JP3797345B2 - 遅延調整回路 - Google Patents
遅延調整回路 Download PDFInfo
- Publication number
- JP3797345B2 JP3797345B2 JP2003173299A JP2003173299A JP3797345B2 JP 3797345 B2 JP3797345 B2 JP 3797345B2 JP 2003173299 A JP2003173299 A JP 2003173299A JP 2003173299 A JP2003173299 A JP 2003173299A JP 3797345 B2 JP3797345 B2 JP 3797345B2
- Authority
- JP
- Japan
- Prior art keywords
- gate
- output
- circuit
- delay
- clock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Pulse Circuits (AREA)
- Dram (AREA)
Description
【発明の属する技術分野】
本発明はディジタル処理に用いるクロック信号を生成するのに使用される波形調整可能な遅延調整回路に関する。
【0002】
【従来の技術】
従来のクロック生成回路では、基準クロックの動作周波数を0.5×N(N=3、4、5、…)倍したクロックを生成するために、PLL回路を用いることが多い。図14に示すように、一般的に使用されているPLL回路800は、位相比較回路802と、ローパスフィルタ(LPF)804と、電圧制御発振器(VCO)806と、1/N分周器808から構成されている。810は、PLL回路800により生成されたクロックを各部に供給するクロック分配回路である。
【0003】
このPLL回路800では、PLL回路800に入力される基準クロック801のN倍動作周波数であるクロック807が生成される。PLL回路800により生成されたクロック807から、クロック分配回路810によって、出力クロック809が半導体集積回路装置(LSI)内の各ブロックに供給される。出力クロック809を1/N分周器808によりN分の1に分周した比較信号810がフィードバックされて、位相比較回路802で基準クロック801との位相差が検出される。
【0004】
位相比較回路802の出力である位相差検出パルス803は、位相差に応じたパルス幅を有し、ローパスフィルタ804によって積分され、そのパルス幅に応じた値のVCO制御電圧805が電圧制御発振回路(VCO)806に入力される。そして、基準クロック801と比較信号810との位相差に応じて電圧制御発振回路806の発振周波数が変更され、最終的にクロッ分配回路810の出力809が基準クロック801と同期するよう制御される。
【0005】
【発明が解決しようとする課題】
このようにPLL回路は半導体集積回路の製造時に発生するトランジスタの能力や配線厚さ、配線幅等の半導体集積回路内のばらつきを補償するために用いられる。ところがPLL回路は周辺回路の動作率変動に伴い電源電圧が上下すると、時間的に出力波形の幅が増減する現象がみられる。これをジッタと呼ぶ。PLL回路が基準クロック801に同期しようと動作する限り、PLL回路を使用する以上、決してジッタが無くなることはない。
【0006】
また基準クロック801の波形がデューティ比の変動により期待している波形と異なる場合には、位相比較回路が期待通りに動作しない場合がある。ジッタが大きかったり、デューティ比が設計時の見積もりと異なる場合には製造したLSIが動作しない可能性があり、再製造又は再設計を行わなければならないという問題があった。
【0007】
本発明はこのような事情に鑑みてなされたものであり、半導体集積回路装置の内部レジスタ値または内部信号、外部信号を制御することにより入力信号の遅延時間を調整することができる遅延調整回路を提供することを第1の目的とする。また、本発明は、半導体集積回路装置の内部レジスタ値または内部信号、外部信号を制御することにより遅延時間を調節することができる遅延調整回路を用いて、半導体集積回路装置の製造ばらつきに起因するクロックスキュー及びデューティ比を補償することができ、かつジッタが小さいクロック生成回路を提供することを第2の目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、各ゲートが直列接続され入力信号の遅延時間の微調整を行うための第1のゲート群と、該第1のゲート群のうち特定のゲートの出力側に第1のトランスファースイッチを介して接続される第1の負荷容量と、前記特定のゲートの次段のゲート出力側に第2のトランスファースイッチを介して接続される第2の負荷容量と、前記第1のゲート群の出力側にスイッチ手段を介して接続され前記入力信号の遅延時間の粗調整を行うための第2のゲート群と、前記第1、第2の負荷容量及び前記第2のゲート群のゲート段数を調整することにより前記入力信号の遅延時間を調整するように前記第1、第2のトランスファーゲート、及び前記スイッチ手段を制御する制御手段とを有し、前記制御手段は、半導体集積回路装置内に設けられ、内部信号により出力値を設定することができるレジスタを含んで構成され、前記レジスタに設定されたレジスタ値に基づいて前記第1、第2のトランスファーゲート及び前記スイッチ手段を切換制御することにより、ゲート出力負荷及び前記第2のゲート群のゲート段数を調整することを特徴とする。
【0009】
また、請求項2に記載の発明は、各ゲートが直列接続され入力信号の遅延時間の微調整を行うための第1のゲート群と、該第1のゲート群のうち特定のゲートの出力側に第1のトランスファースイッチを介して接続される第1の負荷容量と、前記特定のゲートの次段のゲート出力側に第2のトランスファースイッチを介して接続される第2の負荷容量と、前記第1のゲート群の出力側にスイッチ手段を介して接続され前記入力信号の遅延時間の粗調整を行うための第2のゲート群と、前記第1、第2の負荷容量及び前記第2のゲート群のゲート段数を調整することにより前記入力信号の遅延時間を調整するように前記第1、第2のトランスファーゲート、及び前記スイッチ手段を制御する制御手段とを有し、前記制御手段は、半導体集積回路装置内に設けられ、初期化により外部から出力値を設定することができるレジスタを含んで構成され、前記レジスタに設定されたレジスタ値に基づいて前記第1、第2のトランスファーゲート及び前記スイッチ手段を切換制御することにより、ゲート出力負荷及び前記第2のゲート群のゲート段数を調整することを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明する。本発明の実施の形態に係る遅延調整回路の構成を図1に示す。同図において、本実施の形態に係る遅延調整回路は、各ゲートが直列接続され入力信号の遅延時間の微調整を行うための第1のゲート群10を構成するインバータ11〜14と、該第1のゲート群のうちインバータ12、13の出力側に第1のスイッチ手段としてのトランスファゲート40〜43、50〜53を介して接続される負荷容量60〜63、70〜73と、前記第1のゲート群10の出力側に第2のスイッチ手段としてのトランスファゲート80〜83を介して接続され前記入力信号の遅延時間の粗調整を行うための第2のゲート群20を構成するインバータチェーン21〜23と、第1のゲート群10のうちインバータ12、13の出力側に接続される負荷容60〜63、70〜73量及び第2のゲート群20のゲート段数を調整ることにより前記入力信号の遅延時間を調整するように第1、第2のスイッチ手段としてのトランスファゲート40〜43、50〜53、80〜83を制御する制御手段としてのレジスタ群30とを有している。
【0011】
第1のゲート群10を構成するインバータ11の入力側は入力端子100に接続され、インバータ11の出力側に、インバータ12、13、14の順に接続され、インバータ14の出力側には更にインバータチェーン21〜23が順に接続されている。インバータチェーン21〜23は、偶数段のインバータにより構成されたゲート遅延回路である。
【0012】
第1のゲート群10におけるインバータ12の出力側はトランスファーゲート40〜43の入力側に接続されており、インバータ13の出力側はトランスファーゲート50〜53の入力側に接続されている。トランスファーゲート40〜43の出力側にはそれぞれ容量60〜63が接続され、トランスファーゲート50〜53の出力側にはそれぞれ容量70〜73が接続されている。インバータ14及びインバータチェーン21〜23の出力側は、それぞれトランスファーゲート80〜83の入力側に接続されている。
【0013】
また、トランスファーゲート80〜83の出力側は共通接続され、トランスファーゲート80〜83のうち1つのトランスファーゲートだけが選択的にオンになるように制御される4入力セレクタを構成している。この4入力セレクタを構成するトランスファーゲート80〜83の出力側は、バッファ90を介して遅延調整回路の出力端子101に接続されている。
【0014】
レジスタ200〜203から出力される信号はそれぞれトランスファーゲート40〜43に制御入力信号として供給され、レジスタ210〜213から出力される信号はそれぞれトランスファーゲート50〜53に制御入力信号として供給される。トランスファーゲート40〜43に供給する制御入力信号をレジスタ200〜203に設定されるレジスタ値で調節することによって、インバータ12の出力負荷としての容量値を容量60〜63の組み合せによる合成容量として設定することができる。また、トランスファーゲート50〜53に供給する制御入力信号をレジスタ210〜213に設定されるレジスタ値で調節することによって、インバータ13の出力負荷として容量値を容量70〜73の組み合せによる合成容量として設定することができる。
【0015】
容量61〜63の容量値を容量60の容量値に対して2倍、4倍、8倍とすると、インバータ12の出力負荷として容量60の容量値の0倍から15倍まで1倍単位で合成容量の容量値を調整することができる。同様に、容量71〜73の容量値を容量70の容量値に対して2倍、4倍、8倍とすると、インバータ13の出力負荷として容量70の容量値の0倍から15倍まで1倍単位で合成容量の容量値を調整することができる。
【0016】
インバータ12及び13は、PMOSトランジスタのゲート幅を大きくして、NMOSトランジスタのオン抵抗よりも小さくなるような設計を行う。このように設計すると、NMOSトランジスタの駆動力を必要とする立ち下がりの方が、PMOSトランジスタの駆動力を必要とする立ち上がりよりも出力負荷の影響を受けやすい。したがって、出力端子101より出力される信号の立ち下がりはインバータ12の出力負荷を調整することによって変動させることができ、また出力端子101より出力される信号の立ち上がりはインバータ13の出力負荷を調整することによって変動させることができる。それ故、出力端子101より出力される信号の立ち上がり波形及び立ち下がり波形は、インバータ12及び13の適切な出力負荷調整によって各々調整可能となる。
【0017】
レジスタ220及び221から出力される信号は図示してないデコーダにより変換され、トランスファーゲート80〜83に制御入力信号として供給される。トランスファーゲート80〜83に供給される制御入力信号でオンになるのはトランスファーゲート80〜83のうち1つだけであり、レジスタ220及び221の設定データにより遅延調整回路の入力端子100から出力端子101までのゲート段数を調整することができる。レジスタ200〜203、210〜213、220、221の各レジスタは、半導体集積回路装置(LSI)内に設けられ、内部信号により、または初期化により外部よりレジスタ値が設定されるようになっている。
【0018】
上記構成からなる遅延調整回路では、インバータ12、13の出力負荷調整、すなわちゲート出力負荷調整により入力信号の遅延時間の微調整を行い、インバータチェーン21〜23の切換による入出力ゲート段数調整により入力信号の遅延時間の粗調整を行うことによって、入力端子100から入力された信号が出力端子101から出力されるまでの信号の立ち上がり及び立ち下がりの遅延時間を各々調整することができる。
【0019】
尚、本実施の形態では、制御手段としてレジスタを用い、その設定値により遅延時間を制御するようしたが、これに限らず、内部メモリの値、内部の論理信号、または外部の信号により遅延時間の制御を行うようにしてもよい。
【0020】
図2に示すように、図1に示した遅延調整回路300の入力端子100に入力信号として基準クロックCLK0を入力すると、基準クロックCLK0と動作周波数が等しい、立ち上がり及び立ち下がりの波形調整可能なクロックCLKiを生成することができる。図3に基準クロックCLK0と波形調整可能なクロックCLKiの波形図を示す。
【0021】
次に、本発明の第1の実施の形態に係るクロック生成回路の構成を図4に示す。本実施の形態に係るクロック生成回路は、基準クロックCLK0を入力信号とする図1に示した構成の遅延調整回路300と、基準クロックCLK0と遅延調整回路300の出力信号との排他的論理和演算を行う排他的論理和回路301とを有する。
【0022】
上記構成において、入力端子110より入力される基準クロックCLKに対して遅延調整回路300により1/4周期遅れたクロックCLLjを生成して、排他的論理和回路301により基準クロックCLK0とクロックCLLjとの排他的論理和をとると、動作周波数が基準クロックCLK0に対して2倍のクロックCLKnを生成することができる。クロックCLLjはレジスタ値の制御により波形を調節することができるので、CLKnの立ち下がりエッジは調整可能である。基準クロックと、クロックCLLj及びクロックCLKnの出力タイミングを図5に示す。本発明の第1の実施の形態に係るクロック生成回路によれば、半導体集積回路装置の製造ばらつきに起因するクロックスキュー及びデューティ比を補償することができ、かつジッタを小さくすることができる。
【0023】
次に、半導体集積回路を波形の立ち下がりが調整可能なクロックタイミング信号として使用することを前提として設計した場合につい説明する。図6(A)は図4に示したクロック生成回路により出力されるクロックCLKnの波形を示しており、図6(B)は、上述した半導体集積回路装置の構成を示している。この半導体集積回路装置は、図4に示したクロック生成回路と、論理ゲート370、371、372と、論理ゲート370、371、372間に設けられ、クロック生成回路における調整可能な特定エッジ(この例では立ち下がりエッジ)のタイミングで動作する立ち下がりエッジフリップフロップ360、361とを有する。
【0024】
上記構成において、立ち下がりエッジフリップフロップ360及び361には、それぞれクロックエッジ350及び351が入力される。370、371及び372は、それぞれフリップフロップ間の論理ゲートを表している。このクロックCLKnの調整可能な立ち下がりエッジのみを用いたLSI設計を行うと、クロックスキュー及びジッタの影響を最小限に抑制することが可能となる。
【0025】
次に、本発明の第2の実施の形態に係るクロック生成回路の構成を図7に示す。本実施の形態に係るクロック生成回路は、基準クロックが入力される図1に示す遅延調整回路と、基準クロックと前記遅延調整回路における出力信号との論理演算行い前記基準クロックに対してN倍動作周波数のクロックを出力する論理回路としての排他的論理和回路120と、前記遅延調整回路の出力を非動作モード時にのみ一定値に固定する設定手段としてのPMOSトランジスタ110とを有し、排他的論理和回路120の論理演算結果に基づいて非動作モードとして基準クロックの1倍又は動作モードとして基準クロックのN倍(本実施の形態では2倍)の動作周波数のクロックを出力するものである。
【0026】
遅延調整回路は上述したように図1に示す構成と基本的には同一である。図7に示すように、図1示す遅延調整回路のノード91にソースが電源に接続されたプリチャージ用のPMOSトランジスタ110が追加され、またレジスタ群30’におけるレジスタ222が追加されている。本実施の形態に係るクロック生成回路では、トランスファーゲート80〜83の制御入力が全てオフの状態を許可して、その場合にはプリチャージ用PMOSトランジスタ110のゲートに入力される入力信号である非動作信号によりPMOSトランジスタ110がオンとなるように制御される。
【0027】
レジスタ220〜222の信号は図示してないデコーダによりデコードされて、トランスファーゲート80〜83及びプリチャージ用PMOSトランジスタ110に制御入力信号としてに供給され、トランスファーゲート80〜83及びプリチャージ用PMOSトランジスタ110のうちの1つだけがオンとなるように制御される。プリチャージ用PMOSトランジスタ110がオンの場合には、遅延調整回路の出力、すなわちバッファ90の出力は一定値1となり非動作モードとなる。従って、この非動作モードを持つ遅延調整回路の出力と力端子100から入力される基準クロックとの排他的論理和演算を行う排他的論理和回路120を用いてクロック生成回路を構成することにより、遅延調整回路から出力されるクロックを基準クロックの波形に関係なく固定値1とすることができるので、レジスタ値の設定により出力端子122か出力されるクロックの動作周波数を非動作モードとして基準クロックの1倍、動作モードとして基準クロックの2倍のクロックを生成することができる。
【0028】
図8に本発明の第3の実施の形態としてのクロック生成回路を、図9に基準クロックと各部の出力クロックの出力タイミンを示す。図4のクロック生成回路では、遅延調整回路300により1/4周期遅れたクロックを生成しているが、図8に示すクロック生成回路では、遅延調整回路302により1/6周期遅れたクロックCLKx、遅延調整回路303により1/3周期遅れたクロックCLKyを生成している。
【0029】
排他的論理和回路304により基準クロックCLK0、1/6周期遅れたクロックCLKx及び1/3周期遅れたクロックCLKyに対して排他的論理和をとると、基準クロックCLK0に対して動作周波数が3倍の波形制御可能なクロックCLKzを生成することができる。同様に、本実施の形態によれば、基準クロックを入力とする、遅延時間の異なる複数の遅延調整回路の出力の論理演算を行うことにより、基準クロックCLK0に対してN倍動作周波数の波形制御可能なクロックを生成することができる。
【0030】
次に、本発明の第4の実施の形態に係るクロック生成回路の構成を図10に示す。本実施の形態に係るクロック生成回路400は、図1または図7に記載の遅延調整回路410と、遅延調整回路410の出力クロックの論理演算を行う論理回路420と、クロック生成回路400のクロック出力のデューティ比及びクロックスキューを検出する検出回路430と、検出回路430の検出出力に基づいて予め設定されたデューティ比及びクロックスキューとなるように前記遅延調整回路410内のレジスタ410のレジスタ値を動的に更新する制御回路440とを有している。遅延調整回路410は、レジスタ410と、可変遅延回路414とから構成されている。遅延調整回路410は、図1または図7に示す遅延調整回路と同様の構成であり、レジスタ410は図1または図7に示すレジスタ群30、または30’に相当し、可変遅延回路は図1または図7に示す遅延調整回路からレジスタ群30、または30’を除いた構成に相当する。500は基準クロック発生回路、510は分配回路である。
【0031】
上記構成において、基準クロック発生回路500から出力される基準クロック501が遅延調整回路410に入力され、遅延調整回路の出力415と基準クロック501の論理演算が論理回路420により行われ、この論理演算により基準クロック501のN倍の動作周波数のクロック421が生成される。クロック421から分配回路510により出力クロック512が出されLSI内の各ブロックに分配される。
【0032】
分配回路510の出力クロックの一部511から、検出回430により出力クロック511のデューティ比やクロックスキューが検出され、これらの検出値と期待値としてのクロック波形とのずれが検出される。出力クロック511のデューティ比やクロックスキューが期待値と異なる場合には、制御回路440は、遅延調整回路410により出力クロック421の波形を調整するために、検出回路430の出力431に基づいてレジスタを適切な値に設定する。制御回路440の出力441により設定されたレジスタ値411により可変遅延回路420におけるクロックの遅延時間が調整され、出力クロック421がデューティ比やクロックスキューが期待値と一致するように補正される。
【0033】
本実施の形態に係るクロック発生回路によれば、PLL回路を用いずにレジスタの設定値に基づいて入力信号の遅延時間を調整する遅延調整回路と、該クロック生成回路のクロック出力のデューティ比及びクロックスキューを検出する検出回路と、前記検出回の検出出力に基づいて予め設定されたデューティ比及びクロックスキューとなるように前記遅延調整回路内のレジスタ値を動的に更新する制御回路とを有するので、クロックのデューティ比及びクロックスキューが期待値になるように自動的に調整することができる。
【0034】
本発明の他の実施の形態として、その基本的構成は上記の通りであるが、上述した実施の形態においてクロック生成回路に用いられる遅延調整回路は1つに限らず、2以上であってもよい。上記各実施の形態における遅延調整回路の負荷素子として2倍、4倍、8倍と設定している容量値は、これに限定されない。負荷素子としての実現方法は、インバータなどのゲート入力を用いるなど様々な方法がある。また、出力負荷容量調整用インバータのNMOSトランジスタ及びPMOSトランジスタにおけるゲート幅の比は、NMOSトランジスタのオン抵抗の方を小さくする設計も可能である。
【0035】
また、上記実施の形態における遅延調整回路の微調整及び粗調整用のトランスファーゲート及びレジスタの数は、一例にすぎず、これに限定されない。また、トランスファーゲート以外のスイッチ手段を用いてもよい。さらに、上記実施の形態において遅延調整回路の遅延素子としてはインバータを用いているが、インバータ以外のゲートを利用することも可能であり、ゲート段数も限定されない。また、遅延調整回路の出力の論理演算を行う論理回路として排他的論理和回路を使用した例について説明したが、これに限らず、排他的論理和回路の替わりに、排他的否定論理積回路とすることによってクロック波形を反転することも可能であり、この場合には調整可能なクロックエッジも反転する。
【0036】
上記実施の形態における非動作モードを持つ遅延調整回路では、固定値出力をプリチャージ用PMOSトランジスタにより実現しているが、NMOSトランジスタを用いて固定値を出力することも可能である。また、固定値は1に限定されない。
【0037】
次に、本発明の第5の実施の形態に係るクロック生成回路の構成を図11に示す。同図において、本実施の形態に係るクロック生成回路は、半導体集積回路装置の内部レジスタの値、または内部メモリの値、または内部の論理信号、または外部の信号により遅延時間を調整することが可能な第1、第2、第3の3つの遅延調整回路601、602、603と、3つの遅延調整回路601〜603の入力端は共通接続され、第1及び第3遅延調整回路601、603の出力の一方または両方により前記3つの遅延調整回路601〜603の入力または第2の遅延調整回路602の出力を選択する第1のセレクタ610と、前記3つの遅延調整回路の601〜603入力と第2の遅延調整回路602の出力の一方または両方に基づいて前記第1または第3の遅延調整回路601、603の出力を選択する第2のセレクタ611と、前記第1、第2のセレクタ610,611の出力信号の排他的論理積を求める論理回路612とを有している。
【0038】
図11において、第1、第2、第3の3つの遅延調整回路601、602、603は入力側が共通接続され、入力信号(本実施の形態では、基準クロック)650が入力されるようになっている。第1、第2、第3の3つの遅延調整回路601、602、603の出力信号は、LSI内部のレジスタ、内部信号、外部の信号のいずれかにより、第1の遅延調整回路601は目標とするサイクル時間cの1/4の遅延時間を有するように調整され、第2の遅延調整回路602はサイクル時間cの2/4の遅延時間を有し、かつ反転されるように調整され、第3の遅延調整回路603はサイクル時間cの3/4の遅延時間を有し、かつ反転されるように調整される。
【0039】
第1のセレクタ610は第1の遅延調整回路601の出力に応じて入力信号650と第2の遅延調整回路の602の出力を選択する。第2のセレクタ611は入力信号650に応じて第1の遅延調整回路601と第3の遅延調整回路603の出力を選択する。排他的否定論理和(EX−NOR)回路612は第1、2のセレクタ610、611の出力の排他的論理積を求め、出力信号660を出力する。
【0040】
ここで第1のセレクタ610は第1の遅延調整回路601の出力によって制御されているが、第3の遅延調整回路603の出力、または第1、第3の遅延調整回路601、603の出力の両方によって制御しても同様の効果が得られる。同様に第2のセレクタ611は入力信号650及び第2の遅延調整回路602の一方、または両方によって制御されても同様の効果が得られる。図12は図11に示した各部の動作波形を示している。
【0041】
動作周波数f(サイクル時間c=1/f)の入力信号650が第1、2,3の3つの遅延調整回路601、602、603に入力される(図12(A))。この入力信号650は、図示してない遅延調整回路により供給され、信号の立ち上がりが波形調整可能な信号である。入力信号650が第1、2,3の遅延調整回路601、602、603に入力される結果、周波数fを持った第1、2、3の内部信号が第1、2,3の遅延調整回路601、602、603より出力される
(図12(B),(D),(F))。図12(C)は、入力信号650の2/4周期だけ遅延させた信号、図12(E)は、入力信号650の3/4周期だけ遅延させた信号である。
【0042】
入力信号650、第1、2,3の遅延調整回路601、602、603の出力信号(内部信号)を第1、第2のセレクタ610、611で統合する。すなわち、入力信号650と第2の遅延調整回路602の出力信号とを第1のセレクタ610で統合し、第1の遅延調整回路601の出力信号と第3の遅延調整回路603の出力信号とを第2のセレクタ611で統合する。
【0043】
ここで第1のセレクタ610は、第1の遅延調整回路601の出力信号がローレベルの期間に入力信号650を選択し、ハイレベルの期間で遅延調整回路602の出力信号を選択するように動作する。また、第2のセレクタ611は、入力信号650がローレベルの期間で遅延調整回路603の出力信号を選択し、ハイレベルの期間で遅延調整回路601の出力信号を選択するように動作する。この結果、第1のセレクタ610より入力信号650と第2の遅延調整回路602の出力信号とが統合された信号が出力され(図12(G))、また第2のセレクタ611より第1の遅延調整回路601の出力信号と第3の遅延調整回路603の出力信号とが統合された信号が出力される(図12(H))。
【0044】
第1のセレクタ610の出力信号と第2のセレクタ611の出力信号は排他的論理積回路612により論理演算が行われ、入力信号650の動作周波数fの2倍の周波数を有する信号(クロック)を得ることができる(図12(I))。
【0045】
本発明の第5の実施の形態に係るクロック生成回路によれば、基準クロックを入力とし、半導体集積回路装置の内部レジスタの値、または内部メモリの値、または内部の論理信号、または外部の信号により遅延時間を調整することが可能な第1、第2、第3の3つの遅延調整回路の出力を第1、第2の2つのセレクタで統合し、これらのセレクタの出力を論理回路により排他的論理積をとるようにしたので、入力信号である基準クロックのデューティ比に関係なく、自由なデューティ比のクロックを生成することが可能となる。
【0046】
次に、本発明の第6の実施の形態に係るクロック生成回路の構成を図13に示す。同図において、本実施の形態に係るクロック生成回路は、半導体集積回路装置の内部レジスタの値、または内部メモリの値、または内部の論理信号、または外部の信号により遅延時間を調整することが可能な第1、第2、第3、第4の4つの遅延回路700、701、702、703と、遅延調整回路700、701、702、703の入力端は共通接続され、第2及び第4の遅延調整回路701、703の出力の一方または両方により第1または第3の遅延調整回路700、702の出力を選択する第1のセレクタ710と、第1及び第3の遅延調整回路700、702の出力の一方または両方により第2または第4の遅延調整回路701、703の出力を選択する第2のセレクタ711と、第1及び第2のセレクタ710、711の出力の排他的論理積を求める論理回路720とを有している。
【0047】
図13において、第1、第2、第3、第4の4つの遅延調整回路700、701、702、703は入力側が共通接続され、入力信号(本実施の形態では、基準クロック)750が入力されるようになっている。第1、第2、第3、第4の遅延調整回路700、701、702、703はの出力信号は、LSI内部のレジスタ、内部信号、外部の信号のいずれかにより、それぞれ目標とするサイクル時間をc、セレクタと排他的論理積回路の遅延時間をτとしたとき、LSI内部のレジスタ、内部信号、外部の信号のいずれかにより、第1の遅延調整回路700は、(1/4c―τ)の遅延時間を有するように、また第2の遅延調整回路701は、(2/4c―τ)の遅延時間を有するように、それぞれ調整される。また第3の遅延調整回路702は、(3/4c―τ)の遅延時間を有し、かつ反転されるように調整され、第4の遅延調整回路703は、(c−τ)の遅延時間を有し、かつ反転するように調整される。
【0048】
第1のセレクタ710は第2の遅延調整回路701の出力信号に応じて第1の遅延調整回路700の出力と第3の遅延調整回路702の出力とを選択する。第2のセレクタ711は第1の遅延調整回路700の出力信号に応じて第2の遅延調整回路701と第4の遅延調整回路703の出力とを選択する。排他的否定論理和(EX−NOR)回路720は第1、2のセレクタ710、711の出力の排他的論理積を求め、出力信号760を出力する。
【0049】
ここで、本実施の形態では第1のセレクタ710は第2の遅延調整回路701の出力によって制御されているが、第2,4の遅延調整回路701、703の出力の一方または両方によって制御しても同様の効果が得られる。同様に第2のセレクタ711は第1,第3の遅延調整回路700、702の出力の一方、または両方によって制御されても同様の効果が得られる。
【0050】
以上、本発明の第6の実施の形態に係るクロック生成回路によれば、基準クロックを入力とし、半導体集積回路装置の内部レジスタの値、または内部メモリの値、または内部の論理信号、または外部の信号により遅延時間を調整することが可能な第1、第2、第3、第4の4つの遅延調整回路の出力を第1、第2の2つのセレクタで統合し、これらのセレクタの出力を論理回路により排他的論理積をとるようにしたので、入力信号である基準クロックのデューティ比に関係なく、自由なデューティ比のクロックを生成することが可能となる。
【0051】
本発明の他の実施の形態として、その基本的構成は上記の通りであるが、例えばサイクル時間の1/2の遅延時間を有するように調整された遅延調整回路を構成する場合、1/4の遅延時間を有するように調整された遅延調整回路を2個用いてもよいし、さらに微少な遅延時間を発生する遅延調整可能な遅延調整回路を用いて構成してもよい。
【0052】
またここで重要なのは各遅延調整回路が発生する遅延時間の差分であり、差分が入力波形(クロック波形)のサイクル時間の1/nになるようにして、入力波形のn倍またはn/2倍の周波数を持った波形を生成することが重要である。さらにクロック生成回路の出力段に設けられる論理回路としての論理ゲートを排他的論理和とするか排他的論理積とするかによって、遅延調整回路がインバータとして動作するか、バッファとして動作するかが決定される。したがって、遅延回路として正論理、負論理のどちらを用いてもよい。なお、本発明が上記各実施例に限定されず、本発明の技術思想の範囲内において、各実施例は適宜変更され得ることは明らかである。
【0053】
【発明の効果】
本発明の遅延調整回路によれば、各ゲートが直列接続され入力信号の遅延時間の微調整を行うための第1のゲート群と、該第1のゲート群のうち特定のゲートの出力側に第1のスイッチ手段を介して接続される負荷容量と、前記第1のゲート群の出力側に第2のスイッチ手段を介して接続され前記入力信号の遅延時間の粗調整を行うための第2のゲート群第1のゲート群のうち特定のゲートの出力側に接続される負荷容量及び第2のゲート群のゲート段数を調整することにより前記入力信号の遅延時間を調整するように第1、第2のスイッチ手段を制御する制御手段とを有するので、半導体集積回路装置の内部レジスタ値または内部信号、外部信号を制御することにより入力信号の遅延時間を調整することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る遅延調整回路の具体的構成を示す回路図。
【図2】 図1に示す遅延調整回路の入出力関係を示すブロック図。
【図3】 図2における遅延調整回路の入力信号としての基準クロックと出力信号としてのクロックの出力タイミング示すタイミングチャート。
【図4】 本発明の第1の実施の形態に係るクロック生成回路の構成を示す回路図。
【図5】 図4に示すクロック生成回路の各部の信号を示すタイミングチャート。
【図6】 クロック生成回路により生成される調整可能な特定エッジを有するクロックの波形と、このクロックの特定エッジのタイミングで動作するフリップフロップが論理ゲート間に設けられた半導体集積回路装置の回路構成とを示す説明図。
【図7】 本発明の第2の実施の形態に係るクロック生回路の構成を示す回路図。
【図8】 本発明の第3の実施の形態に係るクロック生成回路の構成を示す回路図。
【図9】 図8に示すクロック生成回路の各部の信号を示すタイミングチャート。
【図10】 本発明の第4の実施の形態に係るクロック生成回路の構成を示すブロック図。
【図11】 本発明の第5の実施の形態に係るクロック成回路の構成を示す回路図。
【図12】 図11に示すクロック生成回路の各部の動作波形を示すタイミングチャート。
【図13】本発明の第6の実施の形態に係るクロック生成回路の構成を示す回路図。
【図14】従来のクロック生成回路に使用されているPLL回路の構成を示すブロック図。
【符号の説明】
10 第1のゲート群
11〜14 インバータ
20 第2のゲート群
21〜23 インバータチェーン
30 レジスタ群(制御手段)
40〜43、50〜53 トランスファゲート(第1のスイッチ手段)
80〜83 トランスファゲート(第2のスイッチ手段)
300、302、303、400、410 遅延調整回路
301、304、420 論理回路
400 クロック生成回路
412 レジスタ
414 可変遅延回路
430 検出回路
440 制御回路
500 基準クロック発生回路
510 分配回路
601、602、603 遅延調整回路
610、611 セレクタ
612 排他的論理積回路
Claims (3)
- 各ゲートが直列接続され入力信号の遅延時間の微調整を行うための第1のゲート群と、
該第1のゲート群のうち特定のゲートの出力側に第1のトランスファースイッチを介して接続される第1の負荷容量と、
前記特定のゲートの次段のゲート出力側に第2のトランスファースイッチを介して接続される第2の負荷容量と、
前記第1のゲート群の出力側にスイッチ手段を介して接続され前記入力信号の遅延時間の粗調整を行うための第2のゲート群と、
前記第1、第2の負荷容量及び前記第2のゲート群のゲート段数を調整することにより前記入力信号の遅延時間を調整するように前記第1、第2のトランスファーゲート、及び前記スイッチ手段を制御する制御手段とを有し、
前記制御手段は、半導体集積回路装置内に設けられ、内部信号により出力値を設定することができるレジスタを含んで構成され、
前記レジスタに設定されたレジスタ値に基づいて前記第1、第2のトランスファーゲート及び前記スイッチ手段を切換制御することにより、ゲート出力負荷及び前記第2のゲート群のゲート段数を調整する遅延調整回路であって、
前記第1のゲート群のうち、前記第1の負荷容量が接続された前記特定のゲートと前記第2の負荷容量が接続された前記特定のゲートは、インバータから構成され前記インバータを構成する PMOS トランジスタのオン抵抗は、前記インバータを構成する NMOS トランジスタのオン抵抗より小さく、前記特定のゲート出力負荷をそれぞれ独立に調整させることにより、前記遅延調整回路の出力端子から出力される信号の立ち上がりと立下がりをそれぞれ独立に変動させることを特徴とする遅延調整回路。 - 各ゲートが直列接続され入力信号の遅延時間の微調整を行うための第1のゲート群と、
該第1のゲート群のうち特定のゲートの出力側に第1のトランスファースイッチを介して接続される第1の負荷容量と、
前記特定のゲートの次段のゲート出力側に第2のトランスファースイッチを介して接続される第2の負荷容量と、
前記第1のゲート群の出力側にスイッチ手段を介して接続され前記入力信号の遅延時間の粗調整を行うための第2のゲート群と、
前記第1、第2の負荷容量及び前記第2のゲート群のゲート段数を調整することにより前記入力信号の遅延時間を調整するように前記第1、第2のトランスファーゲート、及び前記スイッチ手段を制御する制御手段とを有し、
前記制御手段は、半導体集積回路装置内に設けられ、初期化により外部から出力値を設定することができるレジスタを含んで構成され、
前記レジスタに設定されたレジスタ値に基づいて前記第1、第2のトランスファーゲート及び前記スイッチ手段を切換制御することにより、ゲート出力負荷及び前記第2のゲート群のゲート段数を調整する遅延調整回路であって、
前記第1のゲート群のうち、前記第1の負荷容量が接続された前記特定のゲートと前記第2の負荷容量が接続された前記特定のゲートは、インバータから構成され前記インバータを構成する PMOS トランジスタのオン抵抗は、前記インバータを構成する NMOS トランジスタのオン抵抗より小さく、前記特定のゲート出力負荷をそれぞれ独立に調整させることにより、前記遅延調整回路の出力端子から出力される信号の立ち上がりと立下がりをそれぞれ独立に変動させることを特徴とする遅延調整回路。 - 前記PMOSトランジスタのゲート幅が前記NMOSトランジスタのゲート幅よりも大きいことを特徴とする請求項1または2に記載の遅延調整回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003173299A JP3797345B2 (ja) | 2003-06-18 | 2003-06-18 | 遅延調整回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003173299A JP3797345B2 (ja) | 2003-06-18 | 2003-06-18 | 遅延調整回路 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000028077A Division JP2001217694A (ja) | 2000-02-04 | 2000-02-04 | 遅延調整回路及びこれを用いたクロック生成回路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004032759A JP2004032759A (ja) | 2004-01-29 |
JP3797345B2 true JP3797345B2 (ja) | 2006-07-19 |
Family
ID=31185425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003173299A Expired - Fee Related JP3797345B2 (ja) | 2003-06-18 | 2003-06-18 | 遅延調整回路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3797345B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012008684A (ja) * | 2010-06-23 | 2012-01-12 | Elpida Memory Inc | メモリモジュール及び半導体記憶装置 |
JP5807550B2 (ja) * | 2012-01-10 | 2015-11-10 | 株式会社ソシオネクスト | 半導体装置 |
US10230360B2 (en) * | 2017-06-16 | 2019-03-12 | International Business Machines Corporation | Increasing resolution of on-chip timing uncertainty measurements |
CN116979936A (zh) * | 2023-07-17 | 2023-10-31 | 北京空间机电研究所 | 一种总线控制的时钟延时电路 |
-
2003
- 2003-06-18 JP JP2003173299A patent/JP3797345B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004032759A (ja) | 2004-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6380774B2 (en) | Clock control circuit and clock control method | |
JP3647364B2 (ja) | クロック制御方法及び回路 | |
US6564359B2 (en) | Clock control circuit and method | |
JP3822461B2 (ja) | デューティサイクル補正機能を有する遅延同期ループ回路及び遅延同期方法 | |
US7135906B2 (en) | Delay circuit and delay synchronization loop device | |
US6882196B2 (en) | Duty cycle corrector | |
JP4544780B2 (ja) | クロック制御回路 | |
JP4562300B2 (ja) | クロック制御方法及び回路 | |
JP6439367B2 (ja) | 遅延回路,遅延回路を有する位相同期回路,及び位相同期回路を有するプロセッサ | |
US11290089B2 (en) | Generation of pulse width modulated (PWM) pulses | |
US6064244A (en) | Phase-locked loop circuit permitting reduction of circuit size | |
JP2001217694A (ja) | 遅延調整回路及びこれを用いたクロック生成回路 | |
US7292079B2 (en) | DLL-based programmable clock generator using a threshold-trigger delay element circuit and a circular edge combiner | |
US6801062B2 (en) | Output circuit | |
JP3761858B2 (ja) | クロック信号発生回路 | |
JP2002014743A (ja) | クロック制御回路および方法 | |
JP2017143398A (ja) | Pll回路および電子回路 | |
US7642865B2 (en) | System and method for multiple-phase clock generation | |
JP2007267034A (ja) | 高速動的周波数分周器 | |
US7151398B2 (en) | Clock signal generators having programmable full-period clock skew control | |
WO2022240540A1 (en) | Delay locked loop with segmented delay circuit | |
TWI392992B (zh) | 時脈產生電路及其時脈產生方法 | |
JP3797345B2 (ja) | 遅延調整回路 | |
KR100663329B1 (ko) | 주파수 체배기 | |
US20030112083A1 (en) | Multiple duty cycle tap points for a precise and programmable duty cycle generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050314 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051025 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051213 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060208 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060410 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100428 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110428 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120428 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120428 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130428 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130428 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140428 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |