and particulate combustion heat. , Providing exhaust gas purification catalysts with excellent thermal shock resistance, and providing exhaust gas purification filters that support exhaust gas purification catalysts with high activity and can achieve high combustion rates with excellent heat resistance and heat-resistant mechanical strength, highly active catalysts It is an object of the present invention to provide an exhaust gas purifying apparatus that is capable of purifying particulates in diesel exhaust gas with an extremely high purification rate, which is equipped with a filter having an excellent heat resistance and a high combustion rate.
[0009]
[Means for Solving the Problems]
The exhaust gas purifying catalyst of the present invention contains lithium oxide vanadium sulfate and sulfuric acid, is added copper sulfate and alumina, alumina to the sum of oxide vanadium sulfate and metal sulfates of lithium sulfate and copper sulfate (x) ( In addition to being able to obtain a highly active catalyst for burning particulates in diesel exhaust gas, the molar ratio (x) / (y) of y) is comprised between 0.1 and 2 and included in the exhaust gas In addition, it has the effect of being able to obtain durability against the SOx component and heat resistance against combustion heat during exhaust gas temperature and particulate combustion.
[0010]
The exhaust gas purifying filter of the present invention has a configuration in which the highly active catalyst is supported on a honeycomb-like or plate-like porous carrier made of a material excellent in heat resistance and thermal shock resistance. Even if it increases, there is almost no change in pressure, and the particulates collected by the exhaust gas purification filter can be burned and purified at the exhaust gas temperature.
[0011]
The exhaust gas purification apparatus of the present invention comprises a case containing an exhaust gas purification filter carrying a highly active catalyst, and an exhaust gas inlet / outlet disposed in the case, and the exhaust gas inlet is attached close to the engine manifold side. Thus, even when the particulates are burned and removed at the exhaust gas temperature, the exhaust gas temperature flows into the exhaust gas purification filter while maintaining a high temperature, so that the required temperature for the combustion activity of the catalyst can be raised. It has the action.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The exhaust gas purifying catalyst according to
[0013]
Here, as the molar ratio (x) / (y) becomes smaller than 0.1, the activity tends to decrease, and when the molar ratio (x) / (y) becomes larger than 2, the activity decreases. This is not preferable.
[0014]
With this configuration, the heat resistance is improved, and the SO X has excellent anti-toxicity and can maintain high activity.
[0015]
In the exhaust gas purifying filter according to claim 2 of the present invention, the exhaust gas purifying catalyst according to
[0016]
With this configuration, it has an effect of being excellent in resistance to SOx and improving thermal shock resistance.
[0017]
The exhaust gas purifying apparatus according to claim 3 of the present invention includes a case containing the exhaust gas purifying filter according to claim 2 , an exhaust gas inlet formed in the case, and a purified gas formed in the case flows out. And an exhaust gas inlet is provided adjacent to the engine manifold.
[0018]
With this configuration, the combustion efficiency of the particulates can be increased because they are installed in the higher temperature exhaust gas discharge section.
[0019]
Exhaust gas purifying apparatus according to claim 4 of the present invention, in claim 3, it has a configuration that case and the exhaust gas inlet is formed as the material of the hollow plate having a heat insulating material or a vacuum layer.
[0020]
With this configuration, the exhaust gas temperature can be prevented from decreasing. As a result of this action, an exhaust gas purifying filter can be installed in the hot exhaust gas stream, and the combustion efficiency of the particulates can be increased.
[0021]
The exhaust gas purifying apparatus according to claim 5 of the present invention has a configuration in which heating means for removing particulates by heating with an electric heater, a burner, a microwave, or the like is provided in the case.
[0022]
With this configuration, the exhaust gas purifying filter can be heated and the trapped particulate can be burned completely.
[0023]
【Example】
Examples of the present invention will be described below.
[0024]
( Reference Examples 1 to 23, Comparative Example 1)
(A) Vanadium oxide sulfate as component, (b) Lithium sulfate, potassium sulfate, rubidium sulfate, cesium sulfate as component (c) Copper sulfate, manganese sulfate, cobalt sulfate, iron sulfate, lead sulfate, molybdenum sulfate, sulfuric acid as component (c) Prepare reagents for zinc and silver sulfate, dissolve in water at the composition ratio shown in (Table 1) to make a mixed aqueous solution, evaporate to dryness, and then solidify the resulting solid powder in a mortar. A purification catalyst was obtained.
[0025]
[Table 1]
[0026]
Next, the combustion start temperature of the diesel exhaust gas particulates was measured using the obtained exhaust gas purification catalyst of each example. Moreover, it measured about the combustion rate of the diesel exhaust gas particulates of Reference Examples 1-8 and 16-19. The measurement was performed by filling a mixture of catalyst and particulate in a powder state into a quartz glass reaction tube having an inner diameter of 12 mmφ, and flowing a simulated gas of oxygen = 5 vol% and SO 2 = 50 ppm at a flow rate of 500 cc / min. The temperature was increased at a constant rate, and the combustion start temperature and combustion rate were measured with a carbon dioxide sensor. The measurement results of the combustion start temperature at each composition ratio of the catalyst are shown in (Table 2) to (Table 7), the dependency of the combustion rate on the alkali metal is shown in FIG. 1, and the dependency of the combustion rate on the lithium sulfate is shown in FIG. It was shown to.
[0027]
[Table 2]
[0028]
[Table 3]
[0029]
[Table 4]
[0030]
[Table 5]
[0031]
[Table 6]
[0032]
[Table 7]
[0033]
The combustion start temperature is the temperature at which 2% of the particulates burned.
[0034]
Further, as a conventional example 1, a particulate combustion experiment was performed in the same manner as in the above example except that the catalyst was not included.
[0035]
As is apparent from the results shown in Tables 2 to 7 and FIGS. 1 and 2, the catalyst of this reference example has superior activity even in exhaust gas containing SOx as compared with Conventional Example 1. I understood that. A compound having a molar ratio of (a) component vanadium sulfate to (b) component alkali metal sulfate (a) / (b) = 2.5 to 12.5 exhibits particularly excellent activity. In addition, the (a) component vanadium sulfate and the (c) component copper sulfate having a molar ratio of (a) / (c) ≧ 0.5 exhibit particularly excellent performance. I understood. Furthermore, it was found that lithium sulfate was particularly excellent as the alkali metal sulfate of component (b), and copper sulfate was particularly excellent as the metal of component (c).
[0036]
(Example 1 )
(A) Vanadium oxide sulfate as component, lithium sulfate as component (b), copper sulfate as component (c), alumina as component (d) are prepared, and (a) :( b) :( c): (D) = Mixed aqueous solution was prepared at a ratio of 5: 1: 5: 10 and evaporated to dryness. Next, the obtained solid was pulverized in a mortar and calcined at 900 ° C. for 5 hours in an electric furnace to obtain a catalyst. The obtained catalyst was heat-treated at 1000 ° C. for 100 hours, and the combustion start temperature was measured by the same method as in Reference Example 1. The measurement results are shown in (Table 8).
[0037]
[Table 8]
[0038]
( Reference Example 24 )
(C) A catalyst was obtained in the same manner as in Example 1 except that the amount of alumina added was 0. The combustion start temperature of the obtained catalyst was measured in the same manner as in Example 24. The measurement results are shown in (Table 8).
[0039]
As is apparent from the results of (Table 8), by adding alumina to the catalyst comprising lithium sulfate, copper sulfate and vanadium oxide sulfate in the catalyst of this reference example, the deterioration of the activity due to heat treatment is suppressed and the activity is maintained. I found out.
[0040]
( Reference Example 25 )
A catalyst was obtained in the same manner as in Example 1 except that the addition amount of alumina was changed to 1.1 in terms of molar ratio. The combustion start temperature of the obtained catalyst was measured in the same manner as in Example 1 . The measurement results are shown in (Table 8).
[0041]
Reference Example 26 A catalyst was obtained in the same manner as in Example 1 except that the addition amount of alumina was changed to 22 in terms of molar ratio. The combustion start temperature of the obtained catalyst was measured in the same manner as in Example 1 . The measurement results are shown in (Table 8).
[0042]
As is apparent from the results of (Table 8), the heat resistance is obtained by adding alumina to the catalyst comprising lithium sulfate, copper sulfate and vanadium oxide sulfate in the catalyst of this example because of the molar ratio of alumina to the catalyst. It was found to be in the range of 0.1-2.
[0043]
( Reference Example 27 )
Next, 80 g of lithium sulfate as the component (b), 100 g of copper sulfate as the component (c), and 250 g of vanadium oxide sulfate as the component (d) are dissolved in 3000 ml of pure water as an aqueous solution containing the catalyst. The above-mentioned mixed aqueous solution is prepared, a honeycomb cordierite filter (manufactured by Bridgestone) is impregnated in the catalyst solution as a filter for exhaust gas purification, the filter containing the catalyst solution is frozen with liquid nitrogen, and then Kyowa Vacuum ( Moisture in the filter is directly vaporized from the solid state with a vacuum freeze-drying device manufactured by Co., Ltd. to remove the moisture, and the catalyst is uniformly supported on the filter, and calcined at 500 ° C. for 5 hours in an electric furnace. A purification filter was obtained. The amount of catalyst supported was approximately 10% with respect to the weight of the filter.
[0044]
Next, the obtained exhaust gas purification filter was installed in the exhaust system of a diesel engine with a displacement of 3431 cc and operated for 1 hour at 1500 rpm and a torque of 21 kg · m. The pressure was measured with a differential pressure gauge to confirm the change in pressure due to the accumulation of particulates at the front part of the exhaust gas purification filter. The results are shown in FIG. FIG. 3 shows the change in differential pressure due to particulate accumulation at the front of the filter.
[0045]
(Conventional example 2)
Using a honeycomb-shaped cordierite exhaust gas purification filter not supporting a catalyst, the collection of particulates and the measurement of the pressure increase were performed in the same manner as in Reference Example 27 . The results are shown in FIG.
[0046]
As is clear from the results of FIG. 3, the pressure at the front of the filter increases as the particulate collection amount of the exhaust gas purifying filter not supporting the catalyst of the conventional example increases, In the exhaust gas purifying filter carrying the catalyst of Reference Example 27 , the initial differential pressure is large because of the carrying of the catalyst, but there was almost no change in pressure even when the amount of collection increased, and the filter was collected. It was found that the particulates were burned and purified at the exhaust gas temperature.
[0047]
( Reference Example 28 )
Next, an exhaust gas purification device containing the exhaust gas purification filter carrying the catalyst of Reference Example 2 is installed in the exhaust system of a diesel engine with a displacement of 3431 cc, the exhaust inlet is covered with a heat insulating material, the rotational speed is 1500 rpm, the torque is 21 kg -The operation was performed for 1 hour at m, and the exhaust gas temperature was measured. The results are shown in (Table 9).
[0048]
[Table 9]
[0049]
( Reference Example 29 )
As in Reference Example 28 , an exhaust gas purification device containing the exhaust gas purification filter carrying the catalyst of Reference Example 2 was installed in the exhaust system of a diesel engine with a displacement of 3431 cc, without using a heat insulating material, rotating at 1500 rpm, and torque 21 kg -The operation was performed for 1 hour at m, and the exhaust gas temperature was measured. The results are shown in (Table 9).
[0050]
From the results shown in Table 9, the exhaust gas inlet of the diesel engine is covered with a heat insulating material, so that the exhaust gas temperature can be raised by about 50 ° C., and the particulates trapped in the exhaust gas purification filter are heated by a heating device such as a heater. It was found that the heating energy during combustion removal using can be reduced. Even when particulates are burned and removed at the exhaust gas temperature without using a heating device such as a heater, the exhaust gas temperature flows into the exhaust gas purification filter while maintaining a high temperature, so that the required temperature for the combustion activity of the catalyst can be raised. . In order to maintain the exhaust gas temperature at a high temperature in this manner, in addition to using a heat insulating material, a heat insulating layer is formed by providing a vacuum layer on a hollow plate around the exhaust gas inlet, or an exhaust gas purification containing an exhaust gas purification filter It was found that the method of bringing the exhaust gas inlet of the device closer to the engine manifold is also effective.
[0051]
【The invention's effect】
As described above, according to the exhaust gas purification catalyst of the present invention, there is no deactivation of activity due to the SOx component in diesel exhaust gas, and it has high heat resistance and high activity against the combustion heat due to exhaust gas temperature and particulate combustion. Can last.
[0052]
Further, according to the exhaust gas purifying filter of the present invention, even if the diesel engine is operated for a long period of time, clogging, cracking and the like are not caused, and extremely high purifying properties and durability can be maintained.
[0053]
Further, the particulates can be burned and purified at the exhaust gas temperature of the diesel engine, and high energy saving characteristics can be achieved.
[0054]
Moreover, according to the exhaust gas purification apparatus of the present invention, it has a high particulate collection rate and a high purification rate, and can realize excellent energy saving.
[Brief description of the drawings]
[Fig. 1] Fig. 2 shows the combustion rate of particulate with respect to temperature when the type of alkali sulfate is changed. [Fig. 2] Fig. 3 shows the dependence of catalyst composition ratio of particulate combustion rate on temperature. [Fig. 3] Exhaust gas purification Of the change in differential pressure against the actual operating time of the filter
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12128796A JP3799659B2 (en) | 1996-05-16 | 1996-05-16 | Exhaust gas purification catalyst, exhaust gas purification filter using the same, and exhaust gas purification apparatus using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12128796A JP3799659B2 (en) | 1996-05-16 | 1996-05-16 | Exhaust gas purification catalyst, exhaust gas purification filter using the same, and exhaust gas purification apparatus using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09299801A JPH09299801A (en) | 1997-11-25 |
JP3799659B2 true JP3799659B2 (en) | 2006-07-19 |
Family
ID=14807530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12128796A Expired - Lifetime JP3799659B2 (en) | 1996-05-16 | 1996-05-16 | Exhaust gas purification catalyst, exhaust gas purification filter using the same, and exhaust gas purification apparatus using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3799659B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030091346A (en) * | 2002-05-27 | 2003-12-03 | 현대자동차주식회사 | Oxidation catalyst for diesel automobile and method for manufacturing it |
JP5326327B2 (en) * | 2008-04-02 | 2013-10-30 | パナソニック株式会社 | Manufacturing method of exhaust gas purification filter |
JP2012071271A (en) * | 2010-09-29 | 2012-04-12 | Daihatsu Motor Co Ltd | Catalyst for cleaning exhaust gas and method for manufacturing the same |
-
1996
- 1996-05-16 JP JP12128796A patent/JP3799659B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH09299801A (en) | 1997-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3690070B2 (en) | Exhaust gas purification catalyst, method for producing the same, exhaust gas purification filter, and exhaust gas purification device | |
JP3113662B2 (en) | Catalyst for exhaust gas purification of diesel engines | |
JP2736099B2 (en) | Diesel engine exhaust gas purification catalyst | |
JP2863567B2 (en) | Exhaust gas purifying material and exhaust gas purifying method | |
JPH0459049A (en) | Catalyst for diesel engine exhaust gas cleanup | |
JP3952617B2 (en) | Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine | |
JP3736242B2 (en) | Exhaust gas purification material and method for producing the same | |
JP4776869B2 (en) | Exhaust gas purification catalyst, exhaust gas purification material using the same, and method for producing the same | |
JP4238500B2 (en) | Exhaust gas purification catalyst | |
JP4639455B2 (en) | Exhaust gas purification material | |
JP3900563B2 (en) | Exhaust gas purification catalyst and exhaust gas purification filter using the same | |
JP4887550B2 (en) | Exhaust gas purification material | |
JP3799659B2 (en) | Exhaust gas purification catalyst, exhaust gas purification filter using the same, and exhaust gas purification apparatus using the same | |
JP3835025B2 (en) | Exhaust gas purification material and exhaust gas purification apparatus using the same | |
JPS58174236A (en) | Catalyst for removing particulate matter in waste gas | |
JP2788494B2 (en) | Honeycomb-shaped exhaust gas purification structure and exhaust gas purification method using the structure | |
JP3812132B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JPH0568301B2 (en) | ||
JP3749346B2 (en) | Exhaust gas purification catalyst | |
JP4682396B2 (en) | Exhaust gas purification material, preparation method thereof, and exhaust gas purification apparatus using the same | |
JP4696392B2 (en) | Exhaust gas purification catalyst and exhaust gas purification material using the same | |
JPS6164331A (en) | Catalyst for purifying exhaust gas | |
JP3769806B2 (en) | Exhaust gas purification catalyst, exhaust gas purification filter, and exhaust gas purification device | |
JP4687057B2 (en) | Exhaust gas purification material | |
JP2001170483A (en) | Combustion catalyst for treating diesel exhaust gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050330 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050622 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060309 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060315 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060417 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120512 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120512 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |