JP3788866B2 - High-order component prediction method and apparatus for high-speed tire uniformity, and tire manufacturing method - Google Patents
High-order component prediction method and apparatus for high-speed tire uniformity, and tire manufacturing method Download PDFInfo
- Publication number
- JP3788866B2 JP3788866B2 JP15621298A JP15621298A JP3788866B2 JP 3788866 B2 JP3788866 B2 JP 3788866B2 JP 15621298 A JP15621298 A JP 15621298A JP 15621298 A JP15621298 A JP 15621298A JP 3788866 B2 JP3788866 B2 JP 3788866B2
- Authority
- JP
- Japan
- Prior art keywords
- tire
- speed
- rolling
- component
- order
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000005096 rolling process Methods 0.000 claims description 62
- 230000033001 locomotion Effects 0.000 description 18
- 238000006073 displacement reaction Methods 0.000 description 13
- 238000012546 transfer Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000012417 linear regression Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/026—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/04—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
- G01M17/007—Wheeled or endless-tracked vehicles
- G01M17/02—Tyres
- G01M17/022—Tyres the tyre co-operating with rotatable rolls
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Tires In General (AREA)
- Testing Of Balance (AREA)
- Tyre Moulding (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、タイヤが低速で転動しているときの低速ユニフォミティに基づいて、タイヤが高速で転動しているときの高速ユニフォミティの高次成分(例えば、2次以上の成分)を予測するタイヤの高速ユニフォミティの高次成分予測方法及び装置、並びにタイヤの高速ユニフォミティの高次成分予測方法または装置によって予測されたタイヤの高速ユニフォミティの高次成分を用いてタイヤを選別する工程を含むタイヤの製造方法に関する。
【0002】
【従来の技術】
近年、タイヤの高速ユニフォミティの高次成分が、振動騒音現象として問題となるケースが増加している。この高速ユニフォミティの高次成分による問題は、タイヤのユニフォミティ一次成分を低減した等により、目立ってきたものと考えられる。
【0003】
また、高速ユニフォミティの高次成分は、タイヤの他の特性(固有振動数、及び空洞共鳴周波数等)との共振現象において問題となり、固有振動数、及び空洞共鳴周波数等に依存し、車内ではこもり音、ビート音等を主成分とした異音を発生させる。
【0004】
タイヤのユニフォミティは、速度によってメカニズムが異なるため、低速転動時と高速転動時とが良好に対応していると言うことはできず、従来、タイヤの高速ユニフォミティの高次成分を低速ユニフォミティから予測する方法として次の方法が知られている。
(1)回帰式による方法
高速ユニフォミティと低速ユニフォミティとを測定し、測定値から回帰式を作成し、回帰式により高速ユニフォミティと低速ユニフォミティとを対応させる方法である。
(2)統計的処理による予測式による方法
この方法では、事前に用意した数十本のタイヤを用いて、低速時におけるRFV(ラジアルフォースバリエーション)、高速時におけるRFV、及び転がり半径変動値を測定する。これらの測定値から統計的処理によって求めた定数、タイヤ毎に測定した低速時におけるRFV及び転がり半径変動とから高速TFV(タンジェンシャルフォースバリエーション)の1〜4次成分を予測する(USP5,396,438)。
【0005】
【発明が解決しようとする課題】
上記回帰式、統計的処理による予測式による方法では低速ユニフォミティと高速ユニフォミティとの厳密な関係付けがされていないため、低速ユニフォミティと高速ユニフォミティとの対応はよくない。また、任意の速度、次数における高速ユニフォミティを予測することが難しい、という問題がある。
【0006】
また、統計的処理による予測式による方法では、ロット内容が変更される毎に、事前に数十本のタイヤを用意して低速時と高速時とで試験する必要があるため、時間がかかる、という問題がある。
【0007】
【課題を解決するための手段】
本発明は上記問題点を解消するためになされたもので、同一ロット内の1つのタイヤの転動時動剛性を用いることによって、短時間に同一ロット内の高速ユニフォミティの高次成分を低速ユニフォミティから予測することができるタイヤの高速ユニフォミティの高次成分の予測方法及び装置並びにタイヤの製造方法を提供することを目的とする。
【0008】
上記目的を達成するために、請求項1及び請求項2の発明は、同一ロット内の1つのタイヤについて、タイヤが低速で転動しているときの予測すべき高次成分の次数に対応した周波数における低速時動剛性、及びタイヤが高速で転動しているときの前記次数に対応した周波数における高速時動剛性を測定し、前記同一ロット内の各タイヤ毎に低速で転動しているときの荷重の変動成分、及び転がり半径変動を測定し、前記低速時動剛性、前記高速時動剛性、前記荷重の変動成分、及び前記転がり半径変動に基づいて、前記高次成分としてタイヤが高速で転動しているときの荷重の変動成分を予測するものである。
【0009】
また、請求項3及び請求項4の発明は、高次成分として請求項1及び請求項2の荷重の変動成分(ラジアルフォースバリエーション)に変えて前後力の変動成分(タンジェンシャルフォースバリエーション)を予測するものである。
【0010】
請求項1〜4の発明によれば、同一ロット内の1つのタイヤについての転動時動剛性(低速時動剛性、及び高速時動剛性)を用いて同一ロット内の他のタイヤの高次成分の荷重の変動成分または前後力の変動成分を予測することができるので、短時間にかつ簡単に高速ユニフォミティの高次成分を予測することができる。
【0011】
上記のようにして予測されたタイヤが高速で転動しているときの荷重の変動成分、またはタイヤが高速で転動しているときの前後力の変動成分を用いてタイヤを選別する工程を設けることにより、請求項1〜4の発明をタイヤの製造方法に適用することができる。この選別工程では、予測されたタイヤが高速で転動しているときの荷重の変動成分と基準値とが比較され、荷重の変動成分が基準値より大きいタイヤは修正を施して出荷され、荷重の変動成分が基準値以下のタイヤはそのまま出荷される。または、この選別工程では、予測されたタイヤが高速で転動しているときの前後力の変動成分と基準値とが比較され、前後力の変動成分が基準値より大きいタイヤは修正を施して出荷され、前後力の変動成分が基準値以下のタイヤはそのまま出荷される。
【0012】
【発明の実施の形態】
以下本発明の実施の形態を詳細に説明する。
【0013】
RFV(ラジアルフォースバリエーション)及びTFV(タンジェンシャルフォースバリエーション)等のユニフォミティは、負荷半径を一定状態としてタイヤを転動させた時のタイヤ軸に作用する力の変動である。荷重の変動成分であるRFVに例をとると、RFVと荷重Wとは、以下の式の関係がある。
【0014】
ただし、
Wo :荷重Wの直流成分、
Ko :縦ばね定数、
Dv :たわみ変動量、
Kv :剛性変動量、
Do :たわみ量の直流成分、
である。
【0015】
Ko ・Do は荷重を表し、Kv ・Dv は殆ど0であるので、RFVは次の(1)式に示すように2つの成分の和で考えることができる。
【0016】
RFV=Ko ・Dv +Kv ・Do ・・・(1)
(1)式右辺の第1項Ko ・Dv は、タイヤ寸法の周上不均一(ラジアルランアウト)がたわみの変動となりタイヤ周上の平均的な縦ばね(ばね定数Ko )を介して軸力となる成分であり、第2項Kv ・Do は、たわみに変動が無くても、縦ばねのばね定数にタイヤ周上に変動があるために軸力変動を生じる成分である。以下、前者をKo項、後者をKv項と呼ぶことにする。
さて、(1)式は速度が十分低い場合には各パラメータは静的なものと考えてよい。この場合、左辺のRFVは容易に測定できるが、右辺のパラメータで通常容易に測定できるのはKo の縦ばねのばね定数、DV のラジアルランアウト(RRO)、及びDo のたわみ量の直流成分であり、Kv の剛性変動は測定に手間がかかることから直接測定はあまり行われない。
【0017】
従って、Kv項は、測定される(1)式左辺RFVと右辺Ko項との差として間接的に求めることとする。。
次に、タイヤの転動速度が増加していく時、Ko項、Kv項が速度に依存してどのように変化するかを考える。まず、これらの各項は入力となる変動成分(DV 及びKV )と伝達ゲイン(KO 及びDO )との積の形をしている。
【0018】
入力となる変動成分DV (ラジアルランアウト)は、変動周期が速度に反比例して変化するが、その振幅は速度による変化が小さいことが実験により確認されている。
【0019】
入力となる剛性変動KV は、変動周期が速度に反比例して変化し、その振幅の速度依存性は不明である。しかし、ここでは剛性変動KV は、単なるフックの完全弾性体のようなばねがタイヤ周上に散在して配置されているものとみなし、速度による変化、すなわち速度依存性はないものと仮定する。
【0020】
また、伝達ゲインのDO はたわみであるから一定としてよいが、縦ばねのばね定数KO は、入力であるDV の周波数が速度と共にタイヤ回転1次の整数倍で上昇すると、次数によってはタイヤ固有振動数の領域に重なるので、周波数依存性を持つ動剛性に移行して考えなければならない。
【0021】
以上のように仮定すると、RFVは、速度Vと時間tの関数としてフーリエ級数の形で次のように表すことができる。
【0022】
Fn (V):速度VにおけるRFVのフーリエn次成分の振幅
ψn (V):速度VにおけるRFVのフーリエn次成分の位相
Re :タイヤ転がり半径
Fkn:剛性変動力成分(Kv項)のフーリエn次成分の振幅
βkn:剛性変動力成分(Kv項)のフーリエn次成分の位相
Δrn :たわみ変動成分(ラジアルランアウト)のフーリエn次成分の振幅
βn :たわみ変動成分(ラジアルアンアウト)のフーリエn次成分の位相
|K(nV/Re )|:タイヤ上下動剛性K(ω)のω=nV/Re における絶対値
φk (nV/Re ):タイヤ上下動剛性K(ω)のω=nV/Re における位相
である。
【0023】
上記(2)式の右辺第1項は剛性変動力成分で(1)式のKv項に相当し、第2項はKo項に相当する。
【0024】
ここで、低速時のRFVは上記(2)式でV=Vo (低速)と置いたものであるから、低速時(例えば、60rpm)のRFVは、次の式で表される。
【0025】
低速時のタイヤ上下動剛性K(ω)が求まれば、上記(3)式から低速RFVとラジアルランアウトのフーリエ次数解析のデータΔrn とを用いて、計算により速度依存性のない剛性変動力成分(Kv項)のフーリエ次数パラメータの振幅Fkn、及び位相βknを決定することができる。そして、高速時のタイヤ上下動剛性K(ω)が求まれば、上記のようにして決定された振幅Fkn、及び位相βknと、上記(2)式から高速時のRFVを予測することができる。低速RFVは低速ユニフォミティマシンで測定された実測値が使用され、ラジアルランアウトのフーリエ次数解析のデータΔrn は、以下で説明する転がり半径変動が用いられる。
【0026】
次に、転動時のタイヤ上下動剛性K(ω)の求め方について説明する。
【0027】
転動時のタイヤ上下動剛性K(ω)は、タイヤサイズ、タイヤ構造が同じならば、ばらつきがないと仮定して、同一ロット内の1本のタイヤについての転動時タイヤ上下動剛性を代表させて使用する。
【0028】
転動時のタイヤ上下動剛性K(ω)は、図1に示すように表面にFRP製のクリート12が取り付けられたドラム10と、専用スタンドの先端に取り付けられたセンサ16と、を備えた突起乗り越し試験機を使用して測定したタイヤ軸の上下変位、すなわちドラム面の上下変位Xとタイヤ上下軸力Fzとから求める。
【0029】
クリート12は、図2に示すように、底辺210mm、高さ20mm、短辺30mmの断面3角形状に形成されている。クリート12の長辺の長さは、タイヤ接地長以上の長さがあればよい。
【0030】
センサ16には、タイヤ上下軸力Fzを検出するロードセルで構成された軸力センサ(3方向軸力センサ)16A、及びドラム面に対するタイヤ軸の変位を検出するレーザ変位計で構成された変位センサ16Bが設けられている。
【0031】
軸力センサ16A及び変位センサ16Bは、測定データ等を表示する表示装置としてのCRT18が接続された予測装置としてのパーソナルコンピュータ20に接続されている。
【0032】
転動時のタイヤ上下動剛性K(ω)を測定する場合には、タイヤに負荷を与えた状態でドラム10に接触させ、クリート12が取り付けられたドラムを回転することにより、タイヤ軸に上下方向に入力を与える。その時のタイヤの上下軸力Fzを軸力センサ16Aで測定し、ドラム面に対するタイヤ軸の上下変位Xを変位センサ16Bで測定する。
【0033】
そして、パーソナルコンピュータ20においてタイヤ軸の上下変位Xに対するタイヤの上下軸力Fzの伝達特性Fz/Xを転動時のタイヤ上下動剛性K(ω)として演算し、高速時のRFVの予測に必要な伝達特性Fz/Xの絶対値と位相とを求める。
【0034】
なお、クリートは長周期のマウンドのようなクリートを使用しているため、面からの入力に近似した入力が可能であり、また、高速でも比較的安定したデータが得られる。
【0035】
図3(1)は上記のようにして測定した同一ロット内の2本のタイヤによる伝達特性Fz/Xの絶対値を示し、図3(2)は伝達特性Fz/Xの位相を示すものである。
【0036】
図3(1)、(2)から低速時に対応したタイヤ上下動剛性K(ω)の絶対値及び位相と、高速時に対応したタイヤ上下動剛性K(ω)の絶対値及び位相とを求めることとする。本実施の形態では、低速時を60rpm、高速時を85km/hとし、RFVの6次成分を予測する場合を例にとって説明する。
【0037】
低速時及び高速時のタイヤ上下動剛性K(ω)の絶対値及び位相は、予測すべき高次成分の次数に対応した周波数の伝達特性Fz/Xの絶対値及び位相で表される。この高次成分の次数に対応した周波数は、高次成分の次数とタイヤ回転周波数との積で表される。本実施の形態では6次成分を予測するので、低速時の対応周波数は、6×タイヤ回転周波数(1Hz)=6Hzになり、高速時の対応周波数は、6×タイヤ回転周波数(13Hz)=78Hzになる。
【0038】
従って、低速時のタイヤ上下動剛性K(ω)の絶対値及び位相は6Hzのときの伝達特性Fz/Xの絶対値及び位相を使用し、高速時のタイヤ上下動剛性K(ω)の絶対値及び位相は78Hzのときの伝達特性Fz/Xの絶対値及び位相を使用する。
【0039】
この低速時のタイヤ上下動剛性K(ω)の絶対値及び位相、並びに高速時のタイヤ上下動剛性K(ω)の絶対値及び位相は、パーソナルコンピュータ20内のRAMに記憶される。
【0040】
次に、たわみ変動(転がり半径変動)の求め方について説明する。
【0041】
転がり半径変動として、ラジアルランアウト(RRO)の測定値を使用してもよいが、測定位置により対応しないケースが発生する。
【0042】
そこで、転がり半径変動を直接測定する方法として、タイヤ1回転内の速度変動が表れる回転面上をレーザドップラ式の非接触速度計やロータリエンコーダによるパルス間の時間変動量からタイヤの回転速度変動量を測定して、転がり半径変動量を求める方法もある。しかし、精度良く、定型的に測定するのが難しいため、ここではTFVから算出したRROを用いている。
【0043】
具体的には低速時ではTFVと転がり半径変動とは略比例関係にあることから、タイヤ本数N=20本のTFV及びRROの実測値から次の(4)式で表される1次回帰式を求め、実測TFVから求めたRROを用いる。
【0044】
RRO=A・TFV(V)+B ・・・(4)
なお、(4)式でA、Bは定数であり、この1次回帰式は、パーソナルコンピュータ20内のRAMに記憶される。
【0045】
また、転がり半径変動として、ショルダー部のラジアルランアウトの平均値を使用してもよい。
【0046】
以下、上記のようにして低速時のタイヤ上下動剛性K(ω)の絶対値及び位相、高速時のタイヤ上下動剛性K(ω)の絶対値及び位相、並びにRROを求めるための1次回帰式が記憶されたRAMを備えたパーソナルコンピュータ20には、図1に示すように低速ユニフォミティマシン24が接続され、タイヤの高速ユニフォミティの高次成分予測装置が構成される。
【0047】
このタイヤの高速ユニフォミティの高次成分予測装置を使用して同一ロット内の他のタイヤについて高速RFVを予測する場合について説明すると、同一ロット内のタイヤを1本ずつ低速ユニフォミティマシン24に搭載し、低速RFV、及び上記(4)式に基づいたRROを測定する。
【0048】
測定された低速RFV及びRROは、RAMに記憶されている低速時のタイヤ上下動剛性K(ω)の絶対値及び位相と共に上記(3)式に代入されて振幅Fkn、及び位相βknが演算される。この振幅Fkn、及び位相βknは、RAMに記憶されている高速時のタイヤ上下動剛性K(ω)の絶対値及び位相と共に上記(2)式に代入されて、高速RFVの6次成分が予測される。
【0049】
そして、予測された高速RFVの6次成分と基準値とが比較され、高速RFVの6次成分が基準値より大きいタイヤは例えばラジアルランアウト(RRO)が修正されて出荷され、高速RFVの6次成分が基準値より小さいタイヤは適正に製造されたものとしてそのまま出荷される。
【0050】
以上のような方法で、高速時RFVの6次成分を予測すると、実測値と予測値とは図4のように相関係数が0.87となり、対応関係は良好であった。
【0051】
なお、上記では、高速時RFVを予測する例について説明したが、上記(2)及び(3)式のRFVに代えてTFVを使用すれば、高速時TFVを予測することができる。なお、TFVの予測に必要なタイヤ上下動剛性は、タイヤの前後軸力Fxとドラム面の上下入力変位Xより求める。
【0052】
すなわち、高速時TFVを予測する場合には、図1に示す突起乗り越し試験機において、タイヤに負荷を与えた状態でドラムに接触させ、クリートが取り付けられたドラムを回転させることにより、前後方向に入力を与え、その時のタイヤの前後軸力Fxを軸力センサ16Aで測定する。また、この時、ドラム面の上下変位Xを変位センサ16Bで測定する。そして、伝達特性Fx/Xを演算し、予測に必要な伝達特性Fx/Xの絶対値と位相とを求める。
【0053】
さらに、本発明はRFV及びTFVの6次成分以外の他の高次成分を予測する場合にも適用できるものである。図5は、RFVの2次成分〜9次成分、TFVの2次成分及び3次成分の各々を4つの予測法によって予測した場合の相関係数を比較して示す線図である。
【0054】
図5の予測法▲1▼は、転がり半径変動としてショルダー部のラジアルランアウトの平均値を使用したものであり、予測法▲2▼は、転がり半径変動として(4)式の一次回帰式から求めたRROを用いたものであり、実測FVは低速のRFVまたはTFVを用いたものであり、実測RROはショルダー部のラジアルランアウトの平均値を用いたものである。予測法▲1▼及び予測法▲2▼は、実測FV及び実測RROと比較しても対応が良く、特に予測法▲2▼は実測値が小さくなければ相関は非常に良いことが分かる(○印部分)。
(1)時間軸波形の予測
上記(2)式は速度Vと時間tとの関数として表わされているので、図6に示すような速度毎の時系列波形を生成して、CRTに表示することができる。図6に示す時系列波形は、1次から10次成分までを含み、速度10〜85km/hまでを示している。実測波形と予測波形は大まかな傾向は似ており、オーバーオール値(O.A.値)も近い値である。
(2)ある次数成分の速度依存性
また、図7のような次数成分毎に速度に対する振幅値で表すこともできる。推定の5次成分以上にみられる共振ピークの絶対値は、この共振ピークに対応する実測の速度における共振ピークの絶対値と略一致している。
【0055】
【発明の効果】
以上説明したように請求項1〜4の発明によれば、同一ロット内の1つのタイヤについての動剛性を用いて同一ロット内の他のタイヤの高速ユニフォミティである荷重の変動成分または前後力の変動成分を予測することができるので、短時間にかつ簡単に高速ユニフォミティ高次成分を予測することができる、という効果が得られる。
【図面の簡単な説明】
【図1】タイヤの高速ユニフォミティの高次成分予測装置の概略図である。
【図2】クリートの断面図である。
【図3】(1)は図1の予測装置によって測定された伝達特性の絶対値を示す線図、(2)は図1の予測装置によって測定された伝達特性の位相を示す線図である。
【図4】高速RFVの6次成分の実測値と予測値との相関を示す線図である。
【図5】高次成分の各々を4つの予測法によって予測した場合の相関係数を比較して示す線図である。
【図6】時間軸波形の予測値と実測値とを比較して示す線図である。
【図7】次数成分の予測値と実測値とを比較して示す線図である。
【符号の説明】
10 ドラム
12 クリート
16A 軸力センサ
16B 変位センサ[0001]
BACKGROUND OF THE INVENTION
The present invention predicts high-order components (for example, second-order or higher components) of high-speed uniformity when the tire is rolling at high speed based on low-speed uniformity when the tire is rolling at low speed. Tire high-speed uniformity high-order component prediction method and apparatus, and tire high-speed uniformity high-order component prediction method or apparatus, and tire high-speed uniformity high-order component high-order component prediction method It relates to a manufacturing method.
[0002]
[Prior art]
In recent years, cases where high-order components of high-speed uniformity of tires become a problem as vibration noise phenomenon are increasing. The problem due to the high-order component of the high-speed uniformity is considered to be conspicuous due to the reduction of the primary component of the tire uniformity.
[0003]
In addition, high-order components of high-speed uniformity are problematic in resonance phenomena with other characteristics of the tire (natural frequency, cavity resonance frequency, etc.) and depend on the natural frequency, cavity resonance frequency, etc. Generates abnormal sounds mainly composed of sounds and beat sounds.
[0004]
Tire uniformity is different depending on the speed, so it cannot be said that the low-speed rolling and the high-speed rolling are well-supported. Conventionally, the high-order components of the tire high-speed uniformity are different from the low-speed uniformity. The following methods are known as prediction methods.
(1) Method by regression equation This method measures high-speed uniformity and low-speed uniformity, creates a regression equation from the measured values, and associates the high-speed uniformity with the low-speed uniformity by the regression equation.
(2) Method based on statistical prediction method This method measures RFV (radial force variation) at low speed, RFV at high speed, and rolling radius fluctuation value using several tens of tires prepared in advance. To do. The first to fourth order components of high-speed TFV (tangential force variation) are predicted from constants obtained by statistical processing from these measured values, RFV at low speed and rolling radius fluctuation measured for each tire (USP 5,396) 438).
[0005]
[Problems to be solved by the invention]
The method based on the regression equation and the prediction formula based on statistical processing does not have a strict relationship between the low-speed uniformity and the high-speed uniformity. Therefore, the correspondence between the low-speed uniformity and the high-speed uniformity is not good. In addition, there is a problem that it is difficult to predict high-speed uniformity at an arbitrary speed and order.
[0006]
In addition, in the method based on the prediction formula by statistical processing, every time the lot contents are changed, it is necessary to prepare several tens of tires in advance and test at low speed and high speed, so it takes time. There is a problem.
[0007]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems. By using the dynamic stiffness at the time of rolling of one tire in the same lot, the high-order components of the high-speed uniformity in the same lot can be quickly converted into the low-speed uniformity. It is an object of the present invention to provide a method and apparatus for predicting a high-order component of a high-speed uniformity of a tire that can be predicted from the above, and a method for manufacturing a tire.
[0008]
In order to achieve the above object, the inventions of
[0009]
Further, the invention of
[0010]
According to the inventions of
[0011]
The step of selecting a tire using the fluctuation component of the load when the tire is rolling at high speed or the fluctuation component of the longitudinal force when the tire is rolling at high speed as described above. By providing, the invention of Claims 1-4 can be applied to the manufacturing method of a tire. In this screening process, the fluctuation component of the load when the predicted tire is rolling at high speed is compared with the reference value, and the tire whose fluctuation component of the load is larger than the reference value is shipped after correction. Tires whose fluctuation component is below the reference value are shipped as they are. Alternatively, in this sorting step, the fluctuation component of the longitudinal force when the predicted tire is rolling at high speed is compared with the reference value, and the tire whose fluctuation component of the longitudinal force is larger than the reference value is corrected. Tires that are shipped and have a fluctuation component of the longitudinal force below the reference value are shipped as they are.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0013]
Uniformities such as RFV (radial force variation) and TFV (tangential force variation) are fluctuations in the force acting on the tire shaft when the tire is rolled with a constant load radius. Taking RFV as an example of the load fluctuation component, RFV and load W have the following relationship.
[0014]
However,
W o : DC component of load W,
K o : longitudinal spring constant,
D v : deflection amount,
Kv : stiffness variation,
D o : DC component of deflection amount,
It is.
[0015]
Since K o · D o represents a load and K v · D v is almost 0, RFV can be considered as the sum of two components as shown in the following equation (1).
[0016]
RFV = K o · D v + K v · D o (1)
The first term K o · D v on the right side of the equation (1) indicates that the tire non-uniformity (radial run-out) in the circumference of the tire results in fluctuation of the deflection and the average longitudinal spring (spring constant K o ) on the tire circumference. The second term K v · D o is a component that causes axial force fluctuation because the spring constant of the longitudinal spring varies on the tire circumference even if there is no variation in deflection. Hereinafter, the former will be referred to as the Ko term and the latter as the Kv term.
Now, in the equation (1), when the speed is sufficiently low, each parameter may be considered to be static. In this case, the left side of the RFV can be easily measured, usually readily spring constant of the longitudinal spring of K o can measure, radial run-out of D V (RRO), and D o of the amount of deflection of the DC on the right side of the parameter It is a component, and the Kv stiffness variation takes much time to measure, so it is not directly measured.
[0017]
Therefore, the Kv term is obtained indirectly as the difference between the measured left side RFV of equation (1) and the right side Ko term. .
Next, let us consider how the Ko term and Kv term change depending on the speed when the rolling speed of the tire increases. First, each of these terms takes the form of a product of input fluctuation components (D V and K V ) and transfer gains (K O and D O ).
[0018]
The fluctuation component D V (radial run-out) as an input changes in the fluctuation cycle in inverse proportion to the speed, but it has been confirmed by experiments that the amplitude of the fluctuation component D V (radial run-out) is small.
[0019]
The stiffness fluctuation K V that is input changes in the fluctuation cycle in inverse proportion to the speed, and the speed dependence of the amplitude is unknown. However, here, it is assumed that the stiffness variation K V is simply a spring like a complete elastic body of a hook scattered on the tire circumference, and is assumed to have no speed change, that is, no speed dependency. .
[0020]
Although good as constant because the D O of the transfer gain is bending, the spring constant K O of longitudinal spring, when the frequency of the input D V increases by an integer multiple of tire rotation the primary with the speed, depending on the order Since it overlaps with the tire natural frequency region, it must be considered by moving to dynamic stiffness with frequency dependence.
[0021]
Assuming the above, RFV can be expressed in the form of a Fourier series as a function of velocity V and time t as follows:
[0022]
F n (V): the amplitude of the Fourier n th component of RFV in the velocity V ψ n (V): Phase R e Fourier n th component of RFV in the velocity V: tire rolling radius F kn: stiffness variation force component (Kv claim ) Fourier n-order component amplitude β kn : Fourier n-order component phase Δr n of stiffness fluctuation force component (Kv term): Fourier n-order component amplitude β n of deflection fluctuation component (radial runout): Deflection fluctuation component ( Radial unout) Fourier n-order component phase | K (nV / R e ) |: Tire vertical dynamic stiffness K (ω) at ω = nV / R e absolute value φ k (nV / R e ): tire vertical it is a phase at ω = nV / R e of dynamic stiffness K (omega).
[0023]
The first term on the right side of equation (2) is a stiffness fluctuation force component and corresponds to the Kv term in equation (1), and the second term corresponds to the Ko term.
[0024]
Here, since the RFV at low speed is set to V = V o (low speed) in the above equation (2), the RFV at low speed (for example, 60 rpm) is represented by the following expression.
[0025]
If low speed of the tire vertical dynamic stiffness K (omega) is obtained, (3) using the data [Delta] r n of the Fourier order analysis of the low-speed RFV and radial run out of the equation, no stiffness variation force of rate dependency by calculation The amplitude F kn and phase β kn of the Fourier order parameter of the component (Kv term) can be determined. If the tire vertical motion stiffness K (ω) at high speed is obtained, the RFV at high speed is predicted from the amplitude F kn and phase β kn determined as described above and the above equation (2). Can do. Slow RFV is used actually measured value measured at low Uniformity machine, data [Delta] r n of the Fourier order analysis of radial run-out, rolling radius variation is used will be described below.
[0026]
Next, how to determine the tire vertical motion stiffness K (ω) during rolling will be described.
[0027]
The tire vertical motion stiffness K (ω) during rolling is the same as the tire vertical motion stiffness during rolling for one tire in the same lot, assuming that there is no variation if the tire size and tire structure are the same. Use as a representative.
[0028]
As shown in FIG. 1, the tire vertical movement rigidity K (ω) during rolling includes a
[0029]
As shown in FIG. 2, the
[0030]
The sensor 16 includes an axial force sensor (three-direction axial force sensor) 16A configured by a load cell that detects the tire vertical axial force Fz, and a displacement sensor configured by a laser displacement meter that detects displacement of the tire shaft relative to the drum surface. 16B is provided.
[0031]
The
[0032]
When measuring the tire vertical motion stiffness K (ω) during rolling, the tire is brought into contact with the
[0033]
Then, the
[0034]
Since the cleat uses a cleat such as a long-cycle mound, it is possible to input data that approximates the input from the surface, and relatively stable data can be obtained even at high speeds.
[0035]
FIG. 3 (1) shows the absolute value of the transfer characteristic Fz / X of two tires in the same lot measured as described above, and FIG. 3 (2) shows the phase of the transfer characteristic Fz / X. is there.
[0036]
Obtain the absolute value and phase of the tire vertical motion stiffness K (ω) corresponding to the low speed and the absolute value and phase of the tire vertical motion stiffness K (ω) corresponding to the high speed from FIGS. 3 (1) and 3 (2). And In the present embodiment, an example will be described in which the 6th-order component of RFV is predicted with a low speed of 60 rpm and a high speed of 85 km / h.
[0037]
The absolute value and phase of the tire vertical motion stiffness K (ω) at low speed and high speed are expressed by the absolute value and phase of the frequency transfer characteristic Fz / X corresponding to the order of the higher-order component to be predicted. The frequency corresponding to the order of the higher order component is represented by the product of the order of the higher order component and the tire rotation frequency. Since the sixth-order component is predicted in the present embodiment, the corresponding frequency at low speed is 6 × tire rotation frequency (1 Hz) = 6 Hz, and the corresponding frequency at high speed is 6 × tire rotation frequency (13 Hz) = 78 Hz. become.
[0038]
Therefore, the absolute value and phase of the tire vertical motion stiffness K (ω) at low speed is the absolute value and phase of the transfer characteristic Fz / X at 6 Hz, and the absolute value of the tire vertical motion stiffness K (ω) at high speed is absolute. As the value and phase, the absolute value and phase of the transfer characteristic Fz / X at 78 Hz are used.
[0039]
The absolute value and phase of the tire vertical motion stiffness K (ω) at low speed and the absolute value and phase of the tire vertical motion stiffness K (ω) at high speed are stored in the RAM in the
[0040]
Next, how to obtain the deflection fluctuation (rolling radius fluctuation) will be described.
[0041]
As the rolling radius fluctuation, a measured value of radial run-out (RRO) may be used, but a case that does not correspond to the measurement position occurs.
[0042]
Therefore, as a method for directly measuring the rolling radius fluctuation, the rotational speed fluctuation amount of the tire is calculated from the time fluctuation amount between pulses by a laser Doppler type non-contact speedometer or a rotary encoder on the rotating surface where the speed fluctuation in one rotation of the tire appears. There is also a method of measuring the rolling radius to determine the amount of variation in rolling radius. However, since it is difficult to measure accurately and routinely, RRO calculated from TFV is used here.
[0043]
Specifically, at low speeds, TFV and rolling radius fluctuation are in a substantially proportional relationship, so the linear regression equation expressed by the following equation (4) from the measured values of TFV and RRO with N = 20 tires. And RRO obtained from the measured TFV is used.
[0044]
RRO = A · TFV (V) + B (4)
In Equation (4), A and B are constants, and this linear regression equation is stored in the RAM in the
[0045]
Moreover, you may use the average value of the radial run-out of a shoulder part as rolling radius fluctuation | variation.
[0046]
Hereinafter, as described above, the absolute value and phase of the tire vertical motion stiffness K (ω) at low speed, the absolute value and phase of the tire vertical motion stiffness K (ω) at high speed, and the linear regression for obtaining RRO. As shown in FIG. 1, a low-
[0047]
When the high-speed RFV is predicted for other tires in the same lot using the high-speed uniformity prediction apparatus for the tire, the tires in the same lot are mounted on the low-
[0048]
The measured low speed RFV and RRO are substituted into the above equation (3) together with the absolute value and phase of the tire vertical motion stiffness K (ω) at low speed stored in the RAM, and the amplitude F kn and the phase β kn are obtained. Calculated. The amplitude F kn and the phase β kn are substituted into the above equation (2) together with the absolute value and phase of the tire vertical motion stiffness K (ω) at high speed stored in the RAM, and the sixth-order component of the high-speed RFV. Is predicted.
[0049]
Then, the predicted 6th-order component of the high-speed RFV is compared with the reference value, and the tire whose 6th-order component of the high-speed RFV is larger than the reference value is shipped with the radial run-out (RRO) corrected, for example, and the 6th-order of the high-speed RFV Tires whose components are less than the reference value are shipped as they are, as properly manufactured.
[0050]
When the sixth-order component of the RFV at high speed is predicted by the method as described above, the correlation between the actually measured value and the predicted value is 0.87 as shown in FIG. 4, and the correspondence is good.
[0051]
In addition, although the example which estimates RFV at high speed was demonstrated above, it can predict TFV at high speed if TFV is used instead of RFV of said Formula (2) and (3). It should be noted that the tire vertical motion rigidity necessary for the prediction of TFV is obtained from the longitudinal axial force Fx of the tire and the vertical input displacement X of the drum surface.
[0052]
That is, when predicting TFV at high speed, in the projection overpass test machine shown in FIG. 1, the tire is brought into contact with the drum while being loaded, and the drum to which the cleat is attached is rotated in the front-rear direction. An input is given, and the longitudinal axial force Fx of the tire at that time is measured by the
[0053]
Furthermore, the present invention can be applied to the case of predicting other high-order components other than the sixth-order components of RFV and TFV. FIG. 5 is a diagram showing a comparison of correlation coefficients when each of the RFV second-order to ninth-order components, TFV second-order components, and third-order components are predicted by four prediction methods.
[0054]
The prediction method (1) in FIG. 5 uses the average value of the radial runout of the shoulder as the rolling radius variation, and the prediction method (2) is obtained from the linear regression equation of the equation (4) as the rolling radius variation. The measured FV is a low-speed RFV or TFV, and the measured RRO is an average value of the radial run-out of the shoulder portion. The prediction methods {circle around (1)} and prediction methods {circle around (2)} can be compared with the actual measurement FV and the actual measurement RRO, and in particular, the prediction method {circle around (2)} shows that the correlation is very good unless the actual measurement value is small. Marked part).
(1) Prediction of time axis waveform Since the above equation (2) is expressed as a function of speed V and time t, a time series waveform for each speed as shown in FIG. 6 is generated and displayed on the CRT. can do. The time-series waveform shown in FIG. 6 includes the first to tenth components, and shows a speed of 10 to 85 km / h. The measured waveform and the predicted waveform are similar in general tendency, and the overall value (OA value) is also a close value.
(2) Dependency of a certain order component on the speed In addition, each order component as shown in FIG. The absolute value of the resonance peak observed in the estimated fifth-order component or higher is substantially the same as the absolute value of the resonance peak at the actually measured speed corresponding to this resonance peak.
[0055]
【The invention's effect】
As described above, according to the first to fourth aspects of the present invention, the dynamic component of one tire in the same lot is used to determine the load fluctuation component or the longitudinal force that is the high-speed uniformity of the other tires in the same lot. Since the fluctuation component can be predicted, it is possible to easily predict the high-order uniformity higher-order component in a short time.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a high-order component prediction device for high-speed tire uniformity.
FIG. 2 is a cross-sectional view of the cleat.
3 is a diagram showing an absolute value of a transfer characteristic measured by the prediction device of FIG. 1, and (2) is a diagram showing a phase of the transfer characteristic measured by the prediction device of FIG. .
FIG. 4 is a diagram showing a correlation between an actual measurement value and a predicted value of a sixth-order component of high-speed RFV.
FIG. 5 is a diagram showing a comparison of correlation coefficients when high-order components are predicted by four prediction methods.
FIG. 6 is a diagram showing a comparison between a predicted value of a time axis waveform and an actual measurement value.
FIG. 7 is a diagram showing a comparison between a predicted value of an order component and an actual measurement value.
[Explanation of symbols]
10
Claims (6)
前記同一ロット内の各タイヤ毎に低速で転動しているときの荷重の変動成分、及び転がり半径変動を測定し、
前記低速時動剛性、前記高速時動剛性、前記荷重の変動成分、及び前記転がり半径変動に基づいて、前記高次成分としてタイヤが高速で転動しているときの荷重の変動成分を予測する
タイヤの高速ユニフォミティの高次成分予測方法。For one tire in the same lot, when the tire is rolling at low speed, and the dynamic stiffness at low speed at a frequency corresponding to the order of the higher order component to be predicted when the tire is rolling at low speed Measure high-speed dynamic stiffness at a frequency corresponding to the order,
Measure load fluctuation component and rolling radius fluctuation when rolling at low speed for each tire in the same lot,
Based on the low-speed dynamic stiffness, the high-speed dynamic stiffness, the load fluctuation component, and the rolling radius fluctuation, the load fluctuation component when the tire is rolling at high speed is predicted as the higher-order component. High-order component prediction method for high-speed tire uniformity.
前記同一ロット内の各タイヤ毎に低速で転動しているときの荷重の変動成分、及び転がり半径変動を測定する第2の測定手段と、
前記低速時動剛性、前記高速時動剛性、前記荷重の変動成分、及び前記転がり半径変動に基づいて、前記高次成分としてタイヤが高速で転動しているときの荷重の変動成分を予測する予測手段と、
を備えたタイヤの高速ユニフォミティの高次成分予測装置。For one tire in the same lot, when the tire is rolling at low speed, and the dynamic stiffness at low speed at a frequency corresponding to the order of the higher order component to be predicted when the tire is rolling at low speed First measuring means for measuring high-speed dynamic stiffness at a frequency corresponding to the order;
A second measuring means for measuring a load fluctuation component when rolling at a low speed for each tire in the same lot, and a rolling radius fluctuation;
Based on the low-speed dynamic stiffness, the high-speed dynamic stiffness, the load fluctuation component, and the rolling radius fluctuation, the load fluctuation component when the tire is rolling at high speed is predicted as the higher-order component. Prediction means;
High-order component prediction device for high-speed tire uniformity.
前記同一ロット内の各タイヤ毎に低速で転動しているときの前後力の変動成分、及び転がり半径変動を測定し、
前記低速時動剛性、前記高速時動剛性、前記前後力の変動成分、及び前記転がり半径変動に基づいて、前記高次成分としてタイヤが高速で転動しているときの前後力の変動成分を予測する
タイヤの高速ユニフォミティの高次成分予測方法。For one tire in the same lot, when the tire is rolling at low speed, and the dynamic stiffness at low speed at a frequency corresponding to the order of the higher order component to be predicted when the tire is rolling at low speed Measure high-speed dynamic stiffness at a frequency corresponding to the order,
Measure the fluctuation component of the longitudinal force when rolling at low speed for each tire in the same lot, and the rolling radius fluctuation,
Based on the low-speed dynamic stiffness, the high-speed dynamic stiffness, the longitudinal force fluctuation component, and the rolling radius fluctuation, the higher-order component is a fluctuation component of the longitudinal force when the tire is rolling at high speed. High-order component prediction method for high-speed uniformity of tires to be predicted.
前記同一ロット内の各タイヤ毎に低速で転動しているときの前後力の変動成分、及び転がり半径変動を測定する第2の測定手段と、
前記低速時動剛性、前記高速時動剛性、前記前後力の変動成分、及び前記転がり半径変動に基づいて、前記高次成分としてタイヤが高速で転動しているときの前後力の変動成分を予測する予測手段と、
を備えたタイヤの高速ユニフォミティの高次成分予測装置。For one tire in the same lot, when the tire is rolling at low speed, and the dynamic stiffness at low speed at a frequency corresponding to the order of the higher order component to be predicted when the tire is rolling at low speed First measuring means for measuring high-speed dynamic stiffness at a frequency corresponding to the order;
A second measuring means for measuring the fluctuation component of the longitudinal force when rolling at low speed for each tire in the same lot, and the rolling radius fluctuation;
Based on the low-speed dynamic stiffness, the high-speed dynamic stiffness, the longitudinal force fluctuation component, and the rolling radius fluctuation, the higher-order component is a fluctuation component of the longitudinal force when the tire is rolling at high speed. Prediction means to predict;
High-order component prediction device for high-speed tire uniformity.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15621298A JP3788866B2 (en) | 1998-06-04 | 1998-06-04 | High-order component prediction method and apparatus for high-speed tire uniformity, and tire manufacturing method |
US09/267,653 US6065331A (en) | 1998-06-04 | 1999-03-15 | Method and apparatus for predicting a higher-order component of high speed uniformity of a tire, and method of manufacturing tires |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15621298A JP3788866B2 (en) | 1998-06-04 | 1998-06-04 | High-order component prediction method and apparatus for high-speed tire uniformity, and tire manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11352024A JPH11352024A (en) | 1999-12-24 |
JP3788866B2 true JP3788866B2 (en) | 2006-06-21 |
Family
ID=15622819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15621298A Expired - Fee Related JP3788866B2 (en) | 1998-06-04 | 1998-06-04 | High-order component prediction method and apparatus for high-speed tire uniformity, and tire manufacturing method |
Country Status (2)
Country | Link |
---|---|
US (1) | US6065331A (en) |
JP (1) | JP3788866B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109900353A (en) * | 2017-12-07 | 2019-06-18 | 东洋橡胶工业株式会社 | Tire noise experimental rig and method |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4160709B2 (en) * | 2000-02-17 | 2008-10-08 | 株式会社ブリヂストン | High-speed uniformity measuring device |
JP4369026B2 (en) * | 2000-08-10 | 2009-11-18 | 東洋ゴム工業株式会社 | High speed uniformity measurement method and apparatus for tire, and tire selection method |
JP4652585B2 (en) * | 2001-02-07 | 2011-03-16 | 東洋ゴム工業株式会社 | Assembly method of tire and wheel |
US6609074B2 (en) * | 2001-03-27 | 2003-08-19 | The Goodyear Tire & Rubber Company | Tire uniformity prediction using balance and low speed uniformity data |
US6615144B2 (en) | 2001-05-07 | 2003-09-02 | The Goodyear Tire & Rubber Company | Tire uniformity prediction using curve fitting |
US6842720B2 (en) * | 2001-06-01 | 2005-01-11 | Michelin Recherche Technique S.A. | Method of analyzing and controlling the uniformity of tires |
EP1435516B1 (en) * | 2001-10-11 | 2013-04-03 | Bridgestone Corporation | Radial force variation prediction method |
US6584836B1 (en) | 2001-12-10 | 2003-07-01 | The Goodyear Tire & Rubber Company | Bias method for identifying and removing machine contribution to test data |
US6705156B2 (en) * | 2002-05-02 | 2004-03-16 | The Goodyear Tire & Rubber Company | Cross-correlation method for identification and removal of machine contribution from tire uniformity measurements |
US20070000594A1 (en) * | 2005-06-30 | 2007-01-04 | Mawby William D | Tire manufacturing method for improving the uniformity of a tire |
US20040020583A1 (en) * | 2002-08-01 | 2004-02-05 | Fang Zhu | Method for controlling high speed uniformity in tires |
JP4072097B2 (en) * | 2003-05-29 | 2008-04-02 | 住友ゴム工業株式会社 | Manufacturing method of high-speed FV reduction tire |
JP2004361280A (en) * | 2003-06-05 | 2004-12-24 | Advics:Kk | Standing wave detector |
JP4113088B2 (en) * | 2003-10-17 | 2008-07-02 | 東洋ゴム工業株式会社 | High-speed tire uniformity estimation method and tire selection method |
US7082816B2 (en) * | 2003-10-20 | 2006-08-01 | Michelin Recherche Et Technique S.A. | Prediction and control of mass unbalance and high speed uniformity |
WO2005051640A1 (en) * | 2003-11-21 | 2005-06-09 | Societe De Technologie Michelin | Tire manufacturing method for improving the uniformity of a tire |
WO2005051638A1 (en) * | 2003-11-21 | 2005-06-09 | Societe De Technologie Michelin | Tire manufacturing method for improving the uniformity of a tire |
US20090260743A1 (en) * | 2003-11-21 | 2009-10-22 | William David Mawby | Tire manufacturing method for improving the uniformity of a tire |
US7213451B2 (en) * | 2004-05-26 | 2007-05-08 | Michelin Rechercheqet Technique, S.A. | Tire uniformity through compensation between radial run out and stiffness variation |
EP1873486B1 (en) * | 2005-04-22 | 2018-08-15 | Bridgestone Corporation | Method and device for detecting abnormality in outer shape of tire side section |
US7909078B2 (en) * | 2005-12-15 | 2011-03-22 | The Goodyear Tire & Rubber Company | Method for measuring green tire components |
US20070144657A1 (en) * | 2005-12-28 | 2007-06-28 | Julien Flament | Green tire evolution for high speed uniformity |
KR100784277B1 (en) * | 2006-11-07 | 2007-12-12 | 한국타이어 주식회사 | Measuring method for dynamic rolling radius and effective radius variation of tire during tire rolling under a load |
JP5080882B2 (en) * | 2007-06-27 | 2012-11-21 | 住友ゴム工業株式会社 | Estimation method of high-speed tire uniformity |
US7841232B2 (en) * | 2008-10-02 | 2010-11-30 | Ford Global Technologies, Llc | Method of dynamically measuring stiffness of a wheel and tire assembly |
US8011235B2 (en) * | 2009-04-16 | 2011-09-06 | Bridgestone Americas Tire Operations, Llc | Apparatus and method for measuring local tire stiffness |
JP4929359B2 (en) * | 2010-01-07 | 2012-05-09 | 住友ゴム工業株式会社 | Raw tire production equipment monitoring system |
US9569563B2 (en) * | 2010-06-14 | 2017-02-14 | Michelin Recherche Et Technique S.A. | Method for prediction and control of harmonic components of tire uniformity parameters |
US9029779B2 (en) | 2010-06-15 | 2015-05-12 | Michelin Recherche Et Technique S.A. | Tire surface anomaly detection |
WO2012074527A1 (en) * | 2010-12-02 | 2012-06-07 | Michelin Recherche Et Technique, S.A. | Method for prediction and control of tire uniformity parameters from crown thickness variation |
JP5871778B2 (en) | 2012-11-12 | 2016-03-01 | 株式会社神戸製鋼所 | Correction method of tire uniformity waveform |
JP6805777B2 (en) * | 2016-12-09 | 2020-12-23 | 横浜ゴム株式会社 | Data processing method, tire evaluation method, vehicle vibration ride comfort evaluation method, and data processing device |
CN106871791A (en) * | 2017-01-17 | 2017-06-20 | 武汉工程大学 | A kind of detection means of tire |
JP7011453B2 (en) * | 2017-12-07 | 2022-01-26 | Toyo Tire株式会社 | Tire noise test equipment and method |
JP7077900B2 (en) * | 2018-09-28 | 2022-05-31 | 住友ゴム工業株式会社 | How to estimate high-speed uniformity of tires |
JP7188010B2 (en) * | 2018-11-22 | 2022-12-13 | 住友ゴム工業株式会社 | High Speed Uniformity Estimation Method for Tires |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3862570A (en) * | 1973-01-26 | 1975-01-28 | Ongaro Dynamics | Tire symmetry measuring method and system |
US4856324A (en) * | 1988-03-21 | 1989-08-15 | Potts Gerald R | High speed tire testing device with compensated linkages |
CA2023538C (en) * | 1990-05-17 | 2000-01-11 | Jean Francois Leon Fontaine | Tread for a pneumatic tire |
NL9001989A (en) * | 1990-09-10 | 1992-04-01 | Analogic Eng Bv | DEVICE FOR TESTING THE WHEEL SUSPENSION OF A VEHICLE. |
US5396438A (en) * | 1993-09-29 | 1995-03-07 | General Motors Corporation | Tire manufacturing method |
-
1998
- 1998-06-04 JP JP15621298A patent/JP3788866B2/en not_active Expired - Fee Related
-
1999
- 1999-03-15 US US09/267,653 patent/US6065331A/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109900353A (en) * | 2017-12-07 | 2019-06-18 | 东洋橡胶工业株式会社 | Tire noise experimental rig and method |
Also Published As
Publication number | Publication date |
---|---|
JPH11352024A (en) | 1999-12-24 |
US6065331A (en) | 2000-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3788866B2 (en) | High-order component prediction method and apparatus for high-speed tire uniformity, and tire manufacturing method | |
US9569563B2 (en) | Method for prediction and control of harmonic components of tire uniformity parameters | |
RU2379646C2 (en) | Method of improving homogeneity of tyre by means of mutual compensation of radial motion variation and rigidity variation | |
JP5654534B2 (en) | How to predict and control mass imbalance and high speed uniformity | |
US7822563B2 (en) | Method and device for calculating magnitude of wheel-generated cornering force | |
US20070100576A1 (en) | Radial force variation prediction method, tangential force variation prediction method, radial run out prediction method, tire angle acceleration fluctuation prediction method, radial run out measurement apparatus, radial run out estimation method, information acquisition method, and tire peripheral surface condition calculation apparatus | |
JP2007508978A5 (en) | ||
US20090118891A1 (en) | Method of calculating deflection of rotating tire, method of accumulating data of rotating tire, method of calculating contact length of rotating tire | |
KR101796912B1 (en) | Efficient high speed uniformity measurements using speed ramps | |
US11060941B2 (en) | Method for determining an unbalance of a shaft-elastic rotor with reference to the outward deflection | |
JP4119585B2 (en) | High-speed tire uniformity measurement method | |
JP2001141615A (en) | Method for estimating high speed uniformity of tire and method for sorting tire | |
US4702103A (en) | Method of quality grading in uniformity tests of rotors, in particular of automobile tires | |
US20090249872A1 (en) | Dynamic balancing apparatus and method using linear time varying angular velocity model | |
US20200355577A1 (en) | Method for correcting tire uniformity data and tire uniformity machine | |
JP2020038158A (en) | Tire vibration characteristic evaluation method | |
JP7188010B2 (en) | High Speed Uniformity Estimation Method for Tires | |
JPH07270229A (en) | Rotary machine test device | |
JP7394016B2 (en) | Unbalance estimation method for rotating machinery, condition monitoring and diagnosis device for rotating machinery | |
Nordeen et al. | Factors influencing the measurement of tire uniformity | |
JP2006242581A (en) | Tire uniformity correction method | |
JP3135472B2 (en) | Wheel speed detector | |
Castellini et al. | How to measure actual tire shape in the rolling condition using Scanning LDV | |
Hofelt Jr et al. | High-Speed Uniformity Machines and Nature of Tire Force Variations | |
Schwartz | A novel measure method for high-speed tire vibrations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050530 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060324 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |