[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3797454B2 - Brain oxygen saturation measuring device - Google Patents

Brain oxygen saturation measuring device Download PDF

Info

Publication number
JP3797454B2
JP3797454B2 JP5049598A JP5049598A JP3797454B2 JP 3797454 B2 JP3797454 B2 JP 3797454B2 JP 5049598 A JP5049598 A JP 5049598A JP 5049598 A JP5049598 A JP 5049598A JP 3797454 B2 JP3797454 B2 JP 3797454B2
Authority
JP
Japan
Prior art keywords
light
oxygen saturation
internal jugular
jugular vein
pulse wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5049598A
Other languages
Japanese (ja)
Other versions
JPH11244268A (en
Inventor
克巳 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP5049598A priority Critical patent/JP3797454B2/en
Publication of JPH11244268A publication Critical patent/JPH11244268A/en
Application granted granted Critical
Publication of JP3797454B2 publication Critical patent/JP3797454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、脳内酸素需給バランスを示す脳内静脈血の酸素飽和度を非侵襲で測定する装置に関するものである。
【0002】
【従来の技術】
臨床において、酸素飽和度測定の意義は極めて大きい。これは、生命活動維持のために酸素が最重要な物質であり、各組織への酸素供給ならびに各組織の酸素消費を示す酸素飽和度の測定が、生命活動維持の直接的モニタを意味するからである。
【0003】
酸素飽和度は、動脈血系の酸素飽和度と静脈血系の酸素飽和度とに分けられる。動脈血系の酸素飽和度は、各臓器が生命活動を維持するのに十分な酸素を供給できているか否かを示す指標であり、その測定についてはパルスオキシメータと呼ばれる機器によって非侵襲測定が実現されている。
【0004】
一方、静脈血系の酸素飽和度は酸素需給バランスを示す指標として位置付けられるものであり、その測定により、循環異常で組織に十分な酸素が供給されていないことや、臓器代謝が異常になったことを知ることができる。
【0005】
ところで脳は、生体組織の中で最も酸素を必要とする臓器である。頭蓋内病変の治療や手術時、心臓血管手術時、あるいはその他の大手術において、何らかの原因で脳の虚血や低酸素症が生じると中枢神経機能障害を招く危険性がある。このような状態に陥るのを防ぐために、脳内酸素需給バランスのモニタが行なわれている。
【0006】
この脳内酸素需給バランスは、脳内静脈血酸素飽和度を測定することによってモニタ可能であり、そのために従来より下記の装置が用いられている。
【0007】
(1) オキシメータ付きSwan-Ganz カテーテル
オキシメータ付きSwan-Ganz カテーテルを頸部より内頸静脈に逆行性に刺入して、内頸静脈血酸素飽和度(SjvO2)を侵襲的に測定することができる。すなわち、内頸静脈は脳を循環した血液が流れており、SjvO2を知ることにより脳の酸素需給バランスがモニタできる。顔面、頭皮、その他大脳以外の静脈血の影響を避けるために、カテーテル先端は内頸静脈球部に位置させる。
【0008】
SjvO2は重要な中枢神経機能障害の治療や予防のためのモニタ因子として、その有用性は明らかである。このSjvO2を測定する方法は、臨床において、脳内酸素需給バランスを測定する上で確立された方法である。
【0009】
またこの方法は、局所ではなく脳全体の酸素需給バランスのモニタを行なう手法であり、脳の一部に異常が生じてもモニタ可能となっている。
【0010】
(2) 近赤外組織酸素濃度測定装置
この装置は、頭蓋頭皮に送光プローブと受光プローブからなる1対のプローブを接触させ、頭蓋内に注入した近赤外光の反射光を受光することにより、脳内酸素飽和度を反映した指標を測定するものである。
【0011】
この装置では、送受光プローブ間の距離を変えることにより、近赤外光の頭蓋内深達度を変化させることができる。そこでこの距離を適当に設定し、脳内酸素飽和度を反映した指標を測定する。頭蓋内の血液は、静脈血70%、動脈血20%、毛細管血10%の割合になっており、測定した酸素飽和度を反映する指標は、脳静脈血酸素飽和度すなわち脳内酸素需給バランスを反映している。
【0012】
この近赤外組織酸素濃度測定装置は、脳内酸素需給バランスの測定手段の中で唯一の非侵襲的手段である。
【0013】
【発明が解決しようとする課題】
以上説明した2つの従来装置においては、次のような問題が認められている。まず(1)のオキシメータ付きSwan-Ganz カテーテルオキシメータは、侵襲的処置が求められることから、技術的に高度な知識とテクニックが必要であり、汎用するのは困難である。
【0014】
一方(2)の近赤外組織酸素濃度測定装置は、光路長を特定できないので吸光度変化の定量化が困難であり、測定開始時からの変化量を示す相対値しか求めることができない。したがって、同一個体で変化を比較することはできるが、異なる個体間では比較が困難となる。
【0015】
さらにこの装置では、周辺組織(頭皮、頭蓋、その他)からのアーティファクトの混入がある、脳の一部のみを計測しても関心部位の変化が捉えられない、測定部位が明確でなく本当に脳内酸素飽和度を測定しているのか疑わしい、といった問題も認められている。
【0016】
本発明は上記の事情に鑑みてなされたものであり、脳内酸素需給バランスを反映する脳内静脈血酸素飽和度を、非侵襲で簡単に測定できる装置を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明による脳内酸素飽和度測定装置は、少なくとも1対の送光プローブと受光プローブ間の内頸静脈血の減光度を経皮的に捉えて、脳内酸素需給バランスを示すこの内頸静脈の酸素飽和度SjvO2を光学的に測定するように構成されたものである。
【0018】
すなわち本発明による脳内酸素飽和度測定装置は、具体的には、
oxyHbならびにdeoxyHbに吸収される、互いに異なる複数の波長成分からなる測定光を発する光源手段と、
生体の内頸静脈近傍に配されて、前記測定光を経皮的に内頸静脈へ送り込む送光プローブと、
前記内頸静脈を経て減光した前記測定光を受光する受光プローブと、
前記内頸静脈の脈波とその他の脈波とを識別する脈波識別手段と、
前記受光プローブが受光した測定光の、前記識別された内頸静脈脈波による減光度変化を検出する減光度変化検出手段と、
この手段が検出した前記各波長成分ごとの減光度変化に基づいて内頸静脈血の酸素飽和度を求める演算手段とからなることを特徴とするものである。
【0019】
なお前記脈波識別手段としては、例えば、心音をモニタする手段と、このモニタされた心音の第4音から第1音までの間の受光プローブの出力信号を抽出する手段とから構成することができる。
【0020】
一方、酸素飽和度を求める演算手段は、測定光波長成分の数をnとしたとき、n元連立Lambert-Beer方程式を解いて内頸静脈血のoxyHb濃度ならびにdeoxyHb濃度を求め、これらの濃度に基づいて酸素飽和度を求めるように構成することができる。
【0021】
さらにこの演算手段は、予め形成された測定光波長成分の各々ごとの減光度変化の比と酸素飽和度との回帰曲線を記憶しておき、この回帰曲線に基づいて、減光度変化から酸素飽和度を求めるように構成することもできる。
【0022】
また送光プローブと受光プローブとは、生体の左内頸静脈に対応させて1対、右内頸静脈に対応させて1対の合計2対設けられ、これら2つの受光プローブの出力を足し合わせて減光度変化の検出に用いるようにするのが望ましい。
【0023】
【発明の効果】
まず、上記構成の装置による脳内酸素飽和度測定の基本的な仕組みについて説明する。
【0024】
測定光の照射および検出は、例えば内頸静脈が頭蓋骨から出てくる部位、すなわち、耳直下の2点間、もしくは外耳道と耳直下の2点間で行なう(図2参照)。この部位は、顔面静脈、下顎後静脈、胸鎖乳突筋静脈等が内頸静脈へ合流する部位の上流に当たり、ここでの測定値は純粋に脳内酸素飽和度を反映したものとなる。なお、上記測定位置でのプローブの配置状態を図3に示してある。
【0025】
内頸静脈には右心房の内圧変化が伝搬され、内頸静脈は脈動を有している(図4参照)。そこで、内頸静脈が収縮した時の減光度と、内頸静脈が拡張した時の減光度との差を取り、内頸静脈血に起因する減光度変化のみを抽出することにより、内頸静脈血の酸素飽和度を測定することができる(図5参照)。
【0026】
動脈血脈動による脈波と内頸静脈血脈動による脈波とは、波形ならびに位相が異なる。そこで、内頸静脈の脈動によって生じる減光度変化と、動脈の脈動によって生じる減光度変化とを識別するため、脈波識別手段により、内頸静脈脈波と動脈脈波との波形・位相の違いを利用して内頸静脈による減光度変化のみを抽出する。
【0027】
減光度の測定は、図6に示すようなoxyHbとdeoxyHbの吸光帯にある最低限2波長(例えば、700nm近辺の波長λ1と、900nm近辺の波長λ2)の測定光を用いて行ない、各波長での減光度変化から内頸静脈血の酸素飽和度を演算する。ここで、血中Hbの内、主要HbはoxyHbとdeoxyHbであるので、他のHbは無視している。
【0028】
以上説明した通り、本発明による脳内酸素飽和度測定装置は、脳内静脈血酸素飽和度を光学的に測定するものであるから、本装置によれば、特に高度な知識やテクニックを用いなくても、脳内静脈血酸素飽和度を非侵襲で簡単に測定可能となる。
【0029】
【発明の実施の形態】
<第1実施形態>
図1は、本発明の第1実施形態による脳内酸素飽和度測定装置を示すものである。この図1において、1は人頭部、2aと2bは送受光プローブ装着部、3aと3bは左右1対の内頸静脈、4は心臓を示す。前述の図6は、上記の送受光プローブ装着部2a、2bを拡大図示したものである。
【0030】
本装置100は、心音トランスジューサ101と、送光プローブ102a、102bと、受光プローブ103a、103bと、集光レンズ104a、104bと、ダイクロイックミラー105a、105dと、ミラー105b、105cと、ディテクタ(光検出器)106a、106bと、トランスジューサアンプ107と、光源108a、108bと、AD変換器109a、109b、109cと、光源ドライバ110a、110bと、演算手段111と、コントローラ112と、ディスプレイ113とからなる。
【0031】
送光プローブ102aと受光プローブ103aは一緒に束ねられ、耳直下皮膚の測定部位3aへ装着される。同様に、送光プローブ102bと受光プローブ103bとが束ねられ、耳直下皮膚の測定部位3bへ装着される。また、心音トランスジューサ101が、心臓4の近傍の皮膚に装着される。
【0032】
光源108aとしては、例えば波長λ1=690nmの測定光L1を発するLDもしくはLED光源が用いられる。光源108bとしては、例えば波長λ2=890nmの測定光L2を発するLDもしくはLED光源が用いられる。
【0033】
これらの光源108a、108bは、コントローラ112からの信号に基づいて、それぞれ光源ドライバ110a、110bによって同時に駆動される。一方の光源108aから射出された測定光L1は、ミラー105cおよびダイクロイックミラー105dで反射し、集光レンズ104bで集光されて送光プローブ102a、102bへ入力される。別の光源108bから射出された測定光L2はダイクロイックミラー105dを透過し、集光レンズ104bで集光されて送光プローブ102a、102bへ入力される。
【0034】
送光プローブ102aおよび102bから測定部位2aおよび2bに照射された測定光L1の一部は皮膚・皮下脂肪・筋層を透過し、内頸静脈3aおよび3bへ達する。内頸静脈3aおよび3bに達した光束の反射光は受光プローブ103aおよび103bに拾われ、集光レンズ104aへ導かれる。同様に、送光プローブ102aおよび102bから測定部位2aおよび2bに照射された測定光L2の一部は皮膚・皮下脂肪・筋層を透過し、内頸静脈3aおよび3bへ達する。内頸静脈3aおよび3bに達した光束の反射光は受光プローブ103aおよび103bに拾われ、集光レンズ104aへ導かれる。
【0035】
内頸静脈3a、3bでは、その酸素飽和度に応じて、波長λ1=690nmの測定光L1および波長λ2=890nmの測定光L2がそれぞれ異なった吸収を受ける。
【0036】
集光レンズ104aで集光された波長λ2=890nmの測定光L2は、ダイクロイックミラー105aを透過し、ディテクタ106aに受光される。集光レンズ104aで集光された波長λ1=690nmの測定光L1は、ダイクロイックミラー105aおよびミラー105bで反射し、ディテクタ106bに受光される。
【0037】
ディテクタ106aの出力は波長λ2=890nmの測定光L2の減衰を表しており、AD変換器109aによってAD変換された後、減光度信号S2として演算手段111へ入力される。またディテクタ106bの出力は波長λ1=690nmの測定光L1の減衰を表しており、AD変換器109bによってAD変換された後、減光度信号S1として演算手段111へ入力される。
【0038】
一方、トランスジューサ101によって、第1音〜第4音からなる心音がモニタされる。心音はトランスジューサ101によって電気信号に変換され、アンプ107ならびにAD変換器109cを経て、コントローラ112へ入力される。
【0039】
受光プローブ103a、103bで採取される光信号は、内頸静脈3aおよび3bの脈動を反映する光信号と、頚動脈等の動脈脈動を反映する光信号とが重なり合ったものとして観測される(脈動については図4参照)。内頸静脈血の酸素飽和度を測定する上で動脈脈動はノイズとなるので、以下に示すように、心音信号を用いて内頸静脈信号のみを抽出する。
【0040】
すなわち演算手段111は、動脈脈波と内頸静脈脈波とが重なった減光度信号S1、S2において、心音図の第1音から第3音までの間の信号を除去し、心音図の第4音から第1音までの間の減光度信号S1、S2のみを抽出する。
【0041】
そして演算手段111は、第4音から第1音までの間の減光度信号S1、S2の変化分から内頸静脈血の酸素飽和度SjvO2 を算出する。ここでは一例として下式の連立Lambert-Beer則
【0042】
【数1】

Figure 0003797454
【0043】
を解いてoxyHb濃度CoxyおよびdeoxyHb濃度Cdeoxyを求め、
Coxy + Cdeoxy =100 酸素飽和度SjvO2 = Coxy/100
の関係から酸素飽和度SjvO2を算出する。μoxy 1、μdeoxy 1、μoxy 2、ならびにμdeoxy 2としては、予め測定した値が用いられる。
【0044】
以上のようにして求められた酸素飽和度SjvO2は、ディスプレー113に表示される。このとき、必要に応じてoxyHb濃度CoxyおよびdeoxyHb濃度Cdeoxy等をディスプレー113に表示してもよい。
【0045】
なお、以上の説明から明らかなように、本実施形態では演算手段111が、内頸静脈の脈波とその他の脈波とを識別する脈波識別手段の一部を構成するとともに、内頸静脈脈波による減光度変化を検出する減光度変化検出手段の一部も兼ねている。
【0046】
<第2実施形態>
以上説明した第1実施形態では、内頸静脈酸素飽和度を求める上で連立Lambert-Beer則を用いたが、生体組織は強散乱体であるためにLambert-Beer則が正しく成立しないことがある(散乱により、各波長での光路長ΔLが異なるからである)。そこで、同演算を行なう代わりに他の方法を用いてもよい。
【0047】
他の方法として、例えば図7に示すように縦軸に酸素飽和度、横軸に実測したψ=ΔA1/ΔA2を取った、酸素飽和度とψ=ΔA1/ΔA2との回帰曲線を作成しておき、この回帰曲線を参照して酸素飽和度を求めるように演算手段を構成することが考えられる。
【0048】
そのようにする場合、回帰曲線の作成に当たっては、予め人の多くの人の内頸静脈酸素飽和度を実測しておいて、それを検量線とする。そして本番の測定においては、実測したψ=ΔA1/ΔA2の値から回帰曲線を参照して、被験者の内頸静脈血酸素飽和度を求めるようにする。
【0049】
<第3実施形態>
また第1実施形態では、動脈脈波と内頸静脈脈波とが重なった減光度信号から内頸静脈脈波を抽出するのに、心音図の第4音から第1音までの間の減光度信号を用いるようにしているが、他の方法によって内頸静脈脈波を抽出することもできる。
【0050】
他の内頸静脈脈波抽出法として、内頸静脈以外に脈動を持つと言われている外頸静脈脈波をレファレンス信号として利用する方法が考えられる。これは、別のプローブ(光もしくは圧力)でレファレンスにする外頸静脈脈波(レファレンス脈波)を測定し、上記内頸静脈脈波を含む脈波信号(シグナル脈波)と同期検波することにより、もしくはシグナル脈波の中からレファレンス脈波に含まれる周波数成分のみを抽出することにより、内頸静脈血の酸素飽和度を算出するものである。
【図面の簡単な説明】
【図1】本発明の一実施形態による脳内酸素飽和度測定装置を示すブロック図
【図2】内頸静脈と測定個所とを示す概略図
【図3】本発明装置の送受光プローブと内頸静脈との位置関係を示す説明図
【図4】内頸静脈脈波、頚動脈脈波および心音等の波形を示すグラフ
【図5】減光度変化と内頸静脈脈波との関係を示す説明図
【図6】各種Hbの吸光度スペクトルを示すグラフ
【図7】測定光波長成分の各々ごとの減光度変化の比と、酸素飽和度との回帰曲線を例示する概略図
【符号の説明】
1 人頭部
2a、2b 送受光プローブ装着部
3a、3b 内頸静脈
4 心臓
101 心音トランスジューサ
102a、102b 送光プローブ
103a、103b 受光プローブ
104a、104b 集光レンズ
105a、105d ダイクロイックミラー
105b、105c ミラー
106a、106b ディテクタ(光検出器)
107 トランスジューサアンプ
108a、108b 光源
109a、109b、109c AD変換器
110a、110b 光源ドライバ
111 演算手段
112 コントローラ
113 ディスプレイ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for noninvasively measuring the oxygen saturation level of cerebral venous blood showing the balance of oxygen supply and demand in the brain.
[0002]
[Prior art]
In clinical practice, measurement of oxygen saturation is extremely significant. This is because oxygen is the most important substance for maintaining life activity, and the measurement of oxygen saturation indicating the oxygen supply to each tissue and the oxygen consumption of each tissue means direct monitoring of life activity. It is.
[0003]
The oxygen saturation is classified into arterial oxygen saturation and venous oxygen saturation. Arterial blood oxygen saturation is an indicator of whether each organ can supply enough oxygen to maintain vital activity, and non-invasive measurement is realized with a device called a pulse oximeter. Has been.
[0004]
On the other hand, the oxygen saturation of the venous blood system is positioned as an index indicating the oxygen supply-demand balance, and as a result of the measurement, sufficient oxygen was not supplied to the tissue due to abnormal circulation, and organ metabolism became abnormal I can know that.
[0005]
By the way, the brain is an organ that needs oxygen most in living tissues. In the treatment or surgery of intracranial lesions, during cardiovascular surgery, or other major surgery, there is a risk of central nervous system dysfunction if brain ischemia or hypoxia occurs for any reason. In order to prevent such a situation from occurring, the brain oxygen balance is monitored.
[0006]
This cerebral oxygen supply / demand balance can be monitored by measuring the cerebral venous blood oxygen saturation, and for this purpose, the following devices have been used conventionally.
[0007]
(1) Swan-Ganz catheter with oximeter Swan-Ganz catheter with oximeter is inserted retrogradely from the neck into the internal jugular vein, and the internal jugular blood oxygen saturation (SjvO2) is measured invasively. Can do. That is, blood circulating in the brain flows through the internal jugular vein, and the brain's oxygen supply-demand balance can be monitored by knowing SjvO2. In order to avoid the effects of venous blood other than the face, scalp, and other cerebrum, the catheter tip is positioned in the internal jugular bulb.
[0008]
The usefulness of SjvO2 is clear as a monitoring factor for the treatment and prevention of important CNS dysfunction. This method of measuring SjvO2 is a clinically established method for measuring the oxygen supply-demand balance in the brain.
[0009]
This method is a method of monitoring the oxygen supply / demand balance of the entire brain, not locally, and can be monitored even if an abnormality occurs in a part of the brain.
[0010]
(2) Near-infrared tissue oxygen concentration measuring device This device receives a reflected light of near-infrared light injected into the skull by bringing a pair of probes consisting of a light-transmitting probe and a light-receiving probe into contact with the skull and scalp. Thus, an index reflecting the oxygen saturation in the brain is measured.
[0011]
In this apparatus, the depth of the near-infrared light in the cranium can be changed by changing the distance between the light transmitting and receiving probes. Therefore, this distance is set appropriately, and an index reflecting brain oxygen saturation is measured. Intracranial blood is 70% venous blood, 20% arterial blood, and 10% capillary blood. The index that reflects the measured oxygen saturation is the cerebral venous oxygen saturation, that is, the balance of oxygen supply and demand in the brain. Reflects.
[0012]
This near-infrared tissue oxygen concentration measuring apparatus is the only non-invasive means for measuring the balance of oxygen supply and demand in the brain.
[0013]
[Problems to be solved by the invention]
The following problems are recognized in the two conventional apparatuses described above. First, the Swan-Ganz catheter oximeter with oximeter (1) requires invasive procedures, so it requires technically advanced knowledge and techniques and is difficult to use in general.
[0014]
On the other hand, since the near-infrared tissue oxygen concentration measuring apparatus (2) cannot determine the optical path length, it is difficult to quantify the change in absorbance, and only a relative value indicating the amount of change from the start of measurement can be obtained. Therefore, it is possible to compare changes in the same individual, but it is difficult to compare between different individuals.
[0015]
In addition, with this device, artifacts from surrounding tissues (scalp, cranium, etc.) are mixed in. Even if only a part of the brain is measured, changes in the region of interest cannot be detected. Problems such as suspicion of measuring oxygen saturation are also recognized.
[0016]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a device that can easily and non-invasively measure cerebral venous blood oxygen saturation reflecting the cerebral oxygen supply-demand balance.
[0017]
[Means for Solving the Problems]
The cerebral oxygen saturation measuring device according to the present invention percutaneously captures the attenuation level of internal jugular venous blood between at least one pair of light-transmitting probe and light-receiving probe, and shows this internal jugular vein showing the balance of oxygen supply and demand in the brain. Is configured to optically measure the oxygen saturation SjvO2.
[0018]
That is, the cerebral oxygen saturation measuring device according to the present invention specifically includes:
light source means for emitting measurement light composed of a plurality of different wavelength components absorbed by oxyHb and deoxyHb;
A light-transmitting probe that is arranged near the internal jugular vein of a living body and sends the measurement light percutaneously to the internal jugular vein;
A light-receiving probe that receives the measurement light dimmed through the internal jugular vein;
Pulse wave identification means for identifying the pulse wave of the internal jugular vein and other pulse waves;
A light intensity change detecting means for detecting a light intensity change caused by the identified internal jugular vein pulse wave of the measurement light received by the light receiving probe;
It is characterized by comprising computing means for obtaining the oxygen saturation of the internal jugular vein blood based on the change in the light attenuation for each wavelength component detected by this means.
[0019]
For example, the pulse wave identifying means may comprise means for monitoring heart sounds and means for extracting an output signal of the light receiving probe between the fourth sound and the first sound of the monitored heart sounds. it can.
[0020]
On the other hand, the calculation means for obtaining the oxygen saturation is obtained by solving the n-ary simultaneous Lambert-Beer equation to obtain the oxyHb concentration and the deoxyHb concentration of the internal jugular vein blood, where n is the number of measurement light wavelength components, It can be configured to determine the oxygen saturation based on this.
[0021]
Further, the calculation means stores a regression curve of the ratio of change in light attenuation and the oxygen saturation for each of the measurement light wavelength components formed in advance, and based on the regression curve, the oxygen saturation is calculated from the change in light attenuation. It can also be configured to determine the degree.
[0022]
The light transmitting probe and the light receiving probe are provided in two pairs, one pair corresponding to the left internal jugular vein of the living body and one pair corresponding to the right internal jugular vein, and the outputs of these two light receiving probes are added together. Therefore, it is desirable to use it for detecting a change in dimming degree.
[0023]
【The invention's effect】
First, the basic mechanism of the brain oxygen saturation measurement using the apparatus configured as described above will be described.
[0024]
The measurement light is irradiated and detected, for example, at a site where the internal jugular vein comes out of the skull, that is, between two points just below the ear, or between the two points just below the ear canal and the ear (see FIG. 2). This part is upstream of the part where the facial vein, posterior mandibular vein, sternocleidomastoid vein, etc. join the internal jugular vein, and the measured value here purely reflects the oxygen saturation in the brain. In addition, the arrangement state of the probe at the measurement position is shown in FIG.
[0025]
The internal pressure change of the right atrium is propagated to the internal jugular vein, and the internal jugular vein has pulsation (see FIG. 4). Therefore, by taking the difference between the light intensity when the internal jugular vein contracts and the light intensity when the internal jugular vein is dilated, only the change in light intensity caused by the internal jugular vein blood is extracted. Blood oxygen saturation can be measured (see FIG. 5).
[0026]
The pulse wave due to arterial blood pulsation and the pulse wave due to internal jugular vein pulsation have different waveforms and phases. Therefore, in order to discriminate between the dimming change caused by the pulsation of the internal jugular vein and the dimming degree change caused by the pulsation of the artery, the difference in waveform and phase between the internal jugular vein pulse wave and the arterial pulse wave by the pulse wave identification means Is used to extract only changes in light intensity due to the internal jugular vein.
[0027]
The attenuation is measured using measurement light of at least two wavelengths (for example, wavelength λ1 around 700 nm and wavelength λ2 around 900 nm) in the absorption band of oxyHb and deoxyHb as shown in FIG. The oxygen saturation of the internal jugular vein blood is calculated from the change in light intensity. Here, in blood Hb, since main Hb is oxyHb and deoxyHb, other Hb is disregarded.
[0028]
As described above, the cerebral oxygen saturation measuring device according to the present invention optically measures the cerebral venous blood oxygen saturation, so according to the present device, no special knowledge or technique is used. However, the cerebral venous blood oxygen saturation can be easily measured non-invasively.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
<First Embodiment>
FIG. 1 shows a brain oxygen saturation measuring apparatus according to a first embodiment of the present invention. In FIG. 1, 1 is a human head, 2a and 2b are transmitting / receiving probe mounting portions, 3a and 3b are a pair of left and right internal jugular veins, and 4 is a heart. FIG. 6 is an enlarged view of the transmitting / receiving probe mounting portions 2a and 2b.
[0030]
This apparatus 100 includes a heart sound transducer 101, light transmitting probes 102a and 102b, light receiving probes 103a and 103b, condensing lenses 104a and 104b, dichroic mirrors 105a and 105d, mirrors 105b and 105c, and a detector (light detection). Device) 106a, 106b, transducer amplifier 107, light sources 108a, 108b, AD converters 109a, 109b, 109c, light source drivers 110a, 110b, calculation means 111, controller 112, and display 113.
[0031]
The light transmitting probe 102a and the light receiving probe 103a are bundled together and attached to the measurement site 3a of the skin directly under the ear. Similarly, the light transmitting probe 102b and the light receiving probe 103b are bundled and attached to the measurement site 3b of the skin directly under the ear. A heart sound transducer 101 is attached to the skin near the heart 4.
[0032]
As the light source 108a, for example, an LD or LED light source that emits measurement light L1 having a wavelength λ1 = 690 nm is used. As the light source 108b, for example, an LD or LED light source that emits measurement light L2 having a wavelength λ2 = 890 nm is used.
[0033]
These light sources 108a and 108b are simultaneously driven by light source drivers 110a and 110b based on signals from the controller 112, respectively. The measurement light L1 emitted from one light source 108a is reflected by the mirror 105c and the dichroic mirror 105d, collected by the condenser lens 104b, and input to the light transmission probes 102a and 102b. The measurement light L2 emitted from another light source 108b passes through the dichroic mirror 105d, is collected by the condenser lens 104b, and is input to the light transmission probes 102a and 102b.
[0034]
A part of the measurement light L1 irradiated to the measurement sites 2a and 2b from the light transmission probes 102a and 102b passes through the skin / subcutaneous fat / muscle layer and reaches the internal jugular veins 3a and 3b. The reflected light of the light beam reaching the internal jugular veins 3a and 3b is picked up by the light receiving probes 103a and 103b and guided to the condensing lens 104a. Similarly, a part of the measurement light L2 irradiated to the measurement sites 2a and 2b from the light transmission probes 102a and 102b passes through the skin, subcutaneous fat, and muscle layer and reaches the internal jugular veins 3a and 3b. The reflected light of the light beam reaching the internal jugular veins 3a and 3b is picked up by the light receiving probes 103a and 103b and guided to the condensing lens 104a.
[0035]
In the internal jugular veins 3a and 3b, the measurement light L1 having the wavelength λ1 = 690 nm and the measurement light L2 having the wavelength λ2 = 890 nm receive different absorptions depending on the oxygen saturation.
[0036]
The measurement light L2 having the wavelength λ2 = 890 nm collected by the condenser lens 104a passes through the dichroic mirror 105a and is received by the detector 106a. The measurement light L1 having the wavelength λ1 = 690 nm collected by the condenser lens 104a is reflected by the dichroic mirror 105a and the mirror 105b and received by the detector 106b.
[0037]
The output of the detector 106a represents the attenuation of the measurement light L2 having the wavelength λ2 = 890 nm, and after AD conversion by the AD converter 109a, is input to the computing means 111 as the light attenuation level signal S2. The output of the detector 106b represents the attenuation of the measurement light L1 having the wavelength λ1 = 690 nm, and after AD conversion by the AD converter 109b, is input to the calculation means 111 as the light attenuation level signal S1.
[0038]
On the other hand, the heartbeat composed of the first to fourth sounds is monitored by the transducer 101. The heart sound is converted into an electrical signal by the transducer 101, and input to the controller 112 via the amplifier 107 and the AD converter 109c.
[0039]
The optical signals collected by the light receiving probes 103a and 103b are observed as an overlap of the optical signal reflecting the pulsation of the internal jugular veins 3a and 3b and the optical signal reflecting the pulsation of the artery such as the carotid artery (about pulsation). (See FIG. 4). Since arterial pulsation becomes noise in measuring the oxygen saturation of internal jugular vein blood, only the internal jugular vein signal is extracted using a heart sound signal as shown below.
[0040]
That is, the calculation means 111 removes the signal from the first sound to the third sound of the heart sound diagram in the light intensity signals S1 and S2 in which the arterial pulse wave and the internal jugular vein pulse wave overlap, Only the dimming signals S1 and S2 between the four sounds and the first sound are extracted.
[0041]
Then, the computing means 111 calculates the oxygen saturation SjvO 2 of the internal jugular vein blood from the changes in the light attenuation signals S1, S2 between the fourth sound and the first sound. Here, as an example, the following simultaneous Lambert-Beer rule [0042]
[Expression 1]
Figure 0003797454
[0043]
To obtain oxyHb concentration Coxy and deoxyHb concentration Cdeoxy,
Coxy + Cdeoxy = 100 Oxygen saturation SjvO 2 = Coxy / 100
From this relationship, the oxygen saturation SjvO 2 is calculated. As μoxy 1, μdeoxy 1, μoxy 2, and μdeoxy 2, previously measured values are used.
[0044]
The oxygen saturation SjvO 2 obtained as described above is displayed on the display 113. At this time, the oxyHb concentration Coxy and the deoxyHb concentration Cdeoxy may be displayed on the display 113 as necessary.
[0045]
As is clear from the above description, in this embodiment, the calculation means 111 constitutes a part of the pulse wave identification means for distinguishing the pulse wave of the internal jugular vein from other pulse waves, and the internal jugular vein It also serves as part of the light intensity change detecting means for detecting the light intensity change due to the pulse wave.
[0046]
Second Embodiment
In the first embodiment described above, the simultaneous Lambert-Beer law is used to obtain the internal jugular vein oxygen saturation, but the Lambert-Beer law may not be established correctly because the biological tissue is a strong scatterer. (This is because the optical path length ΔL at each wavelength differs due to scattering). Therefore, another method may be used instead of performing the same operation.
[0047]
As another method, for example, as shown in FIG. 7, a regression curve of oxygen saturation and ψ = ΔA1 / ΔA2 is created by taking oxygen saturation on the vertical axis and measured ψ = ΔA1 / ΔA2 on the horizontal axis. In addition, it is conceivable to configure the calculation means so as to obtain the oxygen saturation with reference to this regression curve.
[0048]
In such a case, in preparing the regression curve, the internal jugular vein oxygen saturation of many people is measured in advance and used as a calibration curve. In the actual measurement, the internal jugular blood oxygen saturation of the subject is obtained by referring to the regression curve from the actually measured value of ψ = ΔA1 / ΔA2.
[0049]
<Third Embodiment>
In the first embodiment, the internal jugular vein pulse wave is extracted from the dimming intensity signal in which the arterial pulse wave and the internal jugular vein pulse wave overlap. Although a light intensity signal is used, the internal jugular vein pulse wave can be extracted by other methods.
[0050]
As another internal jugular vein pulse extraction method, a method of using an external jugular vein pulse wave, which is said to have pulsation other than the internal jugular vein, as a reference signal can be considered. This is to measure the external jugular vein pulse wave (reference pulse wave) to be referenced with another probe (light or pressure), and to detect it synchronously with the pulse wave signal (signal pulse wave) including the internal jugular vein pulse wave. Or by extracting only the frequency component contained in the reference pulse wave from the signal pulse wave, the oxygen saturation of the internal jugular vein blood is calculated.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a cerebral oxygen saturation measuring device according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing an internal jugular vein and a measurement location. FIG. Explanatory diagram showing the positional relationship with the jugular veins. FIG. 4 is a graph showing waveforms of internal jugular vein pulse waves, carotid artery pulse waves, heart sounds, etc. FIG. 5 is an explanatory diagram showing the relationship between changes in light intensity and internal jugular vein pulse waves. FIG. 6 is a graph showing absorbance spectra of various Hb. FIG. 7 is a schematic diagram illustrating a regression curve between the ratio of change in attenuation for each wavelength component of measured light and oxygen saturation.
1 Human head 2a, 2b Transmitting / receiving probe mounting part 3a, 3b Internal jugular vein 4 Heart
101 Heart Sound Transducer
102a, 102b Transmitting probe
103a, 103b Receiver probe
104a, 104b condenser lens
105a, 105d Dichroic mirror
105b, 105c mirror
106a, 106b Detector (light detector)
107 Transducer amplifier
108a, 108b Light source
109a, 109b, 109c AD converter
110a, 110b Light source driver
111 Calculation means
112 controller
113 display

Claims (5)

oxyHbならびにdeoxyHbに吸収される、互いに異なる複数の波長成分からなる測定光を発する光源手段と、
生体の内頸静脈近傍に配されて、前記測定光を経皮的に内頸静脈へ送り込む送光プローブと、
前記内頸静脈を経て減光した前記測定光を受光する受光プローブと、
前記内頸静脈の脈波とその他の脈波とを識別する脈波識別手段と、
前記受光プローブが受光した測定光の、前記識別された内頸静脈脈波による減光度変化を検出する減光度変化検出手段と、
この手段が検出した前記各波長成分ごとの減光度変化に基づいて内頸静脈血の酸素飽和度を求める演算手段とからなる脳内酸素飽和度測定装置。
light source means for emitting measurement light composed of a plurality of different wavelength components absorbed by oxyHb and deoxyHb;
A light-transmitting probe that is arranged near the internal jugular vein of a living body and sends the measurement light percutaneously to the internal jugular vein;
A light-receiving probe that receives the measurement light dimmed through the internal jugular vein;
Pulse wave identification means for identifying the pulse wave of the internal jugular vein and other pulse waves;
A light intensity change detecting means for detecting a light intensity change caused by the identified internal jugular vein pulse wave of the measurement light received by the light receiving probe;
A cerebral oxygen saturation measuring device comprising computing means for obtaining oxygen saturation of internal jugular vein blood based on a change in light attenuation for each wavelength component detected by the means.
前記脈波識別手段が、心音をモニタする手段と、このモニタされた心音の第4音から第1音までの間の前記受光プローブの出力信号を抽出する手段とからなることを特徴とする請求項1記載の脳内酸素飽和度測定装置。The pulse wave identifying means comprises means for monitoring a heart sound and means for extracting an output signal of the light receiving probe between the fourth sound and the first sound of the monitored heart sound. Item 1. A brain oxygen saturation measuring apparatus according to Item 1. 前記演算手段が、前記波長成分の数をnとしたとき、n元連立Lambert-Beer方程式を解いて前記内頸静脈血のoxyHb濃度ならびにdeoxyHb濃度を求め、これらの濃度に基づいて酸素飽和度を求めるものであることを特徴とする請求項1または2記載の脳内酸素飽和度測定装置。When the number of the wavelength components is n, the calculation means solves the n-ary simultaneous Lambert-Beer equation to obtain the oxyHb concentration and deoxyHb concentration of the internal jugular vein blood, and calculates the oxygen saturation based on these concentrations. 3. The brain oxygen saturation measuring apparatus according to claim 1 or 2, characterized in that it is obtained. 前記演算手段が、予め形成された前記波長成分の各々ごとの減光度変化の比と酸素飽和度との回帰曲線を記憶しておき、この回帰曲線に基づいて、前記減光度変化から酸素飽和度を求めるものであることを特徴とする請求項1または2記載の脳内酸素飽和度測定装置。The computing means stores a regression curve of the ratio of change in light attenuation and the oxygen saturation for each of the wavelength components formed in advance, and based on the regression curve, the oxygen saturation is calculated from the change in light attenuation. The brain oxygen saturation measuring device according to claim 1 or 2, characterized in that: 前記送光プローブと受光プローブとが、生体の左内頸静脈に対応させて1対、右内頸静脈に対応させて1対の合計2対設けられ、
2つの受光プローブの出力を足し合わせて前記減光度変化の検出に用いるように構成されていることを特徴とする請求項1から4いずれか1項記載の脳内酸素飽和度測定装置。
The light transmitting probe and the light receiving probe are provided in a total of two pairs, one pair corresponding to the left internal jugular vein of the living body and one pair corresponding to the right internal jugular vein,
The brain oxygen saturation measuring device according to any one of claims 1 to 4, wherein the outputs of two light receiving probes are added to be used for detection of the change in light attenuation.
JP5049598A 1998-03-03 1998-03-03 Brain oxygen saturation measuring device Expired - Fee Related JP3797454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5049598A JP3797454B2 (en) 1998-03-03 1998-03-03 Brain oxygen saturation measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5049598A JP3797454B2 (en) 1998-03-03 1998-03-03 Brain oxygen saturation measuring device

Publications (2)

Publication Number Publication Date
JPH11244268A JPH11244268A (en) 1999-09-14
JP3797454B2 true JP3797454B2 (en) 2006-07-19

Family

ID=12860521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5049598A Expired - Fee Related JP3797454B2 (en) 1998-03-03 1998-03-03 Brain oxygen saturation measuring device

Country Status (1)

Country Link
JP (1) JP3797454B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8649838B2 (en) 2010-09-22 2014-02-11 Covidien Lp Wavelength switching for pulse oximetry
US8696593B2 (en) 2006-09-27 2014-04-15 Covidien Lp Method and system for monitoring intracranial pressure

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1547515A1 (en) * 2003-12-22 2005-06-29 Barts and The London National Health Service Trust Optical fibre catheter pulse oximeter
US8055321B2 (en) 2005-03-14 2011-11-08 Peter Bernreuter Tissue oximetry apparatus and method
US7865223B1 (en) * 2005-03-14 2011-01-04 Peter Bernreuter In vivo blood spectrometry
US7869850B2 (en) 2005-09-29 2011-01-11 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US7574245B2 (en) 2006-09-27 2009-08-11 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US7684842B2 (en) 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
KR20090104917A (en) * 2007-02-02 2009-10-06 더 존스 홉킨스 유니버시티 A method and system for determining a cerebrovascular autoregulation state of a patient
US20080200784A1 (en) * 2007-02-16 2008-08-21 Xuefeng Cheng Method and device for measuring parameters of cardiac function
US8918153B2 (en) 2007-02-16 2014-12-23 Mespere Lifesciences Inc. Method and device for measuring parameters of cardiac function
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
JP5645655B2 (en) * 2007-05-02 2014-12-24 セント ヴィンセンツ ホスピタル(メルボルン)リミテッド Noninvasive measurement of blood oxygen saturation
US8725226B2 (en) 2008-11-14 2014-05-13 Nonin Medical, Inc. Optical sensor path selection
ES2907933T3 (en) * 2010-07-09 2022-04-27 Sensitive Pty Ltd Non-invasive measurement of blood oxygen saturation
US9216000B2 (en) 2012-05-03 2015-12-22 Vioptix, Inc. Light wavelength selection for avoidance of surgical dyes
US10398364B2 (en) 2013-02-13 2019-09-03 Mespere Lifesciences Inc. Method and device for measuring venous blood oxygenation
CN106562776A (en) 2015-10-08 2017-04-19 米斯比尔生命科学公司 System for non-invasive monitoring of central venous pressure
CN108143426A (en) * 2017-12-26 2018-06-12 成都拓蓝医疗技术有限公司 Blood oxygen of brain saturation degree precisely monitors sensor and its monitoring method
CN117322876A (en) * 2023-10-27 2024-01-02 广东省人民医院 Cerebral oxygen supply and demand monitoring system, method and medium based on artery and vein parameters of neck

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8696593B2 (en) 2006-09-27 2014-04-15 Covidien Lp Method and system for monitoring intracranial pressure
US8649838B2 (en) 2010-09-22 2014-02-11 Covidien Lp Wavelength switching for pulse oximetry

Also Published As

Publication number Publication date
JPH11244268A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
JP3797454B2 (en) Brain oxygen saturation measuring device
Franceschini et al. Noninvasive measurement of neuronal activity with near-infrared optical imaging
Shang et al. Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram
US11395602B2 (en) System and method for monitoring absolute blood flow
US9504394B2 (en) Electro-optical system, apparatus, and method for ambulatory monitoring
Franceschini et al. Near-infrared spiroximetry: noninvasive measurements of venous saturation in piglets and human subjects
US8868149B2 (en) Photoplethysmography device and method
US20110082355A1 (en) Photoplethysmography device and method
US20110105912A1 (en) Cerebral autoregulation indices
Wallois et al. EEG-NIRS in epilepsy in children and neonates
JP5324999B2 (en) Biological light measurement device and biological light measurement method
JPWO2003068070A1 (en) Biological function diagnostic device
JP2004514116A (en) Pulse oximeter and operation method thereof
Colier et al. Simultaneous near-infrared spectroscopy monitoring of left and right occipital areas reveals contra-lateral hemodynamic changes upon hemi-field paradigm
CN111956234A (en) Accurate blood oxygen saturation measuring method and device based on photoacoustic technology
Zherebtsov et al. Wearable sensor system for multipoint measurements of blood perfusion: pilot studies in patients with diabetes mellitus
Wu et al. Enhancing diffuse correlation spectroscopy pulsatile cerebral blood flow signal with near-infrared spectroscopy photoplethysmography
Allen et al. Photoplethysmography assessments in cardiovascular disease
Franceschini et al. Cerebral hemodynamics measured by near-infrared spectroscopy at rest and during motor activation
US10201314B2 (en) System and method for evaluation of circulatory function
Fantini et al. Noninvasive optical studies of the brain: Contributions from systemic physiology
US11583201B2 (en) Device for recording the vascular response of the human spinal cord triggered by a suprasensible stimulus through the use of functional near-infrared spectroscopy
Kovacsova et al. Medical utility of nir monitoring
CN209450518U (en) A kind of intracranial pressure noninvasive monitoring device
Kraitl et al. Analysis of time series for non-invasive characterization of blood components and circulation patterns

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees