[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3780435B2 - Process for producing α-tetrasubstituted phthalocyanine - Google Patents

Process for producing α-tetrasubstituted phthalocyanine Download PDF

Info

Publication number
JP3780435B2
JP3780435B2 JP20704097A JP20704097A JP3780435B2 JP 3780435 B2 JP3780435 B2 JP 3780435B2 JP 20704097 A JP20704097 A JP 20704097A JP 20704097 A JP20704097 A JP 20704097A JP 3780435 B2 JP3780435 B2 JP 3780435B2
Authority
JP
Japan
Prior art keywords
phthalocyanine
formula
reaction
crude
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20704097A
Other languages
Japanese (ja)
Other versions
JPH1112484A (en
Inventor
俊郎 成塚
知之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamada Chemical Co Ltd
Original Assignee
Yamada Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamada Chemical Co Ltd filed Critical Yamada Chemical Co Ltd
Priority to JP20704097A priority Critical patent/JP3780435B2/en
Publication of JPH1112484A publication Critical patent/JPH1112484A/en
Application granted granted Critical
Publication of JP3780435B2 publication Critical patent/JP3780435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光記録用色素、カラーフィルター用色素、光電変換素子、電子写真感光体、有機半導体素子、触媒及びガスセンサー、カラーフィルターに利用可能な式(1)で表されるα−テトラ置換フタロシアニンの製造法に関するものである。
【0002】
【化3】

Figure 0003780435
【0003】
式(1)中、フタロシアニン骨格周辺の1〜16の数字は炭素原子の位置番号を示す。フタロシアニン骨格に結合する置換基Xは式(3)で表される1,1,1,3,3,3,−ヘキサフルオロ−2−フェニル−2−プロポキシ基を意味し、1又は4のいずれか、5又は8のいずれか、9又は12のいずれか、13又は16のいずれかの位置の炭素原子にそれぞれ結合しているものとする。
【0004】
【化4】
Figure 0003780435
【0005】
【従来の技術】
α−テトラ置換フタロシアニンの製法としては特開平5−17700号公報にみられる様に3−置換フタロニトリルを直接環化する方法と、特開平5−25177号公報にみられる様に3−置換フタロニリルから一旦ジイミノイソインドリンを得、このジイミノイソインドリンを環化する方法とが知られている。
α−テトラ置換フタロシアニンにはフタロシアニン骨格の4,8,12,16位(1,5,9,13位でも同じ)に置換基が位置する有機溶剤溶解性の低い異性体とこの異性体以外の比較的有機溶剤溶解性の高い3つの異性体とが存在し、これらの混合比によって光記録用色素としての性能が微妙に変化する。
これら異性体の生成比は、置換基及び中心金属が同一のフタロシアニンを製造する場合であっても製法が上記のいずれの方法であるかによって相当に異なっている。しかし、いずれの製法による場合にも前記した従来のフタロシアニンの場合にはフタロシアニン骨格の4,8,12,16位に置換基を有する異性体が、常に1番目か又は2番目に多く生成している点で共通している。
【0006】
【発明が解決しようとする課題】
前記した公報によればフタロシアニンの製法のうち、前者の3−置換フタロニトリルを直接環化する方法は、収率、工程数などの点で後者に優る方法と考えられる。
ところが、目的物として式(1)で表される特定のフタロシアニンを得る為にこの方法を採用した際には、使用する三塩化バナジウムの品質によって目的物中の異性体比が相当に異なり、フタロシアニン骨格の4,8,12,16位に置換基が位置する有機溶剤溶解性の低い(11)式の異性体が全異性体の80%以上を占めることが多かった。
また、(11)式以外の異性体混合物を合計で全異性体の25〜30%生成させることができても、その為には条件設定を相当に厳しくしなければならず、量産化する場合は未だ再現性の面で不安が残った。更にまた、この様な厳しい条件設定で(11)式以外の異性体混合物の生成比を高めようとすると、3−置換フタロニトリルからの粗製フタロシアニンの収率が50%台と相当に悪くなるという不都合もみられた。
【0007】
【化5】
Figure 0003780435
【0008】
本発明者は、この様な検討を基に、式(1)で表されるフタロシアニンを高収率で容易に製造することができ、また、フタロシアニン骨格の4,8,12,16位に置換基が位置する有機溶剤溶解性の低い(11)式の異性体以外の異性体を多く、確実に製造することのできる方法を提供せんと研究の結果、既にジイミノイソインドリンを経由する発明に到達し出願済みである。
【0009】
即ち、ジイミノイソインドリンを経由する発明とは、式(2)で表される3−置換フタロニトリルを脂肪族アルコール中、ナトリウム(又はカリウム)メトキシド、ナトリウム(又はカリウム)エトキシド、ナトリウム(又はカリウム)ブトキシドなどのアルコキシドの存在下にアンモニア、尿素、カルバミン酸アンモニウム、ホルムアミド及びカルバミン酸エチルから選ばれる化合物と反応させて式(4)で表されるジイミノイソインドリンを得た後、これを反応系から単離することなく引き続き三塩化バナジウムと反応させることを特徴とする、式(1)で表されるα−テトラ置換フタロシアニンの製造法である。
【0010】
【化6】
Figure 0003780435
【0011】
【化7】
Figure 0003780435
【0012】
このジイミノイソインドリンを経由する発明により、式(11)の異性体以外の異性体が全異性体中に50〜90%を占めるフタロシアニンを収率よく得ることが可能となった。
本発明は、式(11)の異性体以外の異性体が全異性体中に占める比率を更に異ならしめ、3種類の異性体を比較的均等に生成させることのできる方法について検討の結果到達したものであり、3−置換フタロニトリルを直接環化する前述の方法とジイミノイソインドリンを経由する出願済みの方法との中間に位置する新規な方法に係るものである。尚、α−テトラ置換フタロシアニンには理論的に4種類の異性体が考えられる。しかし、本発明のα−テトラ置換フタロシアニンの場合、いずれの方法によっても4種類の異性体は得られず、多くても3種類の異性体が得られのみである。
【0013】
【課題を解決するための手段】
即ち本発明は、式(2)で表される3−置換フタロニトリルを脂肪族アルコール中、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン(以下DBUという)の存在下にアンモニア、尿素、カルバミン酸アンモニウム、ホルムアミド及びカルバミン酸エチルから選ばれる化合物と反応させた後、引き続き三塩化バナジウムと反応させることを特徴とする、式(1)で表されるα−テトラ置換フタロシアニンの製造法に係るものである。
【0014】
本発明は、既述のジイミノイソインドリンを経由する発明で使用するアルコキシドに代えてDBUを使用する。
アルコキシドを使用する場合、アンモニアなどの量が充分であれば原料の3−置換フタロニトリルはアンモニアなどとの30〜60℃の反応で完全になくなっていくことが薄層クロマトグラフィの経時観察でわかっている。ところが、DBUを使用する場合、ジイミノイソインドリンも一部生成するが、反応温度や反応時間を多少変化させても、3−置換フタロニトリルの多くが消費しきらずに残存する。
【0015】
本発明の反応機構は不明であるが、上記の点から本発明においては前半の反応で生成したジイミノイソインドリンが環化してα−テトラ置換フタロシアニンに至る反応と、前半の反応で消費しきらずに残存した3−置換フタロニトリルが環化してα−テトラ置換フタロシアニンに至る反応の2種類が後半の反応で生起するものと思われる。
【0016】
【発明の実施の形態】
(3)式で表される3−置換フタロニトリルとアンモニアとの反応は、3−置換フタロニトリルを仕込んだ反応容器中へアンモニアを継続的に導入しつつおこなっても、反応容器中へ当初にアンモニアを導入するのみ後は導入せずにおこなってもよい。
【0017】
アンモニアの代りに尿素又はカルバミン酸アンモニウムを使用して3−置換フタロニトリルと反応させる場合は、3−置換フタロニトリルに対しその0.5倍モル程度の尿素又はカルバミン酸アンモニウムを仕込んで反応させればよい。またアンモニアの変わりにホルムアミド又はカルバミン酸エチルを使用する場合は、3−置換フタロニトリルに対し同モル程度のホルムアミド又はカルバミン酸エチルを仕込んで反応させればよい。
この3−置換フタロニトリルとアンモニア、尿素、カルバミン酸アンモニウム、ホルムアミド及びカルバミン酸エチルから選ばれる化合物との反応は、90℃以下の低温でおこなえばよい。
【0018】
3−置換フタロニトリルとアンモニア、尿素、カルバミン酸アンモニウム、ホルムアミド及びカルバミン酸エチルから選ばれる化合物との反応とこの反応に続くジイミノイソインドリン又は/及び3−置換フタロニトリルの環化反応を一浴でおこなうには、先の反応に使用する脂肪族アルコールとして炭素数5〜8の脂肪族アルコールを用いることが望ましい。先の反応に炭素数5〜8の脂肪族アルコールを用いた場合には、後の環化反応に必要な温度を常圧下に無理なく達成できるからである。
後半のジイミノイソインドリンなどの環化反応は、90〜150℃、更に望ましくは100〜130℃でおこなう。この温度が低くなればなるほど反応は進み難くなる。
一方、反応温度が高すぎると、目的とするフタロシアニン中、歪の大きい構造の異性体の比率が減少したり、各種の副生物が増大する危険性が大きくなる。
【0019】
後半のジイミノイソインドリンなどの環化反応は、出発原料である3−置換フタロニトリルの仕込モル数のおよそ4分の1モルに相当する三塩化バナジウムを添加して反応させる。
この三塩化バナジウムの反応系への添加に際しては、残存するアンモニアなどによって三塩化バナジウムが消費したり、分解したりすることのない様に反応系へ事前に窒素を導入するとよい。
【0020】
以上により、反応系中に溶存した状態で生成したフタロシアニンを固形粉末として得、光記録媒体などの用途に利用するに当たっては、反応溶液をメタノールなどで希釈した後、攪拌下に水を滴下して析出するフタロシアニン色素を濾集し、得られたペーストを常法により洗浄・乾燥して粗製のフタロシアニンとする。次いで粗製のフタロシアニンをシリカゲルカラムクロマトグラフィにかけ、適宜間隔で各種異性体からなるフタロシアニンを順次分取し、濃縮・乾燥して精製フタロシアニンとする。
分取した精製フタロシアニンについては、それぞれに含まれる異性体の種類や比率を適宜液体クロマトグラフィなどで確認し、適宜の分取区分を組み合わせて光記録媒体などの用途に供する。
【0021】
以上の本発明の方法による(2)式の3−置換フタロニトリルからの粗製フタロシアニンの収率(粗製収率)は60%台であり、粗製フタロシアニンからの精製フタロシアニンの収率(精製収率)は40%台である。
ちなみに、3−置換フタロニトリルを直接環化して本発明のフタロシアニンを得る場合には、異性体生成比率を度外視した場合でも粗製フタロシアニンの収率は70%台止まりであり、前記した様に式(11)の異性体以外からなる異性体の生成比を25〜30%まで増大させようとするとその収率は50%台止まりとなる。しかも、この場合は粗製フタロシアニンからの精製フタロシアニンの精製収率も30%台と低い。
一方、ジイミノイソインドリンを経由する出願済みの方法による場合、(3)式の3−置換フタロニトリルからの粗製フタロシアニンの収率(粗製収率)は80%台におよび、粗製フタロシアニンからの精製フタロシアニンの収率(精製収率)は70%台におよぶ。特に前半の反応でホルムアミドを使用した場合には、粗製フタロシアニンの収率が80%台におよぶだけでなく、精製フタロシアニンの収率も90%台におよぶ。
また、収率に重点をおいてこの出願済みの方法により得たフタロシアニン中には、式(11)の異性体以外の異性体が合計して50〜90%含まれており、多くの場合は式(11)の異性体以外の異性体が70%以上を占める。
【0022】
【実施例】
以下、本発明を実施例により更に具体的に説明する。
実施例1
1)3−(1’,1’,1’,3’,3’,3’−ヘキサフルオロ−2’−フェニル−2’−プロポキシ)フタロニトリルの合成;
反応フラスコに1,1,1,3,3,3−ヘキサフルオロ−2−フェニル−2−プロパノール29.3g(0.120mol)、3−ニトロフタロニトリル17.3g(0.100mol)、無水炭酸カリウム55.2g(0.400mol)、及びジメチルスルホキシド100mlを仕込み、窒素気流下70℃で6時間撹拌した。室温まで放冷後、反応混合物を水100ml中に排出し、析出物をろ集、水洗、100℃で乾燥して25.9gの目的物結晶を得た(収率70%)。この化合物の融点は150〜155℃であり、GC/MS分析の結果、分子量ピークM=370が確認された。
【0023】
2)環化反応;
反応フラスコに上記で得られたフタロニトリル誘導体18.5g(0.0500mol)、DBU3.80g(0.0250mol)、ホルムアミド1.12g(0.0250mol)、1−ペンタノール100mlを仕込み、窒素気流下で撹拌しながら90℃まで加熱し、この温度で1時間攪拌した。次いで、三塩化バナジウム2.24g(0.0143mol)を投入した。その後、110℃まで加熱し、この温度で4時間撹拌した。放冷後、反応混合物をメタノール230ml中に排出し、撹拌下で水115mlを滴下して生成物を晶析させた。これをろ集、メタノール/水(2/1:容量比)300mlで洗浄、100℃で乾燥して12.62gの粗製色素を得た(粗収率65.26%)。
ここで得られた粗製色素を液体クロマトグラフィーにより分析し(分析条件:カラム;NUCLEOSIL 300−5C18 96YB−2,キャリア;THF/メタノール=10/90)、次の表1のような結果を得た。
【0024】
【表1】
Figure 0003780435
【0025】
表1中、ピークNo.1、及び2は有機溶剤に対する溶解度が高い成分である。ピークNo.3は、有機溶剤に対する溶解度が低い(11)式の異性体と他の異性体の2種の異性体から成るピークであると推定される。シリカゲルカラムクロマトグラフィー(トルエン/ヘキサン=7/3:容量比)により精製して、その異性体比を調査した結果、(11)式の異性体と構造不明の色素成分に分離することができた。後者は、その吸収波長、及びLC/MSの結果より、環化反応中に置換基の一部が分解した成分であると推定されたが、その生成量は微量であった。
【0026】
前記で得た粗製色素2.50gをトルエンを溶媒としたシリカゲルカラムクロマトグラフィーにより精製した結果、精製色素1.17gを得た(精製収率46.8%)。
【0027】
実施例2
DBUの仕込量を7.60g(0.0500mol)とした以外は、すべて実施例1と同様にして目的とする粗製色素を得た。粗収量11.73g(粗収率60.66%)。
ここで得た粗製色素を実施例1と同様に液体クロマトグラフィーにより分析し、次の表2のような結果を得た。
【0028】
【表2】
Figure 0003780435
【0029】
さらに上記で得た粗製色素2.50gをトルエンを溶媒としたシリカゲルカラムクロマトグラフィーにより精製した結果、精製色素0.95gを得た(精製収率38.0%)。
【0030】
実施例3
DBUの仕込量を11.4g(0.0750mol)とした以外は、すべて実施例1と同様にして目的とする粗製色素を得た。粗収量12.88g(粗収率66.130%)。
ここで得た粗製色素を実施例1と同様に液体クロマトグラフィーにより分析し、次の表3のような結果を得た。
【0031】
【表3】
Figure 0003780435
【0032】
さらに上記で得た粗製色素2.50gをトルエンを溶媒としたシリカゲルカラムクロマトグラフィーにより精製した結果、精製色素1.00gを得た(精製収率40.0%)。
以上の実施例1〜3で得た粗製色素について物性を調査した結果を表4に示す。
【0033】
【表4】
Figure 0003780435
【0034】
実施例4
実施例1の1)と同様にして得たフタロニトニル誘導体18.5g(0.0500mol)、DBU3.80g(0.0250mol)、尿素1.50g(0.0250mol)、1−ペンタノール100mlを仕込み、窒素気流下で撹拌しながら90℃まで加熱し、この温度で1時間攪拌した。次いで、三塩化バナジウム2.24g(0.0143mol)を投入した後、110℃まで加熱し、この温度で4時間撹拌した。放冷後、反応混合物をメタノール230ml中に排出し、撹拌下で水115mlを滴下して生成物を晶析させた。これをろ集、メタノール/水(2/1:容量比)300mlで洗浄、100℃で乾燥して13.10gの粗製色素を得た(粗収率67.74%)。
ここで得られた粗製色素を実施例1と同様に液体クロマトグラフィーにより分析したところ、ピークNo1、ピークNo2、ピークNo3の濃度は順に28.8%、25.1%、16.2%であった。
【0035】
【発明の効果】
本発明によれば、3種類の異性体の生成比が比較的均等なα−テトラ置換フタロシアニンを再現性よく得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dye for optical recording, a dye for a color filter, a photoelectric conversion element, an electrophotographic photosensitive member, an organic semiconductor element, a catalyst and a gas sensor, and an α-tetra substitution represented by the formula (1) that can be used for a color filter. The present invention relates to a method for producing phthalocyanine.
[0002]
[Chemical 3]
Figure 0003780435
[0003]
In the formula (1), the numbers 1 to 16 around the phthalocyanine skeleton indicate the position numbers of carbon atoms. The substituent X bonded to the phthalocyanine skeleton means a 1,1,1,3,3,3-hexafluoro-2-phenyl-2-propoxy group represented by the formula (3). Or 5 or 8, 9 or 12, or 13 or 16 at any position.
[0004]
[Formula 4]
Figure 0003780435
[0005]
[Prior art]
The α-tetrasubstituted phthalocyanine can be produced by directly cyclizing 3-substituted phthalonitrile as seen in JP-A-5-17700, or 3-substituted phthalonylyl as seen in JP-A-5-25177. Is known to once obtain diiminoisoindoline and cyclize this diiminoisoindoline.
α-Tetra-substituted phthalocyanines include isomers with low solubility in organic solvents in which substituents are located at the 4,8,12,16 positions of the phthalocyanine skeleton (the same applies to the 1,5,9,13 positions). There are three isomers having relatively high solubility in organic solvents, and the performance as an optical recording dye slightly changes depending on the mixing ratio thereof.
The production ratio of these isomers varies considerably depending on which of the above methods is used, even in the case of producing a phthalocyanine having the same substituent and central metal. However, in any of the production methods, in the case of the above-described conventional phthalocyanine, the isomer having a substituent at the 4, 8, 12, 16 position of the phthalocyanine skeleton is always produced first or second most. In common.
[0006]
[Problems to be solved by the invention]
According to the above-mentioned publication, among the methods for producing phthalocyanine, the former method of directly cyclizing 3-substituted phthalonitrile is considered to be superior to the latter in terms of yield and number of steps.
However, when this method is adopted to obtain the specific phthalocyanine represented by the formula (1) as the target product, the isomer ratio in the target product varies considerably depending on the quality of the vanadium trichloride used. In many cases, the isomer of the formula (11) having a substituent located at the 4, 8, 12, 16 position of the skeleton and having low solubility in the organic solvent accounts for 80% or more of the total isomer.
In addition, even if a mixture of isomers other than the formula (11) can be produced in a total of 25 to 30% of all isomers, the condition setting must be made considerably strict for that purpose, and mass production There was still anxiety in terms of reproducibility. Furthermore, when trying to increase the production ratio of the isomer mixture other than the formula (11) under such severe conditions, the yield of the crude phthalocyanine from the 3-substituted phthalonitrile is considerably deteriorated to 50% level. There were also inconveniences.
[0007]
[Chemical formula 5]
Figure 0003780435
[0008]
Based on such studies, the present inventor can easily produce the phthalocyanine represented by the formula (1) in a high yield, and substitutes the phthalocyanine skeleton at positions 4, 8, 12, and 16. As a result of research to provide a method capable of reliably producing many isomers other than the isomer of formula (11) having a low solubility in the organic solvent in which the group is located, as a result of research, the invention has already been made through diiminoisoindoline. Reached and filed.
[0009]
That is, the invention via diiminoisoindoline means that 3-substituted phthalonitrile represented by the formula (2) is mixed with aliphatic (alkaline) sodium, sodium (or potassium) methoxide, sodium (or potassium) ethoxide, sodium (or potassium). ) Reaction with a compound selected from ammonia, urea, ammonium carbamate, formamide and ethyl carbamate in the presence of an alkoxide such as butoxide to obtain a diiminoisoindoline represented by the formula (4) This is a process for producing an α-tetrasubstituted phthalocyanine represented by the formula (1), characterized in that it is subsequently reacted with vanadium trichloride without isolation from the system.
[0010]
[Chemical 6]
Figure 0003780435
[0011]
[Chemical 7]
Figure 0003780435
[0012]
According to the invention via diiminoisoindoline, it is possible to obtain a phthalocyanine in which the isomer other than the isomer of the formula (11) accounts for 50 to 90% in all isomers in a high yield.
The present invention has been achieved as a result of a study on a method capable of producing three types of isomers relatively evenly by further differentiating the ratio of isomers other than the isomer of formula (11) in the total isomers. And relates to a novel process that is intermediate between the above-described process for direct cyclization of 3-substituted phthalonitriles and the filed process via diiminoisoindoline. It should be noted that the α-tetrasubstituted phthalocyanine can theoretically have four types of isomers. However, in the case of the α-tetrasubstituted phthalocyanine of the present invention, any of the four isomers cannot be obtained by any method, and at most three types of isomers are obtained.
[0013]
[Means for Solving the Problems]
That is, the present invention relates to 3-substituted phthalonitrile represented by the formula (2) in an aliphatic alcohol in the presence of 1,8-diazabicyclo [5.4.0] -7-undecene (hereinafter referred to as DBU). , Urea, ammonium carbamate, formamide and ethyl carbamate, followed by reaction with vanadium trichloride, followed by production of α-tetrasubstituted phthalocyanine represented by formula (1) It is related to the law.
[0014]
In the present invention, DBU is used in place of the alkoxide used in the above-described invention via diiminoisoindoline.
When alkoxide is used, if the amount of ammonia or the like is sufficient, the raw material 3-substituted phthalonitrile is completely eliminated by reaction with ammonia at 30 to 60 ° C. Yes. However, when DBU is used, a part of diiminoisoindoline is also produced, but even if the reaction temperature and reaction time are slightly changed, most of the 3-substituted phthalonitrile remains without being consumed.
[0015]
Although the reaction mechanism of the present invention is unclear, in the present invention from the above points, the diiminoisoindoline produced in the first half of the reaction cyclizes to α-tetrasubstituted phthalocyanine, and the first half of the reaction does not consume it. It is considered that two types of reactions in which the remaining 3-substituted phthalonitrile cyclizes to α-tetrasubstituted phthalocyanine occur in the latter reaction.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Even if the reaction of 3-substituted phthalonitrile represented by the formula (3) and ammonia is carried out while continuously introducing ammonia into a reaction vessel charged with 3-substituted phthalonitrile, it is initially introduced into the reaction vessel. You may carry out without introduce | transducing only after introduce | transducing ammonia.
[0017]
When using urea or ammonium carbamate instead of ammonia and reacting with 3-substituted phthalonitrile, about 0.5 times mole of urea or ammonium carbamate is charged with respect to 3-substituted phthalonitrile. That's fine. In addition, when formamide or ethyl carbamate is used instead of ammonia, the reaction may be carried out by adding about the same mole of formamide or ethyl carbamate to 3-substituted phthalonitrile.
The reaction between the 3-substituted phthalonitrile and a compound selected from ammonia, urea, ammonium carbamate, formamide, and ethyl carbamate may be performed at a low temperature of 90 ° C. or lower.
[0018]
One bath for the reaction of 3-substituted phthalonitrile with a compound selected from ammonia, urea, ammonium carbamate, formamide, and ethyl carbamate and the subsequent cyclization of diiminoisoindoline or / and 3-substituted phthalonitrile. In this case, it is desirable to use an aliphatic alcohol having 5 to 8 carbon atoms as the aliphatic alcohol used in the previous reaction. This is because, when an aliphatic alcohol having 5 to 8 carbon atoms is used in the previous reaction, the temperature necessary for the subsequent cyclization reaction can be easily achieved under normal pressure.
The latter cyclization reaction of diiminoisoindoline and the like is performed at 90 to 150 ° C, more preferably at 100 to 130 ° C. The lower this temperature, the less likely the reaction will proceed.
On the other hand, if the reaction temperature is too high, the ratio of isomers having a large strain in the target phthalocyanine is decreased, and the risk of increasing various by-products is increased.
[0019]
In the latter half of the cyclization reaction of diiminoisoindoline or the like, vanadium trichloride corresponding to about one-fourth of the charged mole number of 3-substituted phthalonitrile as a starting material is added and reacted.
When adding vanadium trichloride to the reaction system, nitrogen is preferably introduced into the reaction system in advance so that vanadium trichloride is not consumed or decomposed by residual ammonia or the like.
[0020]
As described above, phthalocyanine produced in a state dissolved in the reaction system is obtained as a solid powder, and when used for applications such as an optical recording medium, the reaction solution is diluted with methanol and then water is added dropwise with stirring. The precipitated phthalocyanine dye is collected by filtration, and the resulting paste is washed and dried by a conventional method to obtain crude phthalocyanine. Next, the crude phthalocyanine is subjected to silica gel column chromatography, and phthalocyanines consisting of various isomers are sequentially collected at appropriate intervals, concentrated and dried to obtain purified phthalocyanine.
For the purified phthalocyanine thus separated, the types and ratios of the isomers contained therein are appropriately confirmed by liquid chromatography or the like, and combined with appropriate fractionation categories for use as an optical recording medium.
[0021]
The yield (crude yield) of the crude phthalocyanine from the 3-substituted phthalonitrile of the formula (2) by the above-described method of the present invention is about 60%, and the yield of the purified phthalocyanine from the crude phthalocyanine (purification yield). Is in the 40% range.
Incidentally, when the phthalocyanine of the present invention is obtained by directly cyclizing 3-substituted phthalonitrile, the yield of the crude phthalocyanine is only about 70% even when the isomer formation ratio is ignored. If the production ratio of isomers other than the isomer of 11) is increased to 25-30%, the yield will be in the range of 50%. In this case, the purification yield of purified phthalocyanine from crude phthalocyanine is also as low as 30%.
On the other hand, in the case of using the filed method via diiminoisoindoline, the yield of crude phthalocyanine from 3-substituted phthalonitrile of formula (3) (crude yield) is in the 80% range, and purification from crude phthalocyanine. The yield of phthalocyanine (purification yield) is in the 70% range. In particular, when formamide is used in the first half of the reaction, not only the yield of crude phthalocyanine is in the 80% range, but the yield of purified phthalocyanine is in the 90% range.
In addition, the phthalocyanine obtained by this applied method with an emphasis on the yield contains a total of 50 to 90% of isomers other than the isomer of the formula (11). Isomers other than the isomer of formula (11) account for 70% or more.
[0022]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
1) Synthesis of 3- (1 ′, 1 ′, 1 ′, 3 ′, 3 ′, 3′-hexafluoro-2′-phenyl-2′-propoxy) phthalonitrile;
In a reaction flask, 1,1,1,3,3,3-hexafluoro-2-phenyl-2-propanol 29.3 g (0.120 mol), 3-nitrophthalonitrile 17.3 g (0.100 mol), anhydrous carbonic acid 55.2 g (0.400 mol) of potassium and 100 ml of dimethyl sulfoxide were charged and stirred at 70 ° C. for 6 hours under a nitrogen stream. After allowing to cool to room temperature, the reaction mixture was discharged into 100 ml of water, and the precipitate was collected by filtration, washed with water and dried at 100 ° C. to obtain 25.9 g of the target crystal (yield 70%). The melting point of this compound was 150 to 155 ° C., and as a result of GC / MS analysis, a molecular weight peak M + = 370 was confirmed.
[0023]
2) cyclization reaction;
A reaction flask was charged with 18.5 g (0.0500 mol) of the phthalonitrile derivative obtained above, 3.80 g (0.0250 mol) of DBU, 1.12 g (0.0250 mol) of formamide, and 100 ml of 1-pentanol. The mixture was heated to 90 ° C. with stirring at rt and stirred at this temperature for 1 hour. Subsequently, 2.24 g (0.0143 mol) of vanadium trichloride was added. Then, it heated to 110 degreeC and stirred at this temperature for 4 hours. After cooling, the reaction mixture was discharged into 230 ml of methanol, and 115 ml of water was added dropwise with stirring to crystallize the product. This was collected by filtration, washed with 300 ml of methanol / water (2/1: volume ratio), and dried at 100 ° C. to obtain 12.62 g of a crude dye (crude yield 65.26%).
The crude dye obtained here was analyzed by liquid chromatography (analysis conditions: column; NUCLEOSIL 300-5C18 96YB-2, carrier; THF / methanol = 10/90), and the results shown in the following Table 1 were obtained. .
[0024]
[Table 1]
Figure 0003780435
[0025]
In Table 1, peak no. 1 and 2 are components having high solubility in organic solvents. Peak No. 3 is presumed to be a peak composed of two isomers of the isomer of the formula (11) and other isomers having low solubility in an organic solvent. As a result of purifying by silica gel column chromatography (toluene / hexane = 7/3: volume ratio) and investigating the isomer ratio, it was possible to separate into the isomer of formula (11) and the dye component of unknown structure. . The latter was estimated from the absorption wavelength and LC / MS results to be a component in which a part of the substituent was decomposed during the cyclization reaction, but the amount produced was very small.
[0026]
As a result of purifying 2.50 g of the crude dye obtained above by silica gel column chromatography using toluene as a solvent, 1.17 g of purified dye was obtained (purification yield: 46.8%).
[0027]
Example 2
The target crude dye was obtained in the same manner as in Example 1 except that the amount of DBU charged was 7.60 g (0.0500 mol). Crude yield 11.73 g (crude yield 60.66%).
The crude dye obtained here was analyzed by liquid chromatography in the same manner as in Example 1, and the results shown in Table 2 below were obtained.
[0028]
[Table 2]
Figure 0003780435
[0029]
Furthermore, as a result of purifying 2.50 g of the crude dye obtained above by silica gel column chromatography using toluene as a solvent, 0.95 g of a purified dye was obtained (purification yield 38.0%).
[0030]
Example 3
The target crude dye was obtained in the same manner as in Example 1 except that the amount of DBU charged was 11.4 g (0.0750 mol). Crude yield 12.88 g (crude yield 66.130%).
The crude pigment obtained here was analyzed by liquid chromatography in the same manner as in Example 1, and the results shown in the following Table 3 were obtained.
[0031]
[Table 3]
Figure 0003780435
[0032]
Further, 2.50 g of the crude dye obtained above was purified by silica gel column chromatography using toluene as a solvent. As a result, 1.00 g of purified dye was obtained (purification yield 40.0%).
Table 4 shows the results of investigating the physical properties of the crude pigments obtained in Examples 1 to 3 above.
[0033]
[Table 4]
Figure 0003780435
[0034]
Example 4
18.5 g (0.0500 mol) of a phthalonitonyl derivative obtained in the same manner as in 1) of Example 1, 3.80 g (0.0250 mol) of DBU, 1.50 g (0.0250 mol) of urea, and 100 ml of 1-pentanol were prepared. The mixture was heated to 90 ° C. with stirring under a nitrogen stream and stirred at this temperature for 1 hour. Next, after adding 2.24 g (0.0143 mol) of vanadium trichloride, the mixture was heated to 110 ° C. and stirred at this temperature for 4 hours. After cooling, the reaction mixture was discharged into 230 ml of methanol, and 115 ml of water was added dropwise with stirring to crystallize the product. This was collected by filtration, washed with 300 ml of methanol / water (2/1: volume ratio), and dried at 100 ° C. to obtain 13.10 g of a crude dye (crude yield 67.74%).
When the crude pigment | dye obtained here was analyzed by liquid chromatography similarly to Example 1, the density | concentration of peak No1, peak No2, and peak No3 was 28.8%, 25.1%, and 16.2% in order. It was.
[0035]
【The invention's effect】
According to the present invention, α-tetrasubstituted phthalocyanine having a relatively uniform production ratio of the three isomers can be obtained with good reproducibility.

Claims (2)

式(2)で表される3−置換フタロニトリルを脂肪族アルコール中、1,8−ジアザビシクロ[5.4.0]−7−ウンデセンの存在下にアンモニア、尿素、カルバミン酸アンモニウム、ホルムアミド及びカルバミン酸エチルから選ばれる化合物と反応させた後、引き続き三塩化バナジウムと反応させることを特徴とする、式(1)で表されるα−テトラ置換フタロシアニンの製造法。
以下の式(2)(1)において置換基Xは1,1,1,3,3,3,−ヘキサフルオロ−2−フェニル−2−プロポキシ基を意味する。また、式(1)において、フタロシアニン骨格周辺の1〜16の数字は炭素原子の位置番号を示し、置換基Xは、1又は4のいずれか、5又は8のいずれか、9又は12のいずれか、13又は16のいずれかの位置の炭素原子にそれぞれ結合しているものとする。
Figure 0003780435
Figure 0003780435
A 3-substituted phthalonitrile represented by the formula (2) in an aliphatic alcohol in the presence of 1,8-diazabicyclo [5.4.0] -7-undecene is ammonia, urea, ammonium carbamate, formamide and carbamine. A process for producing an α-tetrasubstituted phthalocyanine represented by the formula (1), characterized by reacting with a compound selected from ethyl acid and subsequently reacting with vanadium trichloride.
In the following formulas (2) and (1), the substituent X means a 1,1,1,3,3,3, -hexafluoro-2-phenyl-2-propoxy group. In the formula (1), the numbers 1 to 16 around the phthalocyanine skeleton indicate the position number of the carbon atom, and the substituent X is either 1 or 4, 5 or 8, 9 or 12 Or a carbon atom at any one of positions 13 and 16.
Figure 0003780435
Figure 0003780435
脂肪族アルコールとして炭素数5〜8のアルコールを使用し、全ての反応を常圧下、130℃以下でおこなう請求項1記載のα−テトラ置換フタロシアニンの製造法。The method for producing an α-tetrasubstituted phthalocyanine according to claim 1, wherein an alcohol having 5 to 8 carbon atoms is used as the aliphatic alcohol, and all reactions are carried out at 130 ° C or lower under normal pressure.
JP20704097A 1997-06-25 1997-06-25 Process for producing α-tetrasubstituted phthalocyanine Expired - Fee Related JP3780435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20704097A JP3780435B2 (en) 1997-06-25 1997-06-25 Process for producing α-tetrasubstituted phthalocyanine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20704097A JP3780435B2 (en) 1997-06-25 1997-06-25 Process for producing α-tetrasubstituted phthalocyanine

Publications (2)

Publication Number Publication Date
JPH1112484A JPH1112484A (en) 1999-01-19
JP3780435B2 true JP3780435B2 (en) 2006-05-31

Family

ID=16533219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20704097A Expired - Fee Related JP3780435B2 (en) 1997-06-25 1997-06-25 Process for producing α-tetrasubstituted phthalocyanine

Country Status (1)

Country Link
JP (1) JP3780435B2 (en)

Also Published As

Publication number Publication date
JPH1112484A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
CN108409625B (en) Preparation method of 2-pyrrolidone compound
US5107022A (en) Process for the preparation of aromatic amines
JP3780435B2 (en) Process for producing α-tetrasubstituted phthalocyanine
JPS63145284A (en) Imidazole derivative and its production
JP3780436B2 (en) Process for producing α-tetrasubstituted phthalocyanine
JPH0597848A (en) Production of tetrahydrophthalimide compound
JP3205648B2 (en) Method for producing 2-chloro-5-aminomethylpyridine
JPH0269457A (en) Pyrrole derivative and production thereof
US4125724A (en) Hydrogenation process
JPH06184109A (en) Squarylium-based compound
Kobayashi et al. Convenient Direct Synthesis of Vinylogous Urea Derivatives Using Magnesium Amido-Induced Amide/Nitrile Coupling
AU671334B2 (en) Preparation of 1-amino-1-cyanamido-2,2-dicyanoethylene, sodium salt
Achmatowicz et al. The synthesis of l-proline derived hexaazamacrocyclic ligands of C3 symmetry via intramolecular methyl ester aminolysis
CN117820230A (en) Synthesis method of pyrazolone spiro pentene
JP2003048873A (en) Method of producing 4-phthalonitrile derivative
JPH11106386A (en) Production of metallophthalocyanines
JPH06116236A (en) Production of bisimide compound
RU2238272C1 (en) Method for preparing 1-alkyl-6,6-dimethyl-2,4-dioxo-2,3,4,5,6,7-hexahydro-1h-indole-3-spiro-2-( 1-aryl-3-aroyl-4-hydroxy-5-oxo-2,5-dihydropyrrols)
Bajji et al. Synthesis of indeno [2, 1‐b][1, 4] benzothiazine derivatives from 2‐bromoinden‐1‐ones
JP2893906B2 (en) Method for producing unsaturated ketone compound
CN114349699A (en) Synthesis method of (R) -2- (4-methoxybenzyl) -4-methylene-1-p-toluenesulfonyl pyrrolidine
JPS5946282A (en) Preparation of optically active lactone
JPH0796540B2 (en) Phthalocyanine compound and its intermediate
JPH0665200A (en) Production of phthalimide compound
SU639880A1 (en) Method of obtaining phenothiazine derivatives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040419

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees