JP3783756B2 - Desalination method - Google Patents
Desalination method Download PDFInfo
- Publication number
- JP3783756B2 JP3783756B2 JP00592799A JP592799A JP3783756B2 JP 3783756 B2 JP3783756 B2 JP 3783756B2 JP 00592799 A JP00592799 A JP 00592799A JP 592799 A JP592799 A JP 592799A JP 3783756 B2 JP3783756 B2 JP 3783756B2
- Authority
- JP
- Japan
- Prior art keywords
- sucrose
- unit packed
- fraction
- desalting
- chromatographic separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Treatment Of Liquids With Adsorbents In General (AREA)
- Treatment Of Water By Ion Exchange (AREA)
Description
【0001】
【発明が属する技術分野】
本発明は、煎糖前の甜菜糖液の脱塩方法に関するものである。ここで、「煎糖前の甜菜糖液」とは、第1回目の煎糖前の甜菜糖液は勿論のこと、煎糖後の残液(即ち、糖蜜)を更に煎糖する場合の煎糖前の甜菜糖液(糖蜜等)をも意味し、本発明による脱塩工程の後段で煎糖工程の前に必要に応じてイオン交換工程や濃縮工程を行う場合を含み、また、必ずしも後に煎糖工程を行う場合のみに限られるものではない。
【0002】
【従来の技術】
従来の甜菜からの蔗糖(甜菜糖)の精製方法には種々の方法があり、代表的には次のような方法があり、それぞれ得失がある。
【0003】
第1の方法としては、甜菜の裁断、抽出、炭酸飽充(抽出して得た原汁に石灰乳を加え、二酸化炭素を吹き込んで炭酸カルシウムの沈澱を生成する際、この沈澱に不純物を吸着させて除去する凝集沈澱)、濾過、軟化(ナトリウム形陽イオン交換樹脂によるCa、Mg等の硬度成分の除去)、濃縮、煎糖(濃縮液からの蔗糖結晶の晶出)からなる方法がある。この方法では、軟化は行うが脱塩を行わない点で簡略であるが、煎糖の対象である蔗糖含有濃縮液の蔗糖純度が不充分で、煎糖時の蔗糖結晶の晶出が悪く、糖蜜の量が多くなるという欠点がある。
【0004】
第2の方法として、上記第1の方法と同様に甜菜の裁断、抽出、炭酸飽充、濾過を行った後に、イオン交換処理による軟化・脱塩(Ca、Mg等の硬度成分及びそれ以外の塩成分の除去)を行い、濃縮、煎糖するという方法がある。この方法におけるイオン交換処理としては、強酸性陽イオン交換樹脂、弱塩基性陰イオン交換樹脂、強塩基性陰イオン交換樹脂、弱酸性陽イオン交換樹脂の4種のイオン交換樹脂をこの順番で用いる方法が最も優れている。この方法は、上記第1の方法の欠点は無いが、イオン交換処理の対象である蔗糖含有濾液中の塩類が多いためイオン交換樹脂単位量当たりの処理量が少なく、イオン交換樹脂の再生が頻繁に行われ、多量の再生剤を使うことと再生廃液の処理にも色々と手間がかかる欠点がある。また、上記のように塩類が多いので、イオン交換処理の第1段階では陽イオン交換樹脂の水素イオン形(H形)による蔗糖の分解を避けるために、上記の蔗糖含有濾液を一旦10℃以下に冷却して上記H形陽イオン交換樹脂で処理(冷脱塩)し、イオン交換処理の第2段階では仕上げ(脱塩、脱色、脱臭等の仕上げ)のために温度を50〜55℃に上げなければならず、煩雑さとエネルギーコストが大きいという欠点もある。
【0005】
また、最近提案された第3の方法として、上記二法と同様に抽出後、炭酸飽充を行わず、濾過、軟化、濃縮、クロマト分離(イオン排除法)により脱塩を行い、濃縮、煎糖を行う方法がある(特表平9−506513号公報)。この方法は、上記第2の方法の欠点は無いが、クロマト分離装置の詰まりや圧力損失の増大を避けるために濾過が必須であり(この特許文献中には濾過の詳細は記載されていない)、炭酸飽充等の凝集沈澱工程が無いので、植物由来の粘りの強いガム質と呼ばれる物質やコロイド物質の除去ができず、濾過が難しく、濾過工程に大きなコストが掛かること、また、濾過で除去できないコロイド物質によりクロマト分離での圧力損失が大きくなり、甚だしい場合にはクロマト分離装置で通液不能になること、更には、クロマト分離操作での圧力損失を下げるためにはクロマト分離の対象である原液(クロマト原液)の供給速度を低減せざるをえないこと、脱塩が不充分であるため上記の第2の方法ほど高品質の蔗糖結晶が得られないことなどの欠点がある。
【0006】
このようなイオン交換処理やクロマト分離による煎糖前の甜菜糖液の脱塩は、その後の煎糖によって晶出される蔗糖結晶の品質向上を狙って行われる。また、煎糖後の糖蜜に対してイオン交換やクロマト分離による脱塩、濃縮、煎糖を繰り返して蔗糖を可能な限り回収することも行われる。
【0007】
【発明が解決しようとする課題】
上記第2の方法の様な従来のイオン交換法による脱塩に用いるイオン交換樹脂は、或る時点で再生工程が必要となる。この再生薬品、その後の洗浄工程に用いる洗浄水(溶離水)は、脱塩処理コストを押し上げる問題がある。また、この再生・洗浄工程の際に排出される再生廃液の処理も、色々と手間がかかり、製品コストの上昇にも繋がる。一方、上記第3の方法の様に脱塩をクロマト分離で行う場合、高い分離性能を発揮させるために処理量が限られており、そのため装置を大きくせざるを得ず、その建設コストが高くつく問題がある。また、クロマト分離では、目的成分である蔗糖が溶離水で希釈され、後段の濃縮工程の運転コストを増大させる問題もある。さらにまた、分離に伴う目的成分(蔗糖)の損失も問題となる。
【0008】
本発明は、上記のような従来技術の問題点に鑑みてなされたもので、煎糖前の甜菜糖液の脱塩を効率的に行う脱塩方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者等は上記問題を解決するために、擬似移動層式クロマト分離による煎糖前の甜菜糖液の脱塩について種々検討している内に、高い分離性能を維持し且つ回収目的成分である蔗糖の損失を極力抑えると共に溶離水使用量を極力抑えつつ、蔗糖濃度が極力高い状態で蔗糖画分を得ることができ、然も、処理量を従来の擬似移動層式クロマト分離で一般的であった量のほぼ倍量以上に高めることができる運転条件を見いだした。
【0010】
即ち、本発明者等は、充填剤(分離剤)として平均粒径300〜500μm且つ均一係数1.2以下の塩形強酸性陽イオン交換樹脂を用い且つ単位充填塔数の半数以上の循環ポンプを用いた擬似移動層式クロマト分離装置で煎糖前の甜菜糖液の脱塩を行うに当たって、原液を溶離水供給量に対して1/2.5〜1/3.5の容量比で供給すること、親和性の弱い成分の画分抜き出し量に対する親和性の強い成分の画分抜き出し量の容量比を0.5/1〜1.2/1の範囲に設定して両画分の抜き出しを行うこと、循環系内の最も遅い流速の部分での循環流量を充填剤(分離剤)量に対して1時間当たり25〜80容量%に設定して循環を行うことによって、目的成分である蔗糖の損失を0.7%以下、且つ、処理量(全充填剤量に対する1時間当たりの処理量)を7容量%以上、目的成分の希釈率(クロマト分離された蔗糖画分の蔗糖濃度をクロマト分離に供した甜菜糖液の蔗糖濃度で割った値)を2倍未満とすることができることを知見し、本発明を完成するに至った。
【0011】
即ち、本発明は、充填剤(分離剤)として平均粒径300〜500μm且つ均一係数1.2以下の塩形強酸性陽イオン交換樹脂が充填された複数の単位充填塔を接続して無端直列の循環流路を形成し、且つ、各単位充填塔にはそれぞれ原液供給口、溶離水供給口、該充填剤に対して親和性の強い成分(以下、「強親和性成分」と言う)の画分抜き出し口、該充填剤に対して親和性の弱い成分(以下、「弱親和性成分」と言う)の画分抜き出し口を備えた擬似移動層式クロマト分離装置を用いて煎糖前の甜菜糖液(原液)の脱塩を行う脱塩工程において、単位充填塔数の半数以上の循環ポンプを用い、原液供給量/溶離水供給量の容量比を1/2.5〜1/3.5とし、強親和性成分の画分抜き出し量/弱親和性成分の画分抜き出し量の容量比を0.5/1〜1.2/1とし、循環系内における最も流速の遅い部分での循環流量を充填剤量に対して1時間当たり25〜80容量%として、前記甜菜糖液の脱塩を行うことを特徴とする脱塩方法を提供するものである。
【0012】
以下、本発明を更に詳細に説明する。弱親和性成分の画分抜き出し量に対する強親和性成分の画分抜き出し量の容量比を0.5/1〜1.2/1とすることにより、溶離水使用量を減らし且つ蔗糖回収を高回収率で行うことができることを見出した。即ち、クロマト分離によれば、分離物(原液)が溶離水で希釈されることは自明の理であり、後段に控える蔗糖画分の濃縮工程への負荷を考えると、希釈率は低ければ低いほど良いが、その一方で、低い希釈率では分離精度(塩類等の非糖分の分離の程度)を犠牲にしなければならない。本発明者等は、溶離水使用量を極力減らす方向で鋭意検討し、上記の適切な両画分抜き出し量の容量比を見出すに至った。この両画分抜き出し量容量比を採ることにより、上記の希釈率と分離精度との矛盾を解決することができる。即ち、分離性能を高く維持しつつ、原液供給量/溶離水供給量の容量比=1/2.5〜1/3.5で表されるレベルに溶離水使用量を減らすことができるのである。
【0013】
また、高負荷(大処理量)運転を行おうとすると、循環系内における循環流量を上げなければならないが、高濃度且つ高粘度で供給されることの多い甜菜糖液(原液)のクロマト分離処理においては、増大できる循環流量には限界があり、この増大は分離性能にも悪影響する。だからと言って、循環流量を従来通り小さくしたのでは、分離は良好でも所定の処理量を確保するためには装置の規模を大きくしなければならない。この循環流量に最も影響するのは、循環系内における最も流速の遅い部分(通常は親和性の弱い成分の画分の抜き出し位置の直ぐ下流の部分で、この抜き出し位置の断続的な切り換えと共に「最も流速の遅い部分」はシフトする)での循環流量である。上記の原液供給量/溶離水供給量容量比及び両画分抜き出し量容量比で循環系内における最も流速の遅い部分での循環流量を充填剤量に対して1時間当たり25容量%以上に設定することにより、分離性能、処理量、溶離水使用量、希釈率のバランスを至適に取ることができることを見出した。また、圧力損失、装置の耐圧性、分離性能の観点からは、循環系内における最も流速の遅い部分での循環流量は、充填剤量に対して1時間当たり80容量%以下であることが必要である。
【0014】
また、本発明者等は、このような本発明の脱塩方法を行うに当たって、一般的な擬似移動層式クロマト分離装置について、系内圧力損失を極力抑え且つ所定の分離性能を維持する観点から、設計上の必要条件を併せて見出した。即ち、循環ポンプを少なくとも単位充填塔数の半数以上設けることが必要で、また、充填剤としては、平均粒径300〜500μm且つ均一係数1.2以下のナトリウム形、カリウム形等の塩形強酸性陽イオン交換樹脂を用いることが必要である。そして、このような装置の循環系内での各時点での最も流速の遅い部分での循環流量を充填剤量に対して1時間当たり25〜80容量%にすることで、蔗糖製造コストに見合う煎糖前の甜菜糖液の効率的脱塩処理を可能とする。同様の観点から、各単位充填塔内の単位充填層高は、0.8〜3メートルの範囲にあることが好ましい。
【0015】
擬似移動層式クロマト分離装置において循環ポンプ台数を減らすことは、装置建設コスト削減のためには好ましいことであるが、余り少なくすると循環ポンプ出口での圧力損失が増大し、望ましい循環流量で装置での通液ができなくなる場合も生じかねず、また、高い液圧を出すために循環ポンプや単位充填塔等も耐圧仕様にせねばならず、逆に装置建設コストが割高になる。このような観点から、循環ポンプ台数を単位充填塔数の半数以上設ければ、望ましい通液流量範囲で循環流が流れなくなる様なことはない。
【0016】
また、充填剤(分離剤)としては、高分離性能を確保し、蔗糖の転化を防止する点からナトリウム形やカリウム形等の塩形強酸性陽イオン交換樹脂を用いる。H形の強酸性陽イオン交換樹脂を用いると、循環系内の循環液が酸性となり、また、蔗糖の転化が生じ、転化糖は煎糖で晶出しないことから、そのまま糖分ロスとなるので不都合である。ナトリウム形等の塩形の強酸性陽イオン交換樹脂を用いた場合にしても、陽イオン交換樹脂のイオン形は、クロマト分離の運転の進行に伴って、供給される原液(煎糖前の甜菜糖液)中に含まれる各種イオン(原液が軟化処理後の液なので、殆どが一価イオン)と平衡なイオン形組成に到達する方向に変化する。
【0017】
循環系内の所望の循環流量を確保する上で、充填剤としての上記陽イオン交換樹脂の平均粒径と均一係数が関係し、例えば、陽イオン交換樹脂の均一係数が1.2を越えたり、その平均粒径300μm以下だと(例えば、ローム・アンド・ハース社製強酸性陽イオン交換樹脂アンバーライトCG−6000のナトリウム形)、分離精度は良好としても、圧力損失が大きくなって、目標とする処理量を確保するだけの原液(煎糖前の甜菜糖液)量を流すことが難しく、目標とする処理量を確保するためには装置を耐圧仕様や大型化することになる。また、その平均粒径が500μmを越えると、分離精度が悪くなり、不都合である。一方、平均粒径300〜500μm且つ均一係数1.2以下の塩形強酸性陽イオン交換樹脂(例えば、ローム・アンド・ハース社製強酸性陽イオン交換樹脂アンバーライトCR−1320のナトリウム形)を用いると、所定の分離精度を維持しつつ、圧力損失も小さく、効率的なクロマト分離を実施できる。
【0018】
原液供給量/溶離水供給量の容量比を1/2.5〜1/3.5とし、強親和性成分の画分抜き出し量/弱親和性成分の画分抜き出し量の容量比を0.5/1〜1.2/1とし、循環系内における最も流速の遅い部分での循環流量を充填剤量に対して1時間当たり25〜80容量%とする条件でクロマト分離装置を運転しても、単位充填層高が3メートルを越えると、分離精度は向上するが、充填樹脂の自重で下方の樹脂が押し潰される傾向が生じ、通液に伴う各単位充填塔内の圧力損失が増大して所望の系内循環流量を確保するのが難しくなると共に、単位充填塔や循環ポンプ等を耐圧仕様にしなければならず、装置にかかるコストの増大を招き易い。また、単位充填層高を0.8メートル未満とすると、通液に伴う各単位充填塔内の圧力損失は小さくなるが、所望の蔗糖純度を確保するために必然的に単位充填塔(単位充填層)数を増やすことになり、循環ポンプ台数、各供給口数、各抜き出し口数も増やすことになって、装置の複雑化と建設コスト高を招き易い。なお、所望の蔗糖純度を確保するためには、全単位充填塔内の単位充填層高の合計は、8〜24mが好ましく、10〜20mが更に好ましく、上記のような全単位充填塔内の単位充填層高の所望の合計から単位充填塔(単位充填層)の数を決めることができる。
【0019】
なお、本発明におけるクロマト分離操作温度は、細菌類の発生を防止するため及び循環液(特に、蔗糖含有液部分)の粘性を低く保つために60〜90℃とするのが好ましく、75〜85℃とするのがより好ましい。この温度が高すぎると、充填剤である陽イオン交換樹脂が分解する恐れが有る。また、クロマト分離操作を行う際、循環系内の循環液のpH値が下がると蔗糖の一部が転化して果糖と葡萄糖になり易く、pH値が高くなりすぎると蔗糖の異性化が生じ易いので、溶離水のpHを8〜11とするのも好ましい。
【0020】
本発明の方法により脱塩することができる原液(煎糖前の甜菜糖液)としては、例えば、上述の従来の甜菜糖の精製方法である上記第1の方法の軟化後の甜菜糖液、第2の方法の炭酸飽充、濾過後の甜菜糖液、第3の方法のクロマト分離工程に供する甜菜糖液などを挙げることができる。また、本出願人は上記の第1〜3の方法の欠点を解消する「蔗糖の精製方法」を提案しているが(特開平10−42899号公報)、この方法のクロマト分離工程に供する甜菜糖液を本発明の方法により脱塩するのが好ましい。なお、結晶状の蔗糖を得る場合は、上記第1〜3の方法について述べた様に、クロマト分離により得られる蔗糖画分を濃縮し、或いは、必要に応じて特開平10−42899号公報に提案される方法の様に該蔗糖画分をイオン交換処理してから濃縮し、煎糖を行うのは当然のことであるが、液糖としての蔗糖液を得る場合は、該蔗糖画分をそのまま又はイオン交換処理や適当な蔗糖濃度調整を行って製品とすることもできる。
【0021】
本出願人が提案した上記の蔗糖の精製方法において、甜菜から蔗糖を精製する場合の代表例を簡単且つ具体的に説明する。甜菜を裁断し、抽出して得られる蔗糖含有甜菜抽出液(原汁)に石灰乳を加え、二酸化炭素を吹き込んで炭酸カルシウムの沈澱を生成し、この沈澱に不純物を吸着させて除去する所謂炭酸飽充により粘性の高い物質などを上記甜菜抽出液から除去する。次いで、濾過後、得られる蔗糖含有濾液をナトリウム形やカリウム形の陽イオン交換樹脂により軟化する。この軟化は、濃縮器での硬度成分の析出と濃縮器の伝熱効率の低下を防ぐため、並びに、クロマト分離工程で充填剤(分離剤)として陽イオン交換樹脂を用いる場合にそのイオン形が分離効率の悪い二価イオン形になるのを防止するするために、主としてカルシウムである硬度成分を除去することを目的とする。次いで、クロマト分離の効率を上げるために、蔗糖含有軟化処理液を固形分濃度が、例えば、60〜70重量%になるまで濃縮する。こうして得られる蔗糖含有濃縮液を本発明の方法によるクロマト分離工程に供する。分画された蔗糖画分は、イオン交換処理する。次いで、イオン交換処理された蔗糖液を濃縮し、次に煎糖により高純度の蔗糖結晶を高回収率で得ることができる。この方法における上記イオン交換処理は、上記クロマト分離工程で約80重量%前後の塩類が除去されるが、残りの約20重量%前後の塩類を除去しようとするもので、イオン交換処理の態様としては、強酸性陽イオン交換樹脂→弱塩基性陰イオン交換樹脂→強塩基性陰イオン交換樹脂→弱酸性陽イオン交換樹脂のシリーズ通液、中塩基性陰イオン交換樹脂→弱酸性陽イオン交換樹脂のシリーズ通液や強塩基性陰イオン交換樹脂→弱酸性陽イオン交換樹脂のシリーズ通液等の種々の態様を用いることができる(特開平10−42899号)。
【0022】
本発明の方法に用いる擬似移動層式クロマト分離装置としては、2成分分離擬似移動層式クロマト分離装置を用いることができる。この装置は、原料液に含まれる成分を二つの画分に分けるための装置であり、例えば、原料液供給口と溶離液供給口及びエクストラクト抜き出し口とラフィネート抜き出し口が一定時間毎に下流方向に移動するものである。特公昭42−15681号公報に開示されている代表的な2成分分離擬似移動層式クロマト分離装置を用いることができるが、このような擬似移動層式クロマト分離装置を種々に改変した装置類、例えば、特開平2−49159号公報(供給・抜き出しの工程と循環のみの工程よりなる擬似移動層式クロマト分離方法を行う装置)、特開平8−141311号公報、特開平4−334503公報、特開平4−367701号公報等に開示される装置を用いることもでき、本発明では、これらの各種の装置を含めて「擬似移動層式クロマト分離装置」と言う。
【0023】
次に、本発明の方法に用いることができる擬似移動層式クロマト分離装置の代表例の一般的且つ簡単な説明をすると、原料(本発明の場合は、原液である「煎糖前の甜菜糖液」)中に含まれる2以上の成分中の特定成分に対して選択的収着能力を有する固体収着剤(分離剤、即ち、充填剤)が充填されている複数の単位充填塔を無端直列に連結した系と、該系内の循環流体を一方向に循環させる手段と、これらの単位充填塔のいずれかを選択して原料を供給する原料供給手段と、他のいずれかの単位充填塔を選択して溶離剤(本発明の場合は、溶離水)を供給する溶離剤供給手段と、いずれかの単位充填塔を選択してラフィネート(本発明の場合は、塩類を主とする非蔗糖画分の液)を上記系外に抜き出す第1の流体抜き出し手段と、他のいずれかの単位充填塔を選択してエクストラクト(本発明の場合は、蔗糖画分の液)を上記系外に抜き出す第2の流体抜き出し手段と、循環系内の流体の流量の制御と共に、上記系内における上記流体の供給及び抜き出しの位置の関係を相互に維持して、これらの位置を系内の流体流れ方向の下流側に順次移行させる切り換え制御手段とを備えたものである。各単位充填塔は、それぞれ1単位充填層を有するのが通常であるが、1単位充填塔が仕切られた2以上の単位充填層を有し、必要に応じて各単位充填層に上記のような原料供給手段、溶離剤供給手段、第1の流体抜き出し手段、第2の流体抜き出し手段が設けられている構成であっても良い。
【0024】
次に、このような擬似移動層式クロマト分離装置を用いた2成分分離擬似移動層式クロマト分離法の一例の一般的且つ簡単な説明を行う。上記のように無端に連結された単位充填塔群(単位充填層群)を溶離剤(本発明の場合は、溶離水)供給位置から見て循環流の下流側に向かって第1区画、第2区画、第3区画、第4区画に区画して考え、第1区画の最前列に位置する単位充填塔(単位充填層)の入口の循環流に対して溶離剤を供給弁を介して供給すると共に、第1区画の最後列に位置する単位充填塔(単位充填層)の出口の循環流から被収着成分の含有量の多いエクストラクト(本発明の場合は、蔗糖画分の液)を抜き出し弁を介して抜き出し、第3区画の最前列に位置する単位充填塔(単位充填層)の入口の循環流に対して原料を供給弁を介して供給すると共に、第3区画の最後列に位置する単位充填塔(単位充填層)の出口の循環流から被収着成分の少ないラフィネート(本発明の場合は、塩類を主とする非蔗糖画分の液)を抜き出し弁を介して抜き出し、これらの溶離剤の供給位置、エクストラクトの抜き出し位置、原料の供給位置、ラフィネートの抜き出し位置を、上記原料中の成分の収着剤に対する収着領域の移行に伴って一つずつ下流側に繰り下げるように操作する。
【0025】
本発明では、蔗糖画分の蔗糖純度と蔗糖回収率を高い値に保つために、エクストラクト(強親和性成分画分、即ち、蔗糖画分)抜き出し口から原液の供給口までの第2区画における循環流量(U2)と固定相(充填剤)の見かけ移動速度(Us)の比U2/Usは0.35〜0.45であることが好ましい。その理由は、次の通りである。比U2/Usが0.35より低い場合、一部の蔗糖が溶離水供給口からエクストラクト抜き出し口までの第1区画を経由してラフィネート(弱親和性成分の画分、即ち、塩類等の非蔗糖画分)抜き出し口から溶離水供給口までの第4区画に蔗糖が回り込み、蔗糖画分の蔗糖回収率が下がる傾向を生じる。従って、比U2/Usが0.35より低い条件のまま、蔗糖回収率を上げるためには多くの溶離水が必要となる。比U2/Usが0.45を越える場合は、蔗糖画分での非糖分混入率(後に説明)は下がるが、一部の蔗糖が原液供給口からラフィネート画分抜き出し口までの第3区画を経由して、ラフィネート抜き出し口から抜き出されるため、蔗糖画分の蔗糖回収率が下がる傾向を生じる。なお、U2=[最低流速部分での循環流量(U4)×全充填剤量]+[溶離水供給流量]−[蔗糖画分抜き出し量]であり、最低流速部分は第4区画に相当する。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しつつ説明するが、以下の実施の形態に限定されないことは当然である。
【0027】
図1は、本発明の方法を実施するのに使用することができる擬似移動層式クロマト分離装置の構成の一例の概要を示す図である。図1において、1〜10は単位充填塔、1A〜10Aはラフィネートの抜き出し弁、1C〜10Cはエクストラクトの抜き出し弁、1D〜10Dは溶離水供給弁、1F〜10Fは原液供給弁、Aはラフィネート(塩類を主とする非蔗糖画分の液)、Cはエクストラクト(蔗糖画分の液)、Dは溶離水、Fは原液(煎糖前の甜菜糖液)、12はラフィネート抜き出し配管、14はエクストラクト抜き出し配管、15は原液供給ポンプ、16は溶離水供給ポンプ、1P〜5Pは循環ポンプ、20と21は連結配管、30は原液供給配管、31は溶離水供給配管を表す。
【0028】
単位充填塔1〜10のそれぞれの末端を、次の単位充填塔の頂部に連結配管20、21で無端連結し、各単位充填塔の下流側の連結配管にラフィネートの抜き出し弁1A〜10A及びエクストラクトの抜き出し弁1C〜10Cを連結すると共に、各単位充填塔の上流側の連結配管に原液供給ポンプ15によって供給される原液用の原液供給配管30から分岐した原液供給弁1F〜10F付き分岐配管と溶離水供給ポンプ16によって供給される溶離水用の溶離水供給配管31から分岐した溶離水供給弁1D〜10D付き分岐配管とを連結し、更に、各ラフィネート抜き出し弁1A〜10Aをラフィネート抜き出し配管12に接続し、各エクストラクト抜き出し弁1C〜10Cをエクストラクト抜き出し配管14に接続し、単位充填塔2と3、4と5、6と7、8と9との間の連結配管20にそれぞれ循環ポンプ1P〜4Pを連結すると共に単位充填塔10の末端から単位充填塔1の頂部への連結配管21の途中に循環ポンプ5Pを連結する。図1の装置では、5台の循環ポンプ1P〜5Pが設けられており、これらが図示しない制御装置により制御され、循環流量を流量シーケンスプログラムに従って設定値に制御できるようになっている。循環ポンプの設置箇所や設置台数が図1の態様に限定されないことは言うまでもない。また、各供給弁及び各抜き出し弁も図示しない制御装置により所定の弁開閉シーケンスプログラムに従って開閉が制御されるようになっている。図1では単位充填塔の数は10本であるが、これに限定されるものではない。
【0029】
次に、図1に示すような擬似移動層式クロマト分離装置の運転操作について説明する。第1段として、例えば、原液供給弁6Fを開いて単位充填塔6の塔頂から原液を供給すると共に、溶離水供給弁1Dを開いて単位充填塔1の頂部から溶離水を供給し、エクストラクト抜き出し弁2Cを開いて単位充填塔2の底部から蔗糖を多く含むエクストラクトを抜き出し、ラフィネート抜き出し弁9Aを開いて単位充填塔9の底部から塩類等の非蔗糖化合物を多く含むラフィネートを抜き出しつつ、循環ポンプ1P〜5Pにより循環系内の液を循環させる。
【0030】
従って、この場合、溶離水供給口からエクストラクト抜き出し口までの第1区画は単位充填塔が2本、エクストラクト抜き出し口から原液供給口までの第2区画は単位充填塔が3本、原液供給口からラフィネート抜き出し口までの第3区画は単位充填塔が4本、ラフィネート抜き出し口から溶離水供給口までの第4区画は単位充填塔が1本である。但し、本発明がこの態様に限定されないことは言うまでもない。
【0031】
予め定めた一定時間の経過後、第2段として、上記第1段で開いた溶離水供給弁1Dを閉じ且つ溶離水供給弁2Dを開き、同様にしてエクストラクト抜き出し弁の開いている所を2Cから3Cへ切り換え、原液供給弁の開いている所を6Fから7Fへ切り換え、ラフィネート抜き出し弁の開いている所を9Aから10Aへ切り換える。
【0032】
以下、同様にして、各段毎に(上記の様な一定時間毎に)、開とする弁を1単位充填塔ずつ順次循環液の流れ方向の下流側に移行させる操作を行って、第3段〜第10段のクロマト分離を行う。このような弁の切り換えにより、見掛け上は、循環流の流れ方向と反対方向に充填剤を移動させるかの如き操作を行っていることになる。このような第1段〜第10段のクロマト分離を繰り返して行い、装置の連続運転を行う。
【0033】
上述した操作は、装置が連続的に運転されている状態について述べたが、装置立ち上げのためには、上述の連続的な運転に先立って、原液を装置系内に供給して、分離剤(充填剤、収着剤)に対する親和性の弱い成分から強い成分に順次に分かれた収着帯域を形成させる操作のみを単独に行う前工程を行ってもよい。
【0034】
【実施例】
以下、比較例と対比して、実施例により本発明を具体的に説明するが、本発明が実施例に限定されるもので無いことは言うまでもない。なお、以下の実施例と比較例では、図1に示されるような構成の擬似移動層式クロマト分離装置を用い、また、「非糖分混入率」とは、原液に含まれていた塩類等の非糖分の全量に対する蔗糖画分に混入してきた非糖分の量の割合を示すものである。また、単位充填塔での循環流液の圧力損失は、所定の運転条件を満足する様な循環ポンプ圧を掛けているのであるから、「単位充填塔の頂部の平均液圧」で間接的に見ることができ、これが高いと圧力損失が大きいと考えてよい。
【0035】
実施例1
本実施例でクロマト分離に供した原液としての煎糖前の甜菜糖液は、甜菜糖工場において、甜菜の裁断、抽出、炭酸飽充、濾過、軟化の工程を経て得られた蔗糖含有軟化処理液で、蔗糖濃度(Bx:ブリックス濃度)65で、その固形分当たりの組成は蔗糖濃度93%、塩類等の非糖分濃度4%、その他の有機成分(他の糖類、ベタイン、アミノ酸等)の濃度3%であった。なお、固形分当たりの組成は、ナトリウム形イオン交換カラムと示差屈折率計を用いた高速液体クロマトグラフィーの面積百分率によって示したものである。
【0036】
本実施例で用いた擬似移動層式クロマト分離装置の仕様は、次の通りであった。
<装置の仕様>
各単位充填層:直径108mm×高さ1600mm
単位充填層数:10
全充填剤量:150リットル
循環ポンプ台数:5
充填剤(分離剤):アンバーライトCR−1320のナトリウム形(ローム・アンド・ハース社製ゲル型強酸性カチオン交換樹脂、均一係数:1.1、平均粒径:330μm)
【0037】
この装置の運転条件は、次の通りであった。
<運転条件>
運転温度:80℃
原液供給量:12リットル/時間
溶離水供給量:40リットル/時間
蔗糖画分抜き出し量:22リットル/時間
非蔗糖画分抜き出し量:30リットル/時間
固定相(充填剤)の見掛け移動速度:16.5リットル/時間
循環流量(最低流速部分):0.6リットル/リットル−充填剤/時間
単位充填塔の頂部の平均液圧:3.0kg/cm2
【0038】
分離の結果は、次の通りであった。
<分離結果>
蔗糖画分:蔗糖回収率:99.4%
非糖分混入率:20%
蔗糖濃度(Bx):38
【0039】
比較例1
実施例1で用いたと同じ仕様の擬似移動層方式クロマト分離装置を用いて、実施例1と同じ原液のクロマト分離を、下記の装置運転条件で行った。
<運転条件>
運転温度:80℃
原液供給量:12リットル/時間
溶離水供給量:72リットル/時間
蔗糖画分抜き出し量:34リットル/時間
非蔗糖画分抜き出し量:50リットル/時間
固定相(充填剤)の見掛け移動速度:16.5リットル/時間
循環流量(最低流速部分):0.34リットル/リットル−充填剤/時間
単位充填塔の頂部の平均液圧:3.0kg/cm2
【0040】
分離の結果は、次の通りであった。
<分離結果>
【0041】
この比較例は、脱塩率を上げるために原液供給量に対する溶離水供給量を増やした場合で(原液供給量/溶離水供給量容量比=1/6)、非糖分混入率(大体、脱塩率を逆に示す)は実施例1と比べて幾らか小さくなり、クロマト分離後にイオン交換処理により更に脱塩を行う場合はそのイオン交換処理への負荷は幾らか小さくなり、その分だけイオン交換樹脂の再生のための再生剤使用量は低減できるが、目的画分である蔗糖画分の蔗糖濃度は実施例1と比べて遙かに低くなり、煎糖の準備のための濃縮に多大なエネルギーコストを必要とするため、この比較例の運転条件は適切なものではない。
【0042】
比較例2
実施例1で用いたと同じ仕様の擬似移動層方式クロマト分離装置を用いて、実施例1と同じ原液のクロマト分離を、下記の装置運転条件で行った。
<運転条件>
運転温度:80℃
原液供給量:12リットル/時間
溶離水供給量:40リットル/時間
蔗糖画分抜き出し量:17リットル/時間
非蔗糖画分抜き出し量:35リットル/時間
固定相(充填剤)の見掛け移動速度:16.5リットル/時間
循環流量(最低流速部分):0.34リットル/リットル−充填剤/時間
単位充填塔の頂部の平均液圧:3.5kg/cm2
【0043】
分離の結果は、次の通りであった。
<分離結果>
【0044】
この比較例は、脱塩率と回収蔗糖純度を上げるために分離剤に対して親和性の強い成分の画分(蔗糖画分)抜き出し量/分離剤に対して親和性の弱い成分の画分(塩類等で富化された非蔗糖画分)抜き出し量の容量比を0.486/1とした場合であるが、回収すべき蔗糖が非蔗糖画分に多量に混入し、蔗糖の損失が大きくなってしまう。濃縮コストの削減分、および、クロマト分離後にイオン交換処理により更に脱塩を行う場合はそのイオン交換処理工程への負荷の減少によるイオン交換樹脂の再生のための再生剤使用量の減少に伴うコスト削減分を遙かに上回る蔗糖損失となるので、この比較例の運転条件は適切なものではない。
【0045】
比較例3
実施例1で用いたと同じ仕様の擬似移動層方式クロマト分離装置を用いて、実施例1と同じ原液のクロマト分離を、下記の装置運転条件で行った。
<運転条件>
運転温度:80℃
原液供給量:3リットル/時間
溶離水供給量:10リットル/時間
蔗糖画分抜き出し量:5.5リットル/時間
非蔗糖画分抜き出し量:7.5リットル/時間
固定相(充填剤)の見掛け移動速度:4.13リットル/時間
循環流量(最低流速部分):0.085リットル/リットル−充填剤/時間
単位充填塔の頂部の平均液圧:2.0kg/cm2
【0046】
分離の結果は、次の通りであった。
<分離結果>
【0047】
この比較例は、循環系内における最も流速の遅い部分での循環流量を充填剤量に対して1時間当たり8.5容量%とした場合で、従来のクロマト分離装置の一般的な処理量で運転した場合(例えば、特表平9−506513号公報の実施例の運転条件に類似する)に相当する。この比較例では、単位充填塔内の液の圧力も低く運転が円滑に行え、また、分離精度も良いので、クロマト分離後にイオン交換処理により更に脱塩を行う場合はそのイオン交換処理工程への負荷が小さく、イオン交換樹脂の再生のための再生剤使用量の少なくて良く、さらに、溶離水使用量も少なく、蔗糖画分の蔗糖濃度も高いので、濃縮コストも低減できる。しかし、この比較例では、時間当たりの充填剤量に対する処理量が、実施例1の1/4と遙かに少ないので、甜菜糖工場が必要とする処理量を達成するには、それだけ大きな装置を必要とし、結果的に製品コストが割高となってしまう。
【0048】
比較例4
実施例1で用いたと同じ仕様の擬似移動層方式クロマト分離装置を用いて、実施例1と同じ原液のクロマト分離を、下記の装置運転条件で行った。
<運転条件>
運転温度:80℃
原液供給量:12リットル/時間
溶離水供給量:28リットル/時間
蔗糖画分抜き出し量:17リットル/時間
非蔗糖画分抜き出し量:23リットル/時間
固定相(充填剤)の見かけ移動速度:16.5リットル/時間
循環流量(最低流速部分):0.34リットル/リットル−充填剤/時間
単位充填塔頂部平均液圧:3kg/cm2
【0049】
分離の結果は、次の通りであった。
<分離結果>
【0050】
この比較例は、溶離水量を減らすために原液供給量に対する溶離水供給量を減らした場合で(原液供給量/溶離水供給量容量比=1/2.33)、蔗糖画分での蔗糖の回収率が大幅に下がり、非糖分混入率が上がって、クロマト分離後にイオン交換処理により更に脱塩を行う場合はそのイオン交換処理工程への負荷が大きく、イオン交換樹脂の再生のための再生剤使用量が多くなるので、この比較例の運転条件は適切なものではない。
【0051】
比較例5
実施例1で用いたと同じ仕様の擬似移動層方式クロマト分離装置を用いて、実施例1と同じ原液のクロマト分離を、下記の装置運転条件で行った。
【0052】
<運転条件>
運転温度:80℃
原液供給量:12リットル/時間
溶離水供給量:40リットル/時間
蔗糖画分抜き出し量:29リットル/時間
非蔗糖画分抜き出し量:23リットル/時間
固定相(充填剤)の見かけ移動速度:16.5リットル/時間
循環流量(最低流速部分):0.34リットル/リットル−充填剤/時間
単位充填塔頂部平均液圧:3kg/cm2
【0053】
分離の結果は、次の通りであった。
<分離結果>
【0054】
この比較例は、蔗糖画分の蔗糖回収率を上げるために強親和性の画分(蔗糖画分)抜き出し量/弱親和性成分の画分(塩類等で富化された非蔗糖画分)抜き出し量の容量比を1.26/1とした場合であるが、蔗糖の回収率がそれほど上がらないに拘わらず、非糖分の混入率が大幅に上がって、クロマト分離後にイオン交換処理により更に脱塩を行う場合はそのイオン交換処理工程への負荷が大きく、イオン交換樹脂の再生のための再生剤使用量が多くなるので、この比較例の運転条件は適切なものではない。
【0055】
比較例6
実施例1で用いたと同じ仕様の擬似移動層方式クロマト分離装置を用いて、実施例1と同じ原液のクロマト分離を、下記の装置運転条件で行った。
【0056】
<運転条件>
運転温度:80℃
原液供給量:30リットル/時間
溶離水供給量:100リットル/時間
蔗糖画分抜き出し量:55リットル/時間
非蔗糖画分抜き出し量:75リットル/時間
固定相(充填剤)の見かけ移動速度:41.3リットル/時間
循環流量(最低流速部分):0.85リットル/リットル−充填剤/時間
単位充填塔頂部平均液圧:10kg/cm2
【0057】
分離の結果は、次の通りであった。
<分離結果>
【0058】
この比較例は、処理量を上げるために、循環系内における最も流速の遅い部分での循環流量を充填剤量に対して1時間当たり85容量%とした場合で、単位充填塔頂部の液圧が高くなってしまい、実装置としては耐圧の点で高価な設備となる。また、この比較例では、充填剤としての陽イオン交換樹脂への分離の負荷が大きくなるため、分離結果も悪く蔗糖画分での蔗糖回収率も下がった。
【0059】
以上、実施例1と比較例1〜6に示したように、原液としての煎糖前の甜菜糖液の脱塩をクロマト分離で効率良く且つ装置コストを極力抑えて行うには、高流速(高流量)で且つ一般的な装置設計で耐え得る範囲内の単位充填塔内の液圧力で原液を流せる方式でなければならない。本発明者等は、この至極達成困難と考えられていた問題を解決するために擬似移動層式クロマト分離装置の各種運転条件について鋭意検討した結果、工業的に有益な脱塩方法を見出し、併せて、好ましい単位充填層高をも見出したのである。
【0060】
【発明の効果】
本発明によれば、充填剤の再生剤を用いないイオン排除法により擬似移動層式クロマト分離方式によって、溶離水の使用量を極力少なく抑えつつ効率良く煎糖前の甜菜糖液の脱塩処理ができ、蔗糖を濃い状態で分離できる。また、本発明によれば、所定の擬似移動層式クロマト分離装置での処理量が従来方法よりも多くなり、これを逆に言えば、所望の高い処理能力を確保しつつ、擬似移動層式クロマト分離装置の容積を小さくできることになる。クロマト分離工程を経て得られる蔗糖画分のイオン交換処理を後段で行う場合は、イオン交換処理装置を小さくすることができ、そのイオン交換樹脂の再生のための再生剤の使用量及び再生廃液(排水)量も減らすことができる。
【図面の簡単な説明】
【図1】図1は、本発明方法を実施するに当たって使用することができる擬似移動層式クロマト分離装置の構成の一例の概要を示す図である。
【符号の説明】
1〜10:単位充填塔
1A〜10A:ラフィネートの抜き出し弁
1C〜10C:エクストラクトの抜き出し弁
1D〜10D:溶離水供給弁
1F〜10F:原液供給弁
A:ラフィネート(塩類を主とする非蔗糖画分の液)
C:エクストラクト(蔗糖画分の液)
D:溶離水
F:原液(煎糖前の甜菜糖液)
12:ラフィネート抜き出し配管
14:エクストラクト抜き出し配管
15:原液供給ポンプ
16:溶離水供給ポンプ
1P〜5P:循環ポンプ
20、21:連結配管
30:原液供給配管
31:溶離水供給配管[0001]
[Technical field to which the invention belongs]
The present invention relates to a method for desalting beet sugar solution before sucrose. Here, “a beet sugar solution before sucrose” means not only the beet sugar solution before the first sucrose, but also the sucrose in the case where the remaining solution after sucrose (ie, molasses) is further sucrose. It also means sugar beet sugar solution (such as molasses) before sugar, including the case of performing an ion exchange step and a concentration step as needed before the sucrose step after the desalting step according to the present invention. It is not limited to the case where the sucrose process is performed.
[0002]
[Prior art]
There are various methods for refining sucrose from conventional sugar beet (sugar beet sugar). Typically, there are the following methods, each of which has advantages and disadvantages.
[0003]
The first method is cutting, extraction, and carbonation of sugar beet (adding lime milk to the extracted juice and blowing carbon dioxide to produce a calcium carbonate precipitate that adsorbs impurities to this precipitate. Agglomerated precipitate removed), filtration, softening (removal of hardness components such as Ca and Mg by sodium-type cation exchange resin), concentration, sucrose (crystallization of sucrose crystals from the concentrate) . This method is simple in that it softens but does not desalinate, but the sucrose-containing concentrate that is the subject of sucrose has insufficient sucrose purity, and the crystallization of sucrose crystals during sucrose is poor, There is a disadvantage that the amount of molasses increases.
[0004]
As a second method, after cutting, extraction, carbonation saturation, and filtration in the same manner as in the first method, softening and desalting by ion exchange treatment (hardness components such as Ca and Mg and other components) There is a method of removing salt components), concentrating and sucrose. As the ion exchange treatment in this method, four types of ion exchange resins are used in this order: strong acid cation exchange resin, weak base anion exchange resin, strong base anion exchange resin, and weak acid cation exchange resin. The method is the best. Although this method does not have the disadvantages of the first method, since there are many salts in the sucrose-containing filtrate that is the target of the ion exchange treatment, the treatment amount per unit amount of the ion exchange resin is small, and the regeneration of the ion exchange resin is frequent. However, there are drawbacks in using a large amount of a regenerant and processing the regenerated waste liquid. Moreover, since there are many salts as mentioned above, in order to avoid decomposition | disassembly of the sucrose by the hydrogen ion form (H form) of a cation exchange resin at the 1st step of an ion exchange process, said sucrose containing filtrate is once 10 degrees C or less. And cooled to 50-55 ° C. for finishing (desalting, decoloring, deodorizing, etc.) in the second stage of the ion exchange treatment. There are also disadvantages that it has to be raised and the complexity and energy cost are high.
[0005]
In addition, as a third method recently proposed, after extraction as in the above two methods, carbonation is not performed, and desalting is performed by filtration, softening, concentration, chromatographic separation (ion exclusion method), and concentration, There is a method of performing sugar (Japanese Patent Publication No. 9-506513). This method does not have the disadvantages of the second method, but filtration is essential in order to avoid clogging of the chromatographic separation apparatus and increase in pressure loss (the details of filtration are not described in this patent document). Because there is no coagulation precipitation process such as carbonation saturation, it is difficult to remove plant-derived sticky gums and colloidal substances, filtration is difficult, and the filtration process is costly. The colloidal material that cannot be removed increases the pressure loss in chromatographic separation. In severe cases, the liquid cannot be passed through a chromatographic separation device.In addition, in order to reduce the pressure loss in chromatographic separation operations, The supply rate of a certain stock solution (chromatographic stock solution) must be reduced, and since the desalting is insufficient, the high-quality sucrose crystals cannot be obtained as in the second method. There is a point.
[0006]
Such desalting of beet sugar solution before sucrose by ion exchange treatment or chromatographic separation is performed for the purpose of improving the quality of sucrose crystals crystallized by the subsequent sucrose. In addition, sucrose is recovered as much as possible by repeating desalting, concentration, and sucrose by ion exchange and chromatographic separation on molasses after sucrose.
[0007]
[Problems to be solved by the invention]
The ion exchange resin used for desalting by the conventional ion exchange method such as the second method requires a regeneration step at a certain point. This regenerative chemical and the washing water (elution water) used in the subsequent washing step have a problem of increasing the desalting cost. In addition, the treatment of the reclaimed waste liquid that is discharged during the regeneration / cleaning process takes a lot of time and leads to an increase in product cost. On the other hand, when desalting is performed by chromatographic separation as in the third method, the amount of treatment is limited in order to exhibit high separation performance, and thus the apparatus must be enlarged, and the construction cost is high. There is a problem. In addition, in the chromatographic separation, sucrose, which is the target component, is diluted with elution water, and there is a problem that the operating cost of the subsequent concentration step is increased. Furthermore, the loss of the target component (sucrose) accompanying separation becomes a problem.
[0008]
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a desalting method for efficiently desalting sugar beet sugar solution before sucrose.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors have been studying various methods for desalting beet sugar solution before sucrose by simulated moving bed chromatography separation. The sucrose fraction can be obtained with the sucrose concentration as high as possible while minimizing the loss of a certain sucrose and minimizing the amount of elution water used. We have found operating conditions that can be increased to more than twice the amount.
[0010]
That is, the present inventors use a salt-type strongly acidic cation exchange resin having an average particle size of 300 to 500 μm and a uniformity coefficient of 1.2 or less as a filler (separating agent), and a circulation pump having more than half the number of unit packed columns. When desalting sugar beet sugar solution before sucrose using a simulated moving bed chromatographic separation device, the undiluted solution is supplied at a volume ratio of 1 / 2.5 to 1 / 3.5 with respect to the elution water supply amount. The volume ratio of the fraction extraction amount of the strong affinity component to the fraction extraction amount of the weak affinity component is set in the range of 0.5 / 1 to 1.2 / 1, and both fractions are extracted. The circulation flow rate at the slowest flow rate in the circulation system is 25 per hour with respect to the amount of filler (separation agent).~ 80% by volumeCirculated with the target component being reduced to a loss of sucrose of 0.7% or less and a processing amount (processing amount per hour relative to the total amount of filler) of 7% by volume or more. It was found that the dilution rate (the value obtained by dividing the sucrose concentration of the chromatographically separated sucrose fraction by the sucrose concentration of the sugar beet solution subjected to the chromatographic separation) can be less than doubled, and the present invention has been completed. It was.
[0011]
That is, the present invention connects endless series by connecting a plurality of unit packed towers packed with a salt-type strongly acidic cation exchange resin having an average particle size of 300 to 500 μm and a uniformity coefficient of 1.2 or less as a filler (separating agent). In addition, each unit packed column has a stock solution supply port, an elution water supply port, and a component having a strong affinity for the filler (hereinafter referred to as “strong affinity component”). Using a simulated moving bed type chromatographic separation apparatus equipped with a fraction extraction port and a fraction extraction port for a component having a low affinity for the filler (hereinafter referred to as “weak affinity component”) In the desalting step for desalting sugar beet sugar solution (stock solution), using a circulation pump with more than half the number of unit packed towers, the volume ratio of the stock solution supply amount / eluting water supply amount is 1 / 2.5-1 to 1/3. .5, and the volume ratio of the fraction extracted from the strong affinity component / the fraction extracted from the weak affinity component. 0.5 / 1 to 1.2 / 1, and 25 to 80 volume per hour relative to the amount of filler circulation flow rate in the slowest flow velocity of part of the circulatory system%WhenThus, the present invention provides a desalting method characterized in that desalination of the beet sugar solution is performed.
[0012]
Hereinafter, the present invention will be described in more detail. By setting the volume ratio of the fraction extracted from the strong affinity component to the fraction extracted from the weak affinity component to 0.5 / 1 to 1.2 / 1, the amount of elution water used is reduced and the sucrose recovery is increased. It was found that the recovery can be performed. That is, according to chromatographic separation, it is obvious that the separated product (stock solution) is diluted with elution water. Considering the burden on the concentration step of the sucrose fraction to be kept later, the lower the dilution rate, the lower the dilution rate. On the other hand, at a low dilution rate, the separation accuracy (the degree of separation of non-sugars such as salts) must be sacrificed. The inventors of the present invention diligently studied to reduce the use amount of the elution water as much as possible, and came to find the appropriate volume ratio of the extraction amounts of both fractions. By taking this volume fraction extraction volume ratio, the contradiction between the dilution rate and the separation accuracy can be solved. That is, while maintaining high separation performance, it is possible to reduce the amount of elution water used to a level represented by the volume ratio of stock solution supply amount / elution water supply amount = 1 / 2.5 to 1 / 3.5. .
[0013]
In addition, if a high load (large throughput) operation is to be performed, the circulation flow rate in the circulation system must be increased, but chromatographic separation of sugar beet sugar solution (raw solution) that is often supplied with high concentration and high viscosity. In this case, the circulation flow rate that can be increased is limited, and this increase also adversely affects the separation performance. However, if the circulating flow rate is reduced as before, the scale of the apparatus must be increased in order to ensure a predetermined throughput even if separation is good. The circulation flow rate is most affected by the slowest part of the circulation system (usually the part immediately downstream of the extraction position of the fraction with a low affinity component, along with intermittent switching of the extraction position. The slowest part of the flow velocity is the circulating flow rate at the shift). The circulation flow rate at the slowest part of the circulation system in the circulation system is set to 25% by volume or more per hour with respect to the amount of the filler in the above-mentioned stock solution / elution water supply volume ratio and both fraction extraction volume ratios. By doing so, it was found that the balance of separation performance, throughput, amount of elution water used, and dilution rate can be optimally balanced. Further, from the viewpoint of pressure loss, pressure resistance of the apparatus, and separation performance, the circulation flow rate at the slowest part of the flow rate in the circulation system needs to be 80% by volume or less per hour with respect to the amount of the filler. It is.
[0014]
Further, the present inventors, in carrying out such a desalting method of the present invention, with respect to a general simulated moving bed type chromatographic separation apparatus, from the viewpoint of suppressing the system pressure loss as much as possible and maintaining a predetermined separation performance. The design requirements were also found. That is, it is necessary to provide at least half of the number of unit packed towers as the circulation pump, and as the filler, a salt-type strong acid such as sodium form or potassium form having an average particle size of 300 to 500 μm and a uniformity coefficient of 1.2 or less. It is necessary to use a cationic cation exchange resin. And the circulation flow rate in the part where the flow velocity is the slowest at each time point in the circulation system of such a device is set to 25 to 80% by volume per hour with respect to the amount of the filler to meet the sucrose production cost. Enables efficient desalination of beet sugar solution before sucrose. From the same viewpoint, the unit packed bed height in each unit packed tower is preferably in the range of 0.8 to 3 meters.
[0015]
Reducing the number of circulation pumps in the simulated moving bed chromatographic separation apparatus is preferable for reducing the construction cost of the apparatus, but if it is too small, the pressure loss at the outlet of the circulation pump increases, and the apparatus is operated at a desired circulation flow rate. In some cases, it becomes impossible to pass the liquid, and the circulation pump, the unit packed tower, and the like must be pressure-resistant in order to produce a high liquid pressure. From this point of view, if the number of circulation pumps is set to be more than half of the number of unit packed towers, the circulation flow does not stop in the desired liquid flow rate range.
[0016]
As the filler (separating agent), a salt-type strongly acidic cation exchange resin such as sodium form or potassium form is used from the viewpoint of ensuring high separation performance and preventing the conversion of sucrose. When the H-form strongly acidic cation exchange resin is used, the circulating fluid in the circulation system becomes acidic, and sucrose conversion occurs, and the invert sugar does not crystallize with sucrose, which results in inconvenience of sugar loss. It is. Even when a strongly acidic cation exchange resin in the salt form such as sodium form is used, the ionic form of the cation exchange resin is not changed as the chromatographic separation operation proceeds. Various ions contained in the sugar solution (mostly monovalent ions because the undiluted solution is a softened solution) change in a direction to reach an ionic composition in equilibrium.
[0017]
In securing a desired circulation flow rate in the circulation system, the average particle size of the cation exchange resin as a filler is related to the uniformity coefficient, for example, the uniformity coefficient of the cation exchange resin exceeds 1.2. When the average particle size is 300 μm or less (for example, sodium form of Amberlite CG-6000, a strongly acidic cation exchange resin manufactured by Rohm and Haas), even if the separation accuracy is good, the pressure loss increases, and the target It is difficult to flow a stock solution (a beet sugar solution before sucrose) sufficient to secure the processing amount, and in order to secure a target processing amount, the pressure-resistant specification and the size of the apparatus are increased. On the other hand, if the average particle size exceeds 500 μm, the separation accuracy is deteriorated, which is inconvenient. On the other hand, a salt-type strongly acidic cation exchange resin having an average particle diameter of 300 to 500 μm and a uniformity coefficient of 1.2 or less (for example, sodium form of Amberlite CR-1320, a strongly acidic cation exchange resin manufactured by Rohm and Haas). If used, efficient chromatographic separation can be carried out with a small pressure loss while maintaining a predetermined separation accuracy.
[0018]
The volume ratio of the undiluted solution supply amount / eluting water supply amount is set to 1 / 2.5 to 1 / 3.5, and the volume ratio of the fraction extraction amount of the strong affinity component / the fraction extraction amount of the weak affinity component is set to 0. 5/1 to 1.2 / 1, and the chromatographic separation apparatus was operated under the condition that the circulation flow rate at the slowest flow rate in the circulation system was 25 to 80% by volume per hour with respect to the amount of the filler. However, when the unit packed bed height exceeds 3 meters, the separation accuracy is improved, but the resin underneath tends to be crushed by the weight of the packed resin, and the pressure loss in each unit packed column accompanying liquid flow increases. As a result, it becomes difficult to secure a desired circulating flow rate in the system, and the unit packed tower, the circulation pump, and the like must be pressure resistant, and the cost of the apparatus is likely to increase. The unit packed bed height is 0.8m.Less thanThen, the pressure loss in each unit packed column due to liquid flow is reduced, but in order to secure the desired sucrose purity, the number of unit packed columns (unit packed bed) is inevitably increased, and the number of circulation pumps The number of supply ports and the number of extraction ports are also increased, which tends to increase the complexity of the device and the construction cost. In order to ensure the desired sucrose purity, the total unit packed bed height in the entire unit packed column is preferably 8 to 24 m, more preferably 10 to 20 m, The number of unit packed towers (unit packed beds) can be determined from the desired total of unit packed bed height.
[0019]
The chromatographic separation operation temperature in the present invention is preferably 60 to 90 ° C. in order to prevent the generation of bacteria and keep the viscosity of the circulating liquid (particularly the sucrose-containing liquid part) low, preferably 75 to 85. More preferably, the temperature is set to ° C. If this temperature is too high, the cation exchange resin as the filler may be decomposed. In addition, when chromatographic separation operation is performed, if the pH value of the circulating fluid in the circulation system decreases, a part of sucrose is easily converted to fructose and sucrose, and if the pH value is too high, sucrose isomerization is likely to occur. Therefore, it is also preferable that the pH of the elution water is 8-11.
[0020]
Examples of a stock solution (a beet sugar solution before sucrose) that can be desalted by the method of the present invention include, for example, a beet sugar solution after the softening of the first method described above, which is a conventional method for purifying beet sugar, Examples thereof include carbonic acid saturation in the second method, beet sugar solution after filtration, and beet sugar solution used in the chromatographic separation step in the third method. Further, the present applicant has proposed a “sucrose purification method” that eliminates the disadvantages of the first to third methods (Japanese Patent Laid-Open No. 10-42899), but the sugar beet used in the chromatographic separation step of this method is proposed. The sugar solution is preferably desalted by the method of the present invention. When obtaining crystalline sucrose, as described in the above first to third methods, the sucrose fraction obtained by chromatographic separation is concentrated or, if necessary, disclosed in JP-A-10-42899. As in the proposed method, it is natural that the sucrose fraction is subjected to ion exchange treatment and then concentrated to perform sucrose, but when obtaining a sucrose liquid as liquid sugar, the sucrose fraction is The product may be used as it is or after ion exchange treatment or appropriate sucrose concentration adjustment.
[0021]
In the above-described method for purifying sucrose proposed by the present applicant, a representative example in the case of purifying sucrose from sugar beet will be described simply and specifically. A so-called carbonic acid is prepared by adding lime milk to a sucrose-containing sugar beet extract (raw juice) obtained by cutting and extracting sugar beet, and blowing carbon dioxide to produce a calcium carbonate precipitate, which is adsorbed and removed by impurities. Substances with high viscosity are removed from the sugar beet extract by satiation. Next, after filtration, the obtained sucrose-containing filtrate is softened with a sodium-type or potassium-type cation exchange resin. This softening prevents the precipitation of hardness components in the concentrator and the decrease in heat transfer efficiency of the concentrator, and the ion form is separated when a cation exchange resin is used as a filler (separator) in the chromatographic separation process. The purpose is to remove the hardness component, which is mainly calcium, in order to prevent the inefficient divalent ion form. Next, in order to increase the efficiency of the chromatographic separation, the sucrose-containing softening solution is concentrated until the solid content is, for example, 60 to 70% by weight. The sucrose-containing concentrated solution thus obtained is subjected to a chromatographic separation step according to the method of the present invention. The fractionated sucrose fraction is subjected to ion exchange treatment. Next, the sucrose solution subjected to the ion exchange treatment is concentrated, and then high-purity sucrose crystals can be obtained with high recovery by sucrose. In the ion exchange treatment in this method, about 80% by weight of the salt is removed in the chromatographic separation step, but the remaining about 20% by weight of the salt is to be removed. Is a series of strong acid cation exchange resin → weakly basic anion exchange resin → strongly basic anion exchange resin → weakly acidic cation exchange resin, medium basic anion exchange resin → weakly acidic cation exchange resin Various modes such as a series of liquid passing through and a series of strong basic anion exchange resin → weakly acidic cation exchange resin can be used (Japanese Patent Laid-Open No. 10-42899).
[0022]
As the simulated moving bed chromatographic separation apparatus used in the method of the present invention, a two-component separated simulated moving bed chromatographic separation apparatus can be used. This device is a device for dividing the components contained in the raw material liquid into two fractions. For example, the raw material liquid supply port, the eluent supply port, the extract extraction port, and the raffinate extraction port are in the downstream direction at regular intervals. To move on. Although the typical two-component separation simulated moving bed type chromatographic separation apparatus disclosed in Japanese Patent Publication No. 42-15681 can be used, various modified versions of such a simulated moving bed type chromatographic separation apparatus, For example, Japanese Patent Application Laid-Open No. 2-49159 (an apparatus for performing a pseudo moving bed type chromatographic separation method comprising a supply / extraction process and a circulation process), Japanese Patent Application Laid-Open No. 8-141111, Japanese Patent Application Laid-Open No. 4-334503, An apparatus disclosed in Japanese Laid-Open Patent Publication No. 4-367701 can also be used, and in the present invention, these various apparatuses are referred to as a “pseudo moving bed type chromatographic separation apparatus”.
[0023]
Next, a general and simple description of a representative example of a simulated moving bed type chromatographic separation apparatus that can be used in the method of the present invention is as follows. In the case of the present invention, the raw material (“sugar beet before sucrose” A plurality of unit packed towers packed with a solid sorbent (separating agent, ie, a filler) having a selective sorption ability with respect to a specific component of two or more components contained in the “liquid”) A system connected in series, a means for circulating the circulating fluid in the system in one direction, a raw material supply means for selecting one of these unit packed towers and supplying a raw material, and any other unit packing An eluent supply means for supplying an eluent (in the case of the present invention, eluent water) by selecting a column and a raffinate (in the case of the present invention, mainly comprising salts) A first fluid extracting means for extracting the sucrose fraction liquid) out of the system; Along with the second fluid extraction means for selecting one of the unit packed towers and extracting the extract (in the case of the present invention, the sucrose fraction liquid) out of the system, the flow rate of the fluid in the circulation system, The system includes switching control means for maintaining the relationship between the supply and extraction positions of the fluid in the system and sequentially shifting these positions downstream in the fluid flow direction in the system. Each unit packed column usually has one unit packed bed, but one unit packed column has two or more unit packed beds partitioned, and if necessary, each unit packed column has A raw material supply means, an eluent supply means, a first fluid extraction means, and a second fluid extraction means may be provided.
[0024]
Next, a general and simple description will be given of an example of a two-component separation simulated moving bed type chromatographic separation method using such a simulated moving bed type chromatographic separation apparatus. The unit packed tower group (unit packed bed group) connected endlessly as described above is viewed from the eluent (eluent water in the present invention) supply position toward the downstream side of the circulating flow, Considering the two compartments, the third compartment, and the fourth compartment, the eluent is supplied to the circulating flow at the inlet of the unit packed column (unit packed bed) located in the front row of the first section through the supply valve. In addition, the extract having a large content of sorbed components from the circulation flow at the outlet of the unit packed column (unit packed bed) located in the last row of the first section (in the case of the present invention, a sucrose fraction liquid) Is supplied through the supply valve to the circulating flow at the inlet of the unit packed column (unit packed bed) located in the foremost row of the third section, and the last row of the third section From the circulating flow at the outlet of the unit packed column (unit packed bed) located in (In the case of the present invention, the non-sucrose fraction liquid mainly composed of salts) is extracted through an extraction valve, and the supply position of these eluents, the extraction position of the extract, the supply position of the raw material, the extraction position of the raffinate Are moved down one by one with the shift of the sorption region of the components in the raw material to the sorbent.
[0025]
In the present invention, in order to keep the sucrose purity and sucrose recovery rate of the sucrose fraction at a high value, the second compartment from the extract (strong affinity component fraction, ie, sucrose fraction) extraction port to the stock solution supply port. The ratio U2 / Us between the circulating flow rate (U2) and the apparent moving speed (Us) of the stationary phase (filler) is preferably 0.35 to 0.45. The reason is as follows. When the ratio U2 / Us is lower than 0.35, some of the sucrose passes through the first compartment from the elution water supply port to the extract extraction port to form raffinate (a fraction of weak affinity components, ie, salts, etc. Non-sucrose fraction) Sucrose circulates in the fourth section from the extraction port to the elution water supply port, and the sucrose recovery rate of the sucrose fraction tends to decrease. Therefore, the ratio U2 / Us is lower than 0.35ArticleIn order to increase the sucrose recovery rate, a large amount of elution water is required. When the ratio U2 / Us exceeds 0.45, the non-sugar content rate in the sucrose fraction (explained later) decreases, but some sucrose passes through the third compartment from the stock solution supply port to the raffinate fraction extraction port. Via the raffinate extraction port, the sucrose recovery rate of the sucrose fraction tends to decrease. It should be noted that U2 = [circulation flow rate at minimum flow rate portion (U4) × total amount of filler] + [elution water supply flow rate] − [sucrose fraction extraction amount], and the minimum flow rate portion corresponds to the fourth section.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.
[0027]
FIG. 1 is a diagram showing an outline of an example of the configuration of a simulated moving bed chromatographic separation apparatus that can be used to carry out the method of the present invention. 1, 1 to 10 are unit packed towers, 1A to 10A are raffinate extraction valves, 1C to 10C are extract extraction valves, 1D to 10D are elution water supply valves, 1F to 10F are stock solution supply valves, and A is Raffinate (liquid of non-sucrose fraction mainly composed of salts), C is extract (liquid of sucrose fraction), D is elution water, F is undiluted solution (sugar beet sugar solution before sucrose), 12 is piping for extracting raffinate , 14 is an extract extraction pipe, 15 is a stock solution supply pump, 16 is an elution water supply pump, 1P to 5P are circulation pumps, 20 and 21 are connection pipes, 30 is a stock solution supply pipe, and 31 is an elution water supply pipe.
[0028]
The end of each of the unit packed towers 1 to 10 is endlessly connected to the top of the next unit packed tower by connecting
[0029]
Next, the operation of the simulated moving bed chromatographic separation apparatus as shown in FIG. 1 will be described. As the first stage, for example, the stock
[0030]
Therefore, in this case, the first section from the elution water supply port to the extract extraction port has two unit packed towers, and the second section from the extract extraction port to the stock solution supply port has three unit packed towers. The third section from the mouth to the raffinate outlet has four unit packed columns, and the fourth section from the raffinate outlet to the eluting water supply port has one unit packed tower. However, it goes without saying that the present invention is not limited to this embodiment.
[0031]
After elapse of a predetermined period of time, as a second stage, the elution
[0032]
Thereafter, in the same manner, for each stage (every constant time as described above), an operation for sequentially shifting the valve to be opened to the downstream side in the flow direction of the circulating liquid by one unit packed tower is performed. Stage to 10th stage chromatographic separation is performed. By such valve switching, the operation is as if the filler is moved in the direction opposite to the flow direction of the circulating flow. Such chromatographic separation of the first to tenth stages is repeated, and the apparatus is continuously operated.
[0033]
In the above-described operation, the state in which the apparatus is continuously operated is described. However, in order to start up the apparatus, the stock solution is supplied into the apparatus system prior to the above-described continuous operation, and the separating agent is supplied. You may perform the pre-process which performs only the operation which forms only the sorption zone | band divided into the strong component sequentially from the component with weak affinity with respect to (filler, sorbent) independently.
[0034]
【Example】
Hereinafter, the present invention will be specifically described with reference to comparative examples. However, it is needless to say that the present invention is not limited to the examples. In the following Examples and Comparative Examples, a simulated moving bed type chromatographic separation apparatus having a configuration as shown in FIG. 1 is used, and the “non-sugar content rate” is the salt or the like contained in the stock solution. It shows the ratio of the amount of non-sugar contained in the sucrose fraction to the total amount of non-sugar. In addition, the pressure loss of the circulating fluid in the unit packed column is indirectly applied by the "average liquid pressure at the top of the unit packed column" because the circulating pump pressure that satisfies the predetermined operating conditions is applied. It can be seen that if this is high, the pressure loss is large.
[0035]
Example 1
The beet sugar solution before sucrose as a stock solution subjected to chromatographic separation in this example is a beet sugar-containing softening treatment obtained through the steps of beet cutting, extraction, carbonation saturation, filtration, and softening in a beet sugar factory. Liquid, sucrose concentration (Bx: Brix concentration) 65, composition per solid content is 93% sucrose concentration, non-sugar concentration such as salts 4%, other organic components (other saccharides, betaine, amino acids, etc.) The concentration was 3%. The composition per solid content is indicated by the area percentage of high performance liquid chromatography using a sodium ion exchange column and a differential refractometer.
[0036]
The specifications of the simulated moving bed chromatographic separation apparatus used in this example were as follows.
<Device specifications>
Each unit packed bed: diameter 108mm x height 1600mm
Number of unit packed beds: 10
Total filler amount: 150 liters
Number of circulating pumps: 5
Filler (separator): Amberlite CR-1320 sodium form (Rohm and Haas gel type strongly acidic cation exchange resin, uniformity coefficient: 1.1, average particle size: 330 μm)
[0037]
The operating conditions of this device were as follows.
<Operating conditions>
Operating temperature: 80 ° C
Stock solution supply: 12 liters / hour
Elution water supply: 40 liters / hour
Extracted sucrose fraction: 22 liters / hour
Extraction rate of non-sucrose fraction: 30 liters / hour
FixedPhase (filler)Apparent moving speed: 16.5 liters / hour
Circulation flow rate (minimum flow rate portion): 0.6 liter / liter-filler / hour
Average liquid pressure at the top of the unit packed column: 3.0 kg / cm2
[0038]
The result of the separation was as follows.
<Separation result>
Sucrose fraction: Sucrose recovery rate: 99.4%
Non-sugar content: 20%
Sucrose concentration (Bx): 38
[0039]
Comparative Example 1
Using the simulated moving bed type chromatographic separation apparatus having the same specifications as used in Example 1, the same stock solution as in Example 1 was subjected to chromatographic separation under the following apparatus operating conditions.
<Operating conditions>
Operating temperature: 80 ° C
Stock solution supply: 12 liters / hour
Elution water supply rate: 72 liters / hour
Extracted sucrose fraction: 34 liters / hour
Extraction rate of non-sucrose fraction: 50 liters / hour
Apparent moving speed of stationary phase (filler): 16.5 liters / hour
Circulation flow rate (minimum flow rate portion): 0.34 liter / liter-filler / hour
Average liquid pressure at the top of the unit packed column: 3.0 kg / cm2
[0040]
The result of the separation was as follows.
<Separation result>
[0041]
In this comparative example, in order to increase the desalination rate, the elution water supply rate is increased with respect to the stock solution supply rate (stock solution supply rate / elution water supply volume ratio = 1/6), and the non-sugar content rate (generally, desalting rate). (The salt ratio is shown in reverse) is somewhat smaller than in Example 1, and when further desalting is performed by ion exchange treatment after chromatographic separation, the load on the ion exchange treatment is somewhat smaller, and the amount of ions is reduced accordingly. Although the amount of the regenerant used for regenerating the exchange resin can be reduced, the sucrose concentration of the sucrose fraction, which is the target fraction, is much lower than that of Example 1, and greatly increases the concentration for preparing sucrose. The operation conditions of this comparative example are not appropriate because they require high energy costs.
[0042]
Comparative Example 2
Using the simulated moving bed type chromatographic separation apparatus having the same specifications as used in Example 1, the same stock solution as in Example 1 was subjected to chromatographic separation under the following apparatus operating conditions.
<Operating conditions>
Operating temperature: 80 ° C
Stock solution supply: 12 liters / hour
Elution water supply: 40 liters / hour
Extracted sucrose fraction: 17 liters / hour
Extracted non-sucrose fraction: 35 liters / hour
Apparent moving speed of stationary phase (filler): 16.5 liters / hour
Circulation flow rate (minimum flow rate portion): 0.34 liter / liter-filler / hour
Average liquid pressure at the top of the unit packed column: 3.5 kg / cm2
[0043]
The result of the separation was as follows.
<Separation result>
[0044]
In this comparative example, in order to increase the desalination rate and the purity of recovered sucrose, the fraction of the component having a strong affinity for the separating agent (sucrose fraction) / the fraction of the component having a weak affinity for the separating agent (Non-sucrose fraction enriched with salts, etc.) This is a case where the volume ratio of the extraction amount is 0.486 / 1, but a large amount of sucrose to be collected is mixed in the non-sucrose fraction, and the loss of sucrose It gets bigger. Reduced concentration costs and costs associated with a decrease in the amount of regenerant used to regenerate the ion exchange resin due to a decrease in the load on the ion exchange treatment process when further desalting is performed by ion exchange treatment after chromatographic separation The sucrose loss far exceeds the reduction, so the operating conditions of this comparative example are not appropriate.
[0045]
Comparative Example 3
Using the simulated moving bed type chromatographic separation apparatus having the same specifications as used in Example 1, the same stock solution as in Example 1 was subjected to chromatographic separation under the following apparatus operating conditions.
<Operating conditions>
Operating temperature: 80 ° C
Stock solution supply: 3 liters / hour
Elution water supply: 10 liters / hour
Extracted sucrose fraction: 5.5 liters / hour
Extraction rate of non-sucrose fraction: 7.5 liters / hour
Apparent moving speed of stationary phase (filler): 4.13 liters / hour
Circulation flow rate (minimum flow rate portion): 0.085 liter / liter-filler / hour
Average liquid pressure at the top of the unit packed column: 2.0 kg / cm2
[0046]
The result of the separation was as follows.
<Separation result>
[0047]
In this comparative example, the circulation flow rate at the slowest flow rate in the circulation system is set to 8.5% by volume per hour with respect to the amount of the packing material. This corresponds to the case where the vehicle is operated (for example, similar to the operation condition of the embodiment of JP-T-9-506513). In this comparative example, since the liquid pressure in the unit packed column is low and the operation can be performed smoothly and the separation accuracy is good, when further desalting is performed by ion exchange treatment after chromatographic separation, the process to the ion exchange treatment step is performed. Since the load is small and the amount of regenerant used to regenerate the ion exchange resin may be small, the amount of elution water used is small, and the sucrose fraction in the sucrose fraction is high, so the concentration cost can be reduced. However, in this comparative example, the amount of processing with respect to the amount of filler per hour is much less than 1/4 of that in Example 1, so that a large apparatus is required to achieve the processing amount required by the beet sugar factory. As a result, the product cost becomes high.
[0048]
Comparative Example 4
Using the simulated moving bed type chromatographic separation apparatus having the same specifications as used in Example 1, the same stock solution as in Example 1 was subjected to chromatographic separation under the following apparatus operating conditions.
<Operating conditions>
Operating temperature: 80 ° C
Stock solution supply: 12 liters / hour
Elution water supply rate: 28 liters / hour
Extracted sucrose fraction: 17 liters / hour
Extracted non-sucrose fraction: 23 liters / hour
Apparent moving speed of stationary phase (filler): 16.5 liters / hour
Circulation flow rate (minimum flow rate portion): 0.34 liter / liter-filler / hour
Average liquid pressure at top of unit packed column: 3 kg / cm2
[0049]
The result of the separation was as follows.
<Separation result>
[0050]
In this comparative example, the amount of eluate supplied to the stock solution was reduced in order to reduce the amount of eluate (stock solution supply / eluting water supply volume ratio = 1 / 2.33). When the recovery rate is greatly reduced, the non-sugar content rate is increased, and desalting is further performed by ion exchange after chromatographic separation, the load on the ion exchange treatment process is heavy, and a regenerant for regeneration of the ion exchange resin. Since the amount used increases, the operating conditions of this comparative example are not appropriate.
[0051]
Comparative Example 5
Using the simulated moving bed type chromatographic separation apparatus having the same specifications as used in Example 1, the same stock solution as in Example 1 was subjected to chromatographic separation under the following apparatus operating conditions.
[0052]
<Operating conditions>
Operating temperature: 80 ° C
Stock solution supply: 12 liters / hour
Elution water supply: 40 liters / hour
Extracted sucrose fraction: 29 liters / hour
Extracted non-sucrose fraction: 23 liters / hour
Apparent moving speed of stationary phase (filler): 16.5 liters / hour
Circulation flow rate (minimum flow rate portion): 0.34 liter / liter-filler / hour
Average liquid pressure at top of unit packed column: 3 kg / cm2
[0053]
The result of the separation was as follows.
<Separation result>
[0054]
In this comparative example, in order to increase the sucrose recovery rate of the sucrose fraction, the extraction amount of the strong affinity fraction (sucrose fraction) / the fraction of weak affinity component (non-sucrose fraction enriched with salts etc.) This is a case where the volume ratio of the extraction amount is 1.26 / 1. However, although the recovery rate of sucrose does not increase so much, the mixing rate of non-sugar increases significantly and is further removed by ion exchange after chromatographic separation. When salt is used, the load on the ion exchange treatment step is large, and the amount of regenerant used to regenerate the ion exchange resin increases, so the operating conditions of this comparative example are not appropriate.
[0055]
Comparative Example 6
Using the simulated moving bed type chromatographic separation apparatus having the same specifications as used in Example 1, the same stock solution as in Example 1 was subjected to chromatographic separation under the following apparatus operating conditions.
[0056]
<Operating conditions>
Operating temperature: 80 ° C
Stock solution supply: 30 liters / hour
Elution water supply: 100 liters / hour
Extracted sucrose fraction: 55 liters / hour
Extraction rate of non-sucrose fraction: 75 liters / hour
Apparent moving speed of stationary phase (filler): 41.3 liters / hour
Circulation flow rate (minimum flow rate portion): 0.85 liter / liter-filler / hour
Average liquid pressure at top of unit packed tower: 10 kg / cm2
[0057]
The result of the separation was as follows.
<Separation result>
[0058]
In this comparative example, in order to increase the processing amount, the circulation flow rate at the slowest part of the flow rate in the circulation system is 85% by volume per hour with respect to the packing amount, and the liquid pressure at the top of the unit packed column is The actual equipment becomes expensive equipment in terms of pressure resistance. In this comparative example, the separation load on the cation exchange resin as the filler was increased, so that the separation result was poor and the sucrose recovery rate in the sucrose fraction was reduced.
[0059]
As described above, as shown in Example 1 and Comparative Examples 1 to 6, desalting of beet sugar solution before sucrose as an undiluted solution is efficiently performed by chromatographic separation and at the lowest possible cost. The system must be capable of flowing the stock solution at a liquid pressure in the unit packed tower within a range that can be withstood by a general apparatus design. As a result of earnestly examining various operating conditions of the simulated moving bed type chromatographic separation apparatus in order to solve the problem considered to be extremely difficult to achieve, the present inventors have found an industrially useful desalting method. Thus, a preferable unit packed bed height was also found.
[0060]
【The invention's effect】
According to the present invention, the desalting treatment of sugar beet sugar solution before sucrose is efficiently performed by suppressing the amount of the eluting water by the simulated moving bed type chromatographic separation method by the ion exclusion method without using the regenerant of the filler. The sucrose can be separated in a thick state. Further, according to the present invention, the amount of processing in the predetermined simulated moving bed type chromatographic separation apparatus is larger than that in the conventional method. In other words, while maintaining the desired high processing capacity, the simulated moving bed type is ensured. The volume of the chromatographic separation device can be reduced. When ion exchange treatment of the sucrose fraction obtained through the chromatographic separation process is performed in the latter stage, the ion exchange treatment apparatus can be made smaller, the amount of regenerant used for regeneration of the ion exchange resin, and the regenerated waste liquid ( The amount of wastewater) can also be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of an example of the configuration of a simulated moving bed type chromatographic separation apparatus that can be used in carrying out the method of the present invention.
[Explanation of symbols]
1 to 10: unit packed tower
1A to 10A: Raffinate extraction valve
1C-10C: Extract extraction valve
1D to 10D: Elution water supply valve
1F-10F: Stock solution supply valve
A: Raffinate (liquid of non-sucrose fraction mainly composed of salts)
C: Extract (liquid of sucrose fraction)
D: Elution water
F: Undiluted solution (sugar beet sugar solution before sucrose)
12: Raffinate extraction piping
14: Extract extraction piping
15: Stock solution supply pump
16: Elution water supply pump
1P-5P: Circulation pump
20, 21: Connection piping
30: Stock solution supply piping
31: Elution water supply piping
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00592799A JP3783756B2 (en) | 1998-02-05 | 1999-01-13 | Desalination method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3796498 | 1998-02-05 | ||
JP10-37964 | 1998-02-05 | ||
JP00592799A JP3783756B2 (en) | 1998-02-05 | 1999-01-13 | Desalination method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11313699A JPH11313699A (en) | 1999-11-16 |
JP3783756B2 true JP3783756B2 (en) | 2006-06-07 |
Family
ID=26339964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00592799A Expired - Lifetime JP3783756B2 (en) | 1998-02-05 | 1999-01-13 | Desalination method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3783756B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10262073B4 (en) * | 2002-12-18 | 2007-12-20 | Südzucker AG Mannheim/Ochsenfurt | Extraction of ingredients from chicory |
JP4800931B2 (en) * | 2004-03-19 | 2011-10-26 | オルガノ株式会社 | Sugar liquid purification method and purification apparatus |
JP4503380B2 (en) * | 2004-07-22 | 2010-07-14 | 北興化学工業株式会社 | Method for producing D-kilo-inositol |
EP2555844B1 (en) * | 2010-03-30 | 2014-08-06 | DuPont Nutrition Biosciences ApS | Separation process |
CN106975323B (en) * | 2017-04-06 | 2023-12-05 | 西安石油大学 | Invalid natural gas desulfurization solution regeneration device |
CN113426495A (en) * | 2021-06-11 | 2021-09-24 | 河海大学 | Device and method for enhancing performance of desalination cell by using ion exchange mixed bed |
CN113813646A (en) * | 2021-10-20 | 2021-12-21 | 河北乐开节能科技股份有限公司 | Chromatographic separation device and separation method for desalting and decoloring |
-
1999
- 1999-01-13 JP JP00592799A patent/JP3783756B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11313699A (en) | 1999-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3539470B2 (en) | How to recover betaine | |
AU2007318897B2 (en) | Treatment of sugar juice | |
EP2552562A1 (en) | Separation process | |
EP0973949B1 (en) | Process for demineralizing a sugar solution | |
JP3783756B2 (en) | Desalination method | |
WO2014025560A1 (en) | Mannose production from palm kernel meal using simulated moving bed separation | |
US3884714A (en) | Process for making sugar from molasses by ion removal | |
JP3453516B2 (en) | Chromatographic separation method | |
US2388195A (en) | Process for purification of sugar juices and the like | |
JPH11183459A (en) | Method and apparatus for chromatographic separation | |
US6331250B1 (en) | Method and equipment for chromatographic separation | |
JP2834225B2 (en) | Simulated moving bed chromatographic separator | |
JP3117596B2 (en) | Method for producing saccharide comprising three or more monosaccharide molecules in glycosidic bonds | |
JPH1042899A (en) | Purification of sucrose | |
JP2888667B2 (en) | Method and apparatus for producing useful substance by product inhibition reaction or reversible reaction | |
JPH11267404A (en) | Chromatographic separating method | |
US20230371556A1 (en) | Purification method with recycling of effluents | |
CN219156794U (en) | Malic acid edulcoration acid purification's device | |
JPS6291205A (en) | Separation of specific component in pseudo-moving bed | |
JP2001299400A (en) | Method and apparatus both for producing refined sucrose solution containing mineral ingredients | |
JPH1146788A (en) | Production of galactosyl sucrose | |
JP2001070704A (en) | Method and apparatus for separating a plurality of components contained in liquid | |
JPH0227999A (en) | Method for cleaning sugar liquid | |
JP3542892B2 (en) | Method for producing useful substance using simulated moving bed type chromatographic separation operation | |
JPH0675648B2 (en) | Component separation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20031215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050621 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060307 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090324 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100324 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100324 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110324 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110324 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120324 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120324 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130324 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130324 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140324 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |