[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3779478B2 - Relay board and manufacturing method thereof - Google Patents

Relay board and manufacturing method thereof Download PDF

Info

Publication number
JP3779478B2
JP3779478B2 JP33803798A JP33803798A JP3779478B2 JP 3779478 B2 JP3779478 B2 JP 3779478B2 JP 33803798 A JP33803798 A JP 33803798A JP 33803798 A JP33803798 A JP 33803798A JP 3779478 B2 JP3779478 B2 JP 3779478B2
Authority
JP
Japan
Prior art keywords
main surface
hole
surface side
solder
concave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33803798A
Other languages
Japanese (ja)
Other versions
JP2000183242A (en
Inventor
容 多島
敬章 平岡
訓 平野
康宏 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP33803798A priority Critical patent/JP3779478B2/en
Publication of JP2000183242A publication Critical patent/JP2000183242A/en
Application granted granted Critical
Publication of JP3779478B2 publication Critical patent/JP3779478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Combinations Of Printed Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ICチップやトランジスタ、抵抗、コンデンサ等の機能部品や機能部品を搭載した配線基板等の電子部品の端子と、これを搭載するためのマザーボード、ドーターボード等のプリント配線板に設けた端子との間に介在させて相互に接続させる中継基板及びその製造方法に関し、特に、製造容易で微細な間隔を持つ端子同士を接続できる中継基板及びその製造方法に関する。
【0002】
【従来の技術】
従来より、ICチップをプリント配線板にベアチップ実装する場合に、ICチップが不良であった場合のリペアの困難さを考慮して、ICチップとプリント配線板の間に中継基板(インターポーザ)を介在させることがある。特に、複数のICチップを1つのプリント配線板に搭載する場合には、一旦中継基板に複数のICチップを接続し、いずれのICチップも正常であることを確認してから、中継基板をプリント配線板に接続することが多い。
【0003】
このような従来の中継基板の構造について、図11を参照しつつ説明する。図11(a)に示す中継基板110は、アルミナセラミックからなる中継基板本体111の2つの主面111A,111Bの間に開けた貫通孔111H内に、タングステン、モリブデン等のビア112を形成し、この上下を覆うようにして主面111A,111Bにそれぞれタングステン、モリブデン等のパッド113,114を形成したものである。このような中継基板110を介在させて、図11(b)に示すように、ICチップ等の電子部品D10,D20を、プリント配線板P10に接続する。
【0004】
電子部品D10,D20は、それぞれシリコンからなる部品本体D11,D21の接続面D11B,D21B(図中下面)に、多数のパッドD12,D22を備え、これらのパッドD12,D22には、高温ハンダ(例えば、95Pb−5Sn)からなり略半球状のハンダバンプD13,D23を備える。また、プリント配線板P10は、ガラス−エポキシ樹脂複合材料からなる配線板本体P11の接続面P11A(図中上面)に、電子部品D10,D20のパッドD12,D22(ハンダバンプD13,D23)に対応した配置で、銅からなる接続パッドP12、及び、高温ハンダからなり略半球状のハンダバンプP13を備える。これらのハンダバンプD13,D23と中継基板110のパッド113とを、およびハンダバンプP13とパッド114とを上記高温ハンダよりも低融点のハンダ(例えばPb−Sn共晶ハンダ37Pb−63Sn)S1,S2で接続する。
【0005】
その他の中継基板として、図12に示すものも挙げられる。この中継基板120は、ガラス−エポキシ樹脂複合材料からなる中継基板本体121の2つの主面121A,121Bの間に開けた貫通孔121H内に、銅メッキにより略円筒状のスルーホール導体122を形成し、さらにこの内部に導電性樹脂(あるいは絶縁性樹脂)からなるプラグ材125を充填し、銅メッキにより蓋状にパッド123,124をそれぞれ形成したものである。この中継基板120も、上記(図11参照)と同様にして、電子部品D10,D20やプリント配線板P10と接続して用いることができる。
【0006】
【発明が解決しようとする課題】
しかしながら、上記した中継基板110は、中継基板本体111がアルミナ等のセラミックからなるため、靭性が低く、応力が掛かると折れる等の不具合を生じるため、中継基板本体111の厚さを薄くすることができない。一方、厚さが厚いとビア112の長さが長くなるため、ビア112の持つ抵抗やインダクタンスが大きくなって、電気的特性上も好ましくない。また、厚さが厚いと、プリント配線板P10との熱膨張差に起因する応力が大きくなるため、両者間の接続信頼性も低下する。
さらに、この中継基板110は、例えば図13(a)に示すように、焼成後に中継基板本体111となるセラミックグリーンシートGの2つの主面GA,GBを貫通する貫通孔GH内に、タングステンペースト等の導体ペーストGPを充填し、さらにパッド(図示しない)を印刷し焼成して形成する。この場合には、グリーンシートGの厚さが薄いと、貫通孔GH内に導体ペーストGPを保持する能力に乏しいため、印刷時に一旦は充填された導体ペーストGPの一部またはほぼ全部が脱落して、充填不良となりやすく、歩留まりが低下する。また、導体ペーストGPの量が一定でないと、各パッドに凹凸ができてコプラナリティが低下し、ICチップなどの電子部品D10等との接続性が低下する。
【0007】
一方、上記した中継基板120では、中継基板本体121に含まれるガラス繊維に沿ってマイグレーションを生じるため、隣接する貫通孔121H同士の間隔を狭くする、例えば、200μm以下とすると、中継基板120の高温高湿条件下での信頼性が低下するため、間隔を狭くすることができない。また、この中継基板120は、プラグ材125を充填し熱硬化させると、図13(b)に示すように、その表面125Sに凹凸が生じるため、研磨によってその表面125Sを平坦にし、その後パッド123,124を形成するのであるが、中継基板本体121の厚さが薄くなると、研磨が困難になってくる。また、上記導電ペーストGPと同様に、中継基板本体121の厚さが薄くなると、一旦充填したプラグ材(樹脂)125が脱落しやすくなる。さらに、プラグ材125の上下に蓋状のパッド123,124を形成するので、プラグ材125の形成後に研磨し、さらにメッキによってパッド123,124を形成するため、中継基板120の製作には工数が掛かり高価となる。また、電子部品D10等のハンダバンプD13と接続するには、予め低融点ハンダペーストをパッド123等に塗布しておき、電子部品D10等を重ねた後にハンダペーストを加熱溶融させてハンダ付けする必要がある。
【0008】
本発明は、かかる問題点に鑑みてなされたものであって、歩留まりが高く形成容易で、電子部品等とのハンダ付けも容易な中継基板及びその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段、作用及び効果】
その解決手段は、第1主面と第2主面とを備え、この2つの主面間を貫通する貫通孔を有する中継基板本体と、上記貫通孔の第2主面側開口を塞ぐ底部と上記貫通孔内周面を覆う側部とを備える略凹形状の凹状導体と、上記凹状導体の凹部内に充填され上記第1主面側に突出する充填ハンダ体と、を備えることを特徴とする中継基板である。
【0010】
本発明によれば、底部と側部とを有する有底の凹状導体を備えるので、充填ハンダ体とするためにスクリーン印刷等によって充填したハンダペーストの一部または全部が脱落することはないから、充填ハンダ体の量、従って、突出高さが均一になり、ICチップ等の電子部品のバンプやパッドなどの端子との接続性が高くなる。また、ハンダペーストを充填する際に脱落する心配がないので、中継基板本体の厚さを薄くできる。また、充填ハンダ体が第1主面側に突出しているので、接続する電子部品等のパッドやバンプとの接続に際して、確実に接続させることができる。
【0011】
なお、上記充填ハンダ体を、第1主面側で接続する電子部品等のバンプ等より低融点の材質からなるものとすると、電子部品等と中継基板とを接続させるのに際して、バンプ等より低融点のハンダペーストを予め塗布しておくなどの作業が不要とすることができる。
【0012】
ここで、中継基板本体としては、靭性、絶縁性、耐湿性、加工性等を考慮して適宜選択すればよい。例えば、エポキシ樹脂、ポリイミド樹脂、BT樹脂,PPE樹脂等の樹脂、ガラス−エポキシ樹脂複合材料など、これらの樹脂とガラス繊維(ガラス織布やガラス不織布)との複合材料、これらの樹脂とポリアミド繊維などの有機繊維との複合材料、連続多孔質PTFE等の三次元網目状フッ素系樹脂にエポキシ樹脂等を含浸させた複合材料などが挙げられる。
凹状導体は、中継基板本体の材質等を考慮して選択すればよいが、例えば、銅、ニッケル等が挙げられる。
また、充填ハンダ体は、接続するICチップ等の電子部品やプリント配線板のバンプの材質を考慮して、材質や融点を選択すればよいが、例えば、Pb−Sn共晶ハンダ(37Pb−63Sn)や高温ハンダ(95Pb−5Sn,90Pb−10Sn等)、あるいは96.5Sn−3.5Ag、95Sn−5Sbハンダ等が挙げられる。
【0013】
さらに、上記の中継基板であって、前記中継基板本体の厚さが200μm以下であることを特徴とする中継基板とすると良い。
【0014】
中継基板の厚さが薄い場合には、前記したように貫通穴内にペースト等を充填してもその後に脱落する不具合を生じやすく、特に、中継基板本体の厚さが200μm以下である場合には、貫通孔内に導体ペーストやプラグ材用の樹脂ペーストを保持させにくくなる。これに対して、本発明では有底の凹状導体を備えるので、ペースト等の脱落を生じることがなく、特に、200μm以下の厚さの中継基板本体においても、確実にハンダペーストを保持し、均一な突出高さの充填ハンダ体を形成することができる。従って、凹状導体や充填ハンダ体の抵抗やインダクタンスをより低下させることができる。また、厚さを薄くした場合には、相対的に凹状導体の形状が底の浅い形状になるので、凹状導体中へのハンダペーストの充填がより容易になるから、充填ハンダ体の体積や突出高さもより均一にできる。さらに、中継基板本体の厚さが薄いので、この中継基板を介在させて電子部品とプリント基板とを接続しても、中継基板を介在させずに直接接続した場合に比較してさほど全体の高さが高くならない。したがって、低背化の要求にも応えることができる。
【0015】
さらに、上記の中継基板であって、隣接する前記凹状導体の側部同士の間隙が、200μm以下であり、前記中継基板本体が、ガラス繊維を含まない樹脂系複合材料からなることを特徴とする中継基板とすると良い。
【0016】
中継基板本体の材質として、樹脂系複合材料を用いる場合には、アルミナ等のセラミックを用いる場合に比して、靭性が高いため、中継基板本体の厚さを薄くすることができる。従って、凹状導体や充填ハンダ体の抵抗やインダクタンスをより低下させることができる。また、厚さを薄くした場合には、凹状導体中へのハンダペーストの充填がより容易になって、充填ハンダ体の体積や突出高さもより均一にできる。
また、樹脂系複合材料を用い場合のうち、ガラス繊維を含むもの(例えば、ガラス−エポキシ樹脂複合材料)は、貫通孔形成の際などに樹脂とガラス繊維との間に隙間ができやすく、この隙間に浸入したメッキ液等の水分によってガラス繊維の表面に沿って凹状導体をなす銅等の金属が移動するマイグレーションを生じてショートしやすいが、本発明では、ガラス繊維を含まない樹脂系複合材料を用いるので、凹状導体の側部の間隙が200μm以下という短い距離であっても、マイグレーションを生じることもなく、信頼性の高い中継基板とすることができる。
【0017】
なお、ガラス繊維を含まない樹脂系複合材料としては、例えば、エポキシ樹脂、ポリイミド樹脂、BT樹脂、PPE樹脂等の樹脂とポリアミド繊維などの有機繊維との複合材料、連続多孔質PTFE等の三次元網目状フッ素系樹脂にエポキシ樹脂等を含浸させた複合材料などが挙げられる。
【0018】
さらに、上記中継基板であって、前記凹状導体の底部のうち第2主面側に、前記充填ハンダ体をなすハンダよりも高融点のハンダからなる高温ハンダバンプを備えることを特徴とする中継基板とすると良い。
【0019】
一般に、ハンダは組成が異なっても相溶するため、高融点のハンダと低融点のハンダとが溶融状態で接触すると次第に混じり合って、組成が次第に変化してしまう。
本発明では、凹状導体の凹部内に充填ハンダ体、凹状導体の底部の第2主面側にはそれよりも高融点の高温ハンダバンプを備えるので、第1主面側でICチップのバンプ等とを接続し、第2主面側でバンプを形成していないプリント配線板のパッドと接続することができる。
しかもこの際、充填ハンダ体と高温ハンダバンプとは凹状導体の底部で仕切られることになり、例えば、高温ハンダバンプを形成する際、あるいは充填ハンダ体を形成する際に、互いに混じり合わないので、組成変化が無い。つまり、充填ハンダ体の融点が上昇し、あるいは、高温ハンダバンプの融点が低下することがない。従って、接続したICチップ等のリペアのために、接続や取り外しのために何回も加熱した場合でも、充填ハンダ体と第2主面側の高温ハンダバンプの両者の相溶による組成や融点の変化を生じないから、同一条件で接続やリペアを繰り返し行うことができる。
【0020】
また、ICチップ等の電子部品と第1主面側で接続した場合には、ICチップ等と本発明の中継基板とで、あたかも第2主面側に高温ハンダバンプを備える一体の基板(電子部品)のように取り扱うことができるので、これをマザーボード等のプリント配線板等に接続するのに、この高温ハンダバンプにより容易に接続することができる。
【0021】
さらに他の解決手段は、第1主面と第2主面とを備える中継基板本体に、上記2つの主面間を貫通する貫通孔及びこの貫通孔の第2主面側開口を塞ぐ底部と上記貫通孔内周面を覆う側部とを有する略凹形状の凹状導体を形成する貫通孔凹状導体形成工程と、上記第1主面側から上記凹状導体の凹部内にハンダペーストを充填し加熱して、上記凹状導体内に充填され上記第1主面側に突出する充填ハンダ体を形成する充填ハンダ体形成工程と、を備えることを特徴とする中継基板の製造方法である。
【0022】
本発明によれば、貫通孔凹状導体形成工程において貫通孔および凹状導体を形成したので、充填ハンダ体形成工程において、凹状導体の凹部内に確実にハンダペーストを充填することができる。また、ハンダペーストの一部または全部が脱落する等の不具合を生じないため、歩留まり良く中継基板を製造することができる。また、充填ハンダ体のハンダの量を略一定にでき、突出高さも均一にできるから、第1主面側でICチップ等の電子部品と接続させる場合に、接続性も高くできる。また、充填ハンダ体が第1主面側に突出しているので、電子部品等のパッドやバンプ等との接続に際して、確実に接続させることができる。
【0023】
さらに、他の解決手段は、第1主面と第2主面とを備え、この2つの主面のうち少なくとも上記第2主面に第2主面側金属層を有する中継基板本体のうち、上記第1主面に金属層を有さず第2主面にのみ第2主面側金属層を有する所定位置に、上記中継基板本体を穿孔可能で上記第2主面側金属層を穿孔不能なレーザを用いた上記第1主面側からのレーザ加工により、上記第2主面側金属層で第2主面側開口を塞がれた貫通孔を穿孔する貫通孔形成工程と、少なくとも上記第2主面側金属層のうち上記第2主面側開口において上記貫通孔内に向かって露出する露出面および上記貫通孔内の内周面にメッキを施して、略凹形状の凹状導体を形成する凹状導体形成工程と、上記第1主面側から上記凹状導体の凹部内にハンダペーストを充填し加熱して、上記凹状導体内に充填され上記第1主面側に突出する充填ハンダ体を形成する充填ハンダ体形成工程と、を備えることを特徴とする中継基板の製造方法である。
【0024】
本発明によれば、中継基板本体を穿孔可能で第2主面側金属層を穿孔不能なレーザによるレーザ加工で中継基板本体に貫通孔を形成するので、微細な貫通孔を高い精度で穿孔できる。しかも、第2主面側金属層を穿孔不能なレーザを当てるため、第2主面側金属層でレーザが反射されるので確実に貫通孔を形成できる。また、第2主面側金属層には穴は空かないため、凹状導体形成工程において、底部を形成する際の基材としてそのまま使うことができるので、貫通孔の第2主面側開口に容易に凹状導体の底部を形成できる。つまり、第2面側金属層は、貫通孔形成工程においては、レーザのストッパ(及び反射板)の役割をして貫通孔の孔開けに寄与する上、凹状導体形成工程においては、メッキによって形成する凹状導体の底部の基材としてその貫通孔に露出する露出面をなすようにすることができる。
【0025】
さらに、有底の凹状導体を形成したので、充填ハンダ体形成工程において、凹状導体の凹部内に確実にハンダペーストを充填することができ、ハンダペーストの一部または全部が脱落する等の不具合を生じないから、歩留まり良く中継基板を製造することができる。また、充填ハンダ体のハンダの量を略一定にでき、突出高さも均一にできるから、第1主面側でICチップ等の電子部品と接続させる場合に、接続性も高くできる。また、充填ハンダ体が第1主面側に突出しているので、電子部品等のパッドやバンプ等との接続に際して、確実に接続させることができる。
【0026】
さらに、上記の中継基板の製造方法のうち貫通孔形成工程において、前記貫通孔の第2主面側開口の径よりも、これを塞ぐ第2主面側金属層の径が大きくされていることを特徴とする中継基板の製造方法とすると良い。
貫通孔形成工程において、このように第2主面側金属層の径が形成する貫通孔の第2主面側開口の径よりも大きい場合には、レーザ加工における位置ずれが多少生じても、確実に開口を第2主面側金属層を塞ぐことができる。
【0027】
さらに、上記の中継基板の製造方法において、前記貫通孔形成工程は、前記第1主面に所定パターンの透孔を備える第1主面側金属層と前記第2主面のうち少なくとも上記透孔に対応する位置に配置された第2主面側金属層とを有する前記中継基板本体に、上記第1主面側金属層の透孔に対しこの透孔より広くレーザを照射し、透孔と断面略同形の前記貫通孔を形成するコンフォーマルマスク貫通孔形成工程であることを特徴とする中継基板の製造方法とすると良い。
本発明によれば、透孔をコンフォーマルマスクとして用い、透孔より広くレーザを照射し、透孔と略同径の前記貫通孔を形成したので、所定位置及び形状で貫通孔を確実に形成できる。また、レーザの位置決め精度が低くても形成可能である。また、貫通孔を形成する部分以外の部分が第1主面側金属層で覆われている場合には、一度に複数の貫通孔を同時に形成することもできる。
【0028】
【発明の実施の形態】
(実施形態1)
本発明にかかる第1の実施の形態について、図面を参照しつつ説明する。図1(a)は、本実施形態1にかかる中継基板10の平面図であり、図1(b)は、その部分拡大断面図である。平面視略正方形板状の中継基板本体11は、ガラス繊維を含まず、連続多孔質PTFEにエポキシ樹脂を含浸させ硬化させた樹脂−樹脂複合材料(厚さ50μm)からなり、第1主面11Aおよび第2主面11Bを備え、さらに、この2つの主面間を貫通する直径50μmの貫通孔11Hを多数備える。この貫通孔11H同士の間隙(クリアランス)は、最も小さいもので150μmとされている。この貫通孔11Hには、銅からなり略凹字形状の凹状導体12が形成されており、その底部12Tが貫通孔11Hの第2主面11B側開口を塞ぎ、側部12Sが貫通孔11Hの内周面を覆うように配置されている。また、本実施形態の凹状導体12においては、側部12Sが、第1主面11Aのうち貫通孔11Hの第1主面側開口周縁11APにまで延在して第1主面側開口周縁部12Pを形成しており、また、底部12Tは、貫通孔11Hの第2主面側開口周縁11BPにまで拡がって第2主面側開口周縁部12Qを形成している。
【0029】
また、各凹状導体12には、それぞれ、凹状導体側部12Sと底部12Tとで形成される凹部12R、即ち、凹状導体側部12Sの内周面12SHと底部12Tの第1主面側面(凹部底面)12TAで囲まれた凹部12R内に充填され、さらに、第1主面側開口周縁部12P上にまで拡り、第1主面11A側(図1(b)中上方)に向かって、略球面状に突出する充填ハンダ体13を備える。
この充填ハンダ体13は、Pb−Sn共晶ハンダ(37Pb−63Sn)からなり、後述するように、第1主面11A側でICチップ等の電子部品のバンプ等を接続する場合に、この充填ハンダ体13を溶融させて、バンプ等と接続させるものである。
この貫通孔11H、凹状導体12および充填ハンダ体13は、接続する電子部品のバンプ等の配列に対応した位置に配置されており、本実施形態では、図1(a)から容易に理解できるように、充填ハンダ体13は、4群に別れて配置され、それぞれ平面視格子状に配列されており、4つの電子部品(以下では、電子部品D10,D20で代表させる)を接続させるようになっている。
【0030】
この中継基板10は、例えば、以下のようにして使用する。図2(a)に示すように、まず、ICチップ等の電子部品D10,D20…と接続する。即ち、電子部品本体D11,D21の接続面(図中下面)D11B、D21Bに形成されたパッドD12,D22に固着され略半球形状をなす高温ハンダバンプD13,D23を、中継基板10の充填ハンダ体13によりハンダ付け接続する。高温ハンダバンプD13,D23は、例えば、95Pb−5Snからなるので、Pb−Sn共晶ハンダからなる充填ハンダ体13のみ溶融する温度(例えば、230℃)に加熱して充填ハンダ体13を溶融させて、高温ハンダバンプD13,D23と接触させることにより、ハンダ付けを行う。なおこの際、充填ハンダ体13は第1主面11A側に突出しているので、高温ハンダバンプD13,D23の高さにバラツキがあったり、中継基板本体11に反りやうねりがあっても、充填ハンダ体13と高温ハンダバンプD13等とを確実に接続させることができる。
【0031】
また、第1主面側に接続する電子部品D10、D20の高温ハンダバンプD13,D23より低融点の、具体的には、Pb−Sn共晶ハンダからなる充填ハンダ体13を有しているため、電子部品D10等と中継基板10とを接続させるのに際して、予めハンダペーストを塗布するなどの作業が不要となる。
なお、貫通孔11Hに有底の凹状導体12を配置しているので、後述するように、充填ハンダ体13を形成するのに際して、凹部12Rに充填・塗布したハンダペーストがその後に脱落することが無く、ハンダペースト量を一定に保つことができるので、充填ハンダ体13の突出高さが均一に揃っている。従って、この点から、高温ハンダバンプD13等との接続が確実にできる。また、充填ハンダ体13溶融させても、第2主面側(底部12Tの第2主面側面12TB)に濡れ拡がることがないので、この点からも充填ハンダ体13のハンダ体積が一定になり、接続が確実になる。
【0032】
その後、接続した電子部品D10,D20等の動作確認をし、不具合のあるものは取り外して別の電子部品を再度接続する。いずれの電子部品も正常に動作した場合には、さらに、図2(b)に示すように、プリント配線板P10と接続させる。
プリント配線板本体P11の接続面(図中上面)P11Aに形成されたパッドP12に固着され略半球形状をなす高温ハンダバンプP13を、中継基板10の凹状導体12の底部12TにPb−Sn共晶ハンダSLによってハンダ付け接続する。具体的には、凹状導体12の底部12Tに、または高温ハンダバンプP13に予めPb−Sn共晶ハンダペースト(図示しない)を塗布しておき、プリント配線板P10上に電子部品D10,D20を搭載した中継基板10を重ねて、リフロー炉で加熱してPb−Sn共晶ハンダペーストを溶融させ、凹状導体12と高温ハンダバンプP13とをハンダ付け接続する。これにより、各電子部品D10,D20…は、いずれも中継基板10を介してプリント配線板P10に接続されたことになる。
【0033】
このようにして、電子部品D10,D20とプリント配線板P10とを接続する中継基板10は、例えばガラス−エポキシ樹脂複合材料のようにガラス繊維を含む複合材料ではなく、上記したように連続多孔質PTFEにエポキシ樹脂を含浸硬化させた樹脂−樹脂複合材料であるので、耐湿性が高く、マイグレーションを生じ難い。このため、本実施形態のように、貫通孔11H同士の間隙が最小で150μmとした場合にも、マイグレーションによる短絡等を生じることがない。
【0034】
(比較形態1,2)
これに対し比較形態1,2として、中継基板本体の材質にガラス繊維を含む材質、具体的にはガラス繊維織布にBT(ビスマレイミド−トリアジン)樹脂を含浸させた厚さ200μmのガラス−BT樹脂複合材料を用い、各ビア径(貫通孔径)300μm、ビア同士の最小間隙を200μm及び400μmとした従来の中継基板(図12参照)を製作した。
【0035】
(実施形態1B)
さらに、実施形態1Bとして、上記実施形態1の中継基板10と同様の材質からなるが、中継基板本体の厚さを4倍厚い200μmとし、凹状導体径(貫通孔径)50μmは同様であるが、凹状導体側部同士の最小間隙を50μm大きい200μmとした中継基板も製作した。
【0036】
(試験例)
これらの実施形態1,1B,比較形態1,2にかかる中継基板10等を用いて湿中負荷試験を行い、マイグレーションの発生による絶縁抵抗低下の有無を比較した。具体的には、温度85℃×湿度85%RH、大気圧の条件に設定した恒温恒湿槽中で、各中継基板のビア間にDC50Vの電圧を印加して保持し、適時ビア間の絶縁抵抗(5V×60秒)を測定し、100MΩ以上の絶縁抵抗を保てる期間を測定した。結果を表1に示す。
【0037】
【表1】

Figure 0003779478
【0038】
上記表1から判るように、ビア同士の最小間隙が400μmである比較形態2では、100MΩ以上の絶縁抵抗を1000時間以上保持しているのに対し、比較形態1では、500時間で絶縁抵抗が100MΩ以下となった。具体的には、中継基板本体のガラス繊維に沿って銅マイグレーションが生じ、ビア同士の間に電気的な経路が形成されていた。このことから、ガラス繊維を含む樹脂系複合材料、さらに具体的には、ガラス−BT樹脂複合材料を用いた場合には、ビア同士の間隙を400μm程度保てば良いが、この間隙を200μm以下とすると、マイグレーションを生じるため、中継基板の信頼性が著しく低下することが判る。
【0039】
一方、実施形態1,1Bについては、いずれも100MΩ以上の絶縁抵抗を1000時間以上保持している。これらの実施形態では、中継基板本体11等の材質に、ガラス繊維を含まない樹脂系複合材料、具体的には、三次元網目状フッ素系樹脂にエポキシ樹脂等を含浸させた複合材料、さらに具体的には、連続多孔質PTFEにエポキシ樹脂を含浸させ硬化させた樹脂−樹脂複合材料を用いた。このため、凹状導体同士の間隙が200μm以下、具体的には、200μm(実施形態1B)、さらには150μm(実施形態1)としても、マイグレーションを生じなかったものと考えられる。従って、ガラス繊維を含まない樹脂系複合材料、具体的には連続多孔質PTFEにエポキシ樹脂を含浸させた樹脂−樹脂複合材料を中継基板本体に用いた場合には、凹状導体の側部同士の間隙を200μm以下、さらには150μm以下としても、マイグレーションを生じず、高い信頼性を有する中継基板が得られることが判る。
【0040】
ついで、この中継基板10の製造方法について、図3、図4を参照して説明する。まず、図3(a)に示すように、厚さ50μmで連続多孔質PTFEにエポキシ樹脂を含浸させ硬化させた複合材料からなり、第1主面11Aと第2主面11Bとを有し略板状をなす中継基板本体11を用意する。この中継基板本体11の第1主面11Aには、所定位置に直径50μmの透孔14Hを備える厚さ12μmの銅箔14が、また、第2主面11Bにも、略全面に厚さ12μmの銅箔15が被着されている。
【0041】
ついで、第1主面11A側から、YAGレーザの第3高調波(355nm)を透孔14Hよりも広い範囲にわたって照射して透孔14Hをマスクパターンとして用い、図3(b)に示すように、中継基板本体11に透孔14Hと断面略同形の貫通孔11Hを複数個一挙に形成する。このレーザ光は、銅箔14で反射されるため、銅箔14の無い透孔14H内のみレーザ加工される。即ち、銅箔14は、コンフォーマルマスク法におけるコンフォーマルマスクとなる。また、銅箔15も、このレーザ光を反射するため、銅箔15には貫通孔(透孔)は形成されないため、貫通孔11Hは、銅箔15で塞がれた状態となる。さらに、銅箔15によってレーザ光が反射するため、入射光と反射光によって貫通孔14Hが確実に形成される。これにより、本実施形態では、直径50μm、最小間隙150μmの貫通孔11Hを多数形成した。
【0042】
その後、銅箔14の表面(図中上面)、銅箔15の表面(図中下面)、銅箔15の貫通孔14H内露出面(図中上面)及び貫通孔11Hの内周面に、無電解銅メッキを施して、厚さ1μmの無電解銅メッキ層16,17をそれぞれ形成する(図3(c)参照)。
さらに、感光性メッキレジストフィルムを無電解メッキ層16,17上に貼り付け、露光・現像して、貫通孔11H内とその第1主面側開口周縁(直径120μm)の無電解メッキ層16、および貫通孔11Hの第2主面側とその開口周縁(直径120μm)の無電解メッキ層17が露出するように透孔MR1H、MR2Hを有するメッキレジスト層MR1,MR2を形成する。ついで、この無電解銅メッキ層16,17を共通電極として電解銅メッキを施し、貫通孔11H内および第1主面側開口周縁の無電解メッキ層16上に略凹字形状の厚さ6μmの電解銅メッキ層18を、また、貫通孔11Hの第2主面側及びその開口周縁の無電解メッキ層17上に同厚の電解銅メッキ層19をそれぞれ形成する(図3(d)参照)。
【0043】
その後、メッキレジストMR1,MR2を溶解除去し(図3(e)参照)、露出した無電解銅メッキ層16,17及びその下部に位置する銅箔14,15をエッチングによって除去することにより、図4(a)に示すように、貫通孔11H内及びその周縁に略凹形状の凹状導体12を形成する。この凹状導体12は、その底部12Tで貫通孔11Hを塞ぎ、側部12Sで貫通孔11Hの内周面を覆い、凹部12Rを形成している。
さらに、図4(b)に示すように、貫通孔11Hの位置に対応した透孔MHを有するマスクMを用いて、凹部12R内およびその第1主面11A側(図中上方)にPb−Sn共晶ハンダペーストSPを充填・塗布する。この際、貫通孔11Hは、凹状導体12の底部12Tで塞がれて有底(盲孔)の状態となるので、凹部12R内に充填されたPb−Sn共晶ハンダペーストSPが、従来のように(図13(a)参照)脱落することがないため、歩留まり良く充填することができる。
その後、リフロー炉を通して加熱することにより、Pb−Sn共晶ハンダペーストを溶解させて、充填ハンダ体13とし、中継基板10を完成させる(図1参照)。この中継基板10では、充填ハンダ体13のハンダ体積がほぼ一定となるため、充填ハンダ体13の突出高さもほぼ一定となる。
なお、本実施形態では、銅箔14をコンフォーマルマスクとして用いたので、レーザ光の照射位置精度を高くする必要がない点で有利である。また、透孔14Hをのぞき、第1主面11Aを銅箔14で覆っているので、複数の貫通孔11Hを一挙に形成できる点でも有利である。
【0044】
(実施形態2)
ついで、第2の実施の形態について、図5を参照しつつ説明する。本実施形態の中継基板20は、図5(a)に示す部分拡大断面図から容易に理解できるように、上記実施形態1の中継基板10と略同様であるが、底部12Tの第2主面側面12TBに略半球状に盛り上がった高温ハンダバンプ23を備えている点で異なるものである。そこで以下では、同様な部分の説明は省略または簡略化し、異なる部分について説明する。
本実施形態の中継基板20の高温ハンダバンプ23は、90Pb−10Snからなり、凹状導体12の第2主面側面12TBに溶着し、略半球状をなしている。このような高温ハンダバンプ23は、上記したように、例えば、Pb−Sn共晶ハンダを溶融させる程度の加熱(230℃程度)では溶融しないので、上記実施形態1の場合と、第1主面11A側で同様に電子部品D10,D20等と接続することができる。
【0045】
一方、プリント配線板P10と接続する際には、上記実施形態1と異なり、プリント配線板P10のパッドP12に予め高温ハンダバンプP13を形成しておく必要が無い。つまり、中継基板20を介さずに直接電子部品D10等をパッドP12に接続する場合と同様に、高温ハンダバンプ23を用いて、高温ハンダバンプP13の無いパッドP12と接続させることができる(図示しない)。具体的には、高温ハンダバンプ23、あるいはパッド12上にPb−Sn共晶ハンダペーストを塗布しておき、プリント配線板P10(但し高温ハンダバンプP13無し)と中継基板20を重ねて加熱し、Pb−Sn共晶ハンダペーストを溶融させて接続する。
従って、中継基板20を用いれば、予め高温ハンダバンプP13をプリント基板P10に形成しておく必要がない。
【0046】
ついで、この中継基板20の製造方法について説明する。このうち、図4(a)に示す凹状導体12の形成までは、実施形態1と同様である。その後、図5(b)に示すように、第2主面側面12TBに対応する位置に透孔M2Hを有するマスクM2を用意し、これを中継基板本体11の第2主面11B側に重ねて位置合わせをし、第2主面側面12TB上(図5(b)中上方)に、90Pb−10Snの高温ハンダペーストSP2を塗布する。その後、約330℃に加熱して高温ハンダペーストSP2を溶融させ、第2主面側面12TBに略半球状の高温ハンダバンプ23を形成する。その後は、上記実施形態1と同様に、凹部12R内にPb−Sn共晶ハンダペーストSPを充填し(図4(b)参照)、これを加熱して溶融させることにより、充填ハンダ体13を形成して中継基板20を完成させる。
【0047】
(実施形態3)
さらに、第3の実施形態として、上記実施形態1の中継基板10とほぼ同様であるが、異なる製造方法によって形成したものについて説明する。この製造方法に使用する中継基板本体31(図6(a)参照)は、実施形態1と同様に、厚さ50μmで連続多孔質PTFEにエポキシ樹脂を含浸させ硬化させた複合材料からなり、第1主面31Aと第2主面31Bとを有し略板状をなす。但し、この中継基板本体31は、第1主面31A側には銅箔を有さず、第2主面31B側には、所定位置に直径120μmの円状の銅箔35が被着されている。この中継基板本体31の第1主面31A側からYAGレーザの第3高調波を照射する。但し、レーザ光のスポット径を絞り、所定位置、具体的には、円状銅箔35の略中央に照射するようにして、図6(b)に示すように、銅箔35の径(120μm)より小さい直径50μmの貫通孔31Hを穿孔する。この際、貫通孔31Hは、平面視、銅箔35の内部に含まれるように形成する。なお、上記レーザ加工では、銅箔35は穿孔されないことは実施形態1の場合と同様である。
【0048】
ついで、銅箔35の表面(図中下面)、銅箔35の貫通孔31H内露出面(図中上面)及び貫通孔31H内周面、第1,第2主面31A,31B上に、無電解銅メッキを施して、厚さ1μmの無電解銅メッキ層36,37を形成する(図6(c)参照)。
さらに、感光性メッキレジストフィルムを無電解メッキ層36,37上に貼り付け、露光・現像して、貫通孔31H内とその第1主面側開口周縁(直径120μm)の無電解メッキ層36、および銅箔35上の無電解メッキ層37が露出するようにメッキレジスト層MR3,MR4を形成する。ついで、この無電解銅メッキ層36,37を共通電極として電解銅メッキを施し、貫通孔31H内および第1主面側開口周縁の無電解メッキ層36上に略凹字形状の厚さ6μmの電解銅メッキ層38を、また、貫通孔31Hの第2主面側及びその開口周縁、つまり銅箔35上の無電解メッキ層37上(図中下方)に同厚の電解銅メッキ層39を、それぞれ形成する(図6(d)参照)。
【0049】
その後、メッキレジストMR3,MR4を溶解除去し、露出した無電解銅メッキ層36,37をエッチングによって除去することにより、図7(a)に示すように、貫通孔31H内及びその周縁に略凹形状の凹状導体32を形成する。この凹状導体32は、上記中継基板10と同様に、その底部32Tで貫通孔31Hを塞ぎ、側部32Sで貫通孔31Hの内周面を覆い、凹部32Rをなしている。また、凹状導体32の側部32Sが、第1主面31Aのうち貫通孔31Hの第1主面側開口周縁まで延在して第1主面側開口周縁部32Pを形成しており、また、底部32Tは、貫通孔31Hの第2主面側開口周縁まで拡がって第2主面側開口周縁部32Qを形成している
その後は、実施形態1と同様に、マスクMを用いて凹部32R内にPb−Sn共晶ハンダペーストSPを充填し(図4(b)参照)、加熱溶融させて、充填ハンダ体33を形成する。これにより、図7(b)に示すように、実施形態1の中継基板10と略同様の中継基板30が完成する。
【0050】
この中継基板30においても、Pb−Sn共晶ハンダペーストSPを充填・塗布する際に、貫通孔31Hは、凹状導体32の底部32Tで塞がれて有底(盲孔)の状態となるので、凹部32R内に充填されたPb−Sn共晶ハンダペーストSPが、従来のように(図13(a)参照)脱落することがない。従って、中継基板30においても、充填ハンダ体33のハンダ体積がほぼ一定となるため、充填ハンダ体33の突出高さもほぼ一定とすることができる。
なお、中継基板30では、メッキレジストMR3,MR4の除去後のエッチングにおいて、厚さの薄い無電解メッキ層36,37のみエッチング除去すれば足りるので、強力な薬剤を用いずにソフトエッチングによってエッチングすればよいので、エッチングやその後の処理が容易である点で、優れている。また、第1主面31A上に、実施形態1における銅箔14に相当する銅箔を形成する必要がないのでその分安価となる。
【0051】
(実施形態4)
さらに、第4の実施形態として、上記実施形態1,3の中継基板10,30とほぼ同様であるが、これらと異なる製造方法について説明する。この製造方法に使用する中継基板本体41(図8(a)参照)は、実施形態1,3と同様に、厚さ50μmで連続多孔質PTFEにエポキシ樹脂を含浸させ硬化させた複合材料からなり、第1主面41Aと第2主面41Bとを有し略板状をなす。但し、この中継基板本体41は、第1主面41A側には、所定位置に外径120μm、内径50μmのリング状銅箔44が被着され、第2主面41B側には、リング状銅箔44に対応する位置、即ち平面視同心となる位置に直径120μmの円状の銅箔45が被着されている。この中継基板本体41の第1主面41A側からYAGレーザの第3高調波を照射する。但し、レーザ光のスポット径を略80μmに絞り、リング状銅箔44の略中央に照射するようにして、図8(b)に示すように、リング状銅箔44の内径に従った断面形状(直径50μm)の貫通孔41Hを穿孔する。本実施形態におけるレーザ加工では、銅箔44,45は穿孔されないことは実施形態1の場合と同様である。また、容易に理解できるように、リング状銅箔34は、その内径をマスクパターンとするコンフォーマルマスクとして作用している。
【0052】
ついで、銅箔44の表面(図中上面)、銅箔45の表面(図中下面)、銅箔45の貫通孔41H内露出面(図中上面)及び貫通孔41H内周面、第1,第2主面41A,41B上に、無電解銅メッキを施して、厚さ1μmの無電解銅メッキ層46,47を形成する(図9(a)参照)。
さらに、感光性メッキレジストフィルムを無電解メッキ層46,47上に貼り付け、露光・現像して、貫通孔41H内と銅箔44上、つまり貫通孔41H内及びその第1主面側開口周縁(直径120μm)の無電解メッキ層46、および銅箔45上の無電解メッキ層47が露出するように透孔MR5H、MR6Hを有するメッキレジスト層MR5,MR6を形成する。ついで、この無電解銅メッキ層46,47を共通電極として電解銅メッキを施し、貫通孔41H内および第1主面側開口周縁の無電解メッキ層46上に略凹字形状の厚さ6μmの電解銅メッキ層48を、また、貫通孔41Hの第2主面側及びその開口周縁、つまり銅箔45上の無電解メッキ層47上(図中下方)に同厚の電解銅メッキ層49をそれぞれ形成する(図9(b)参照)。
【0053】
その後、メッキレジストMR5,MR6を溶解除去する(図9(c)参照)。その後、露出した無電解銅メッキ層46,47をエッチングによって除去することにより、図10(a)に示すように、貫通孔41H内に略凹形状の凹状導体42を形成する。この凹状導体42は、上記中継基板10と同様に、その底部42Tで貫通孔41Hを塞ぎ、側部42Sで貫通孔41Hの内周面を覆い、凹部42Rをなしている。また、凹状導体42の側部42Sが、第1主面41Aのうち貫通孔41Hの第1主面側開口周縁まで延在して第1主面側開口周縁部42Pを形成しており、また、底部42Tは、貫通孔41Hの第2主面側開口周縁まで拡がって第2主面側開口周縁部42Qを形成している
その後は、実施形態1と同様に、マスクMを用いて凹部42R内にPb−Sn共晶ハンダペーストSPを充填し(図4(b)参照)、加熱溶融させて、充填ハンダ体43を形成する。これにより、図10(b)に示すように、実施形態1の中継基板10と略同様の中継基板40が完成する。
【0054】
この中継基板40においても、中継基板10,30と同様に、Pb−Sn共晶ハンダペーストSPを充填・塗布する際に、貫通孔41Hは、凹状導体42の底部42Tで塞がれて有底(盲孔)の状態となるので、凹部42R内に充填されたPb−Sn共晶ハンダペーストSPが、従来のように(図13(a)参照)脱落することがない。従って、中継基板40においても、充填ハンダ体43のハンダ体積がほぼ一定となるため、充填ハンダ体33の突出高さもほぼ一定とすることができる。
なお、中継基板40では、中継基板30と同様に、メッキレジストMR5,MR6の除去後のエッチングにおいて、厚さの薄い無電解メッキ層46,47のみエッチング除去すれば足りるので、強力な薬剤を用いずにソフトエッチングによってエッチングすればよいので、エッチングやその後の処理が容易である点で、優れている。また、リング状銅箔44を用いてコンフォーマルマスク法によって貫通孔41Hを形成しているので、レーザ光の照射位置精度をあまり高くする必要が無い点でも優れている。
【0055】
以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、上記実施形態においては、いずれも貫通孔11H等の周縁11AP,11BPにも導体層12等が拡がって第1,第2主面側開口周縁部12P,12Qも形成したものを示したが、これらを形成しないものであっても良い。
また、導体層12等は、いずれも銅箔及び銅メッキからなるものとしたが、その他の金属、例えば、ニッケル等、あるいは、銅箔や銅メッキ層上にニッケルメッキを施すなど2種以上の金属からなるものとしても良い。
また、上記実施形態においては、充填ハンダ体13として第1主面1A側に球面状の突出したものを例示したが、溶融時にセラミックやステンレス等ハンダに濡れない平板で各充填ハンダ体の突出高さを規制し、そのまま冷却して、各充填ハンダ体13の第1主面側頂部が平坦となるようにすると良い。平板の持つ平面に従って平坦化されることにより、各充填ハンダ体のコプラナリティを小さくすることができ、さらに、ハンダバンプとの接続のため再度充填ハンダ体を溶融させた際には、頂部の高さが高くなるため、ハンダバンプとの接続が確実にできるからである。なお、充填ハンダ体の頂部を平坦にするには、溶融後固化した各充填ハンダ体13等を平面を持つ金型によって押圧して各頂部を平坦にしても良い。
また、上記実施形態では、いずれも無電解メッキと電解メッキを用いて凹状導体12等を形成したが、無電解メッキのみで凹状導体を形成しても良い。
【図面の簡単な説明】
【図1】実施形態1にかかる中継基板の平面図(a)および部分拡大断面図(b)である。
【図2】(a)は図1の中継基板にICチップを接続した状態、(b)はさらにプリント配線板を接続した状態を示す説明図である。
【図3】実施形態1にかかる中継基板の製造方法のうち、メッキレジストを除去するまでの工程を示す説明図である。
【図4】実施形態1にかかる中継基板の製造方法のうち、凹部導体にハンダペーストを充填するまでの工程を示す説明図である。
【図5】(a)は実施形態2にかかる中継基板の部分拡大断面図、(b)はこの中継基板の製造方法のうち凹状導体の底部側に高温ハンダペーストを塗布する工程を示す説明図である。
【図6】実施形態3にかかる中継基板の製造方法のうち、電解メッキまでの工程を示す説明図である。
【図7】(a)は実施形態3の中継基板の製造方法のうちエッチング工程を示す説明図、(b)は実施形態3にかかる中継基板の部分拡大断面図である。
【図8】実施形態4にかかる中継基板の製造方法のうち、貫通孔形成までの工程を示す説明図である。
【図9】実施形態4にかかる中継基板の製造方法のうち、レジスト除去までの工程を示す説明図である。
【図10】(a)は実施形態4の中継基板の製造方法のうちエッチング工程を示す説明図、(b)は実施形態4にかかる中継基板の部分拡大断面図である。
【図11】(a)は従来の中継基板の部分拡大断面図、(b)は上記従来の中継基板の上下にICチップ及びプリント配線板を接続した状態を示す説明図である。
【図12】図11(a)とは異なる従来の中継基板の部分格段断面図である。
【図13】(a)は貫通孔内に充填したペーストが脱落する様子を説明する説明図、(b)は貫通孔内に充填したペーストを硬化させることにより、ペースト(樹脂)に凹凸ができた状態を示す説明図である。
【符号の説明】
10,20,30,40 中継基板
11,31,41 中継基板本体
11A,31A,41A 第1主面
11B,31B,41B 第2主面
11H,31H,41H 貫通孔
12,32,42 凹状導体
12T,32T,42T (凹状導体の)底部
12S,32S,42S (凹状導体の)側部
12R,32R,42R (凹状導体の)凹部
13,33,43 充填ハンダ体
23 ハンダバンプ[0001]
BACKGROUND OF THE INVENTION
The present invention is provided on terminals of electronic components such as a wiring board on which functional parts and functional parts such as IC chips, transistors, resistors and capacitors are mounted, and printed wiring boards such as a mother board and a daughter board for mounting the terminals. More particularly, the present invention relates to a relay board that can be easily manufactured and that can connect terminals having fine intervals, and a manufacturing method thereof.
[0002]
[Prior art]
Conventionally, when an IC chip is mounted on a printed wiring board as a bare chip, a relay substrate (interposer) is interposed between the IC chip and the printed wiring board in consideration of the difficulty of repair when the IC chip is defective. There is. In particular, when multiple IC chips are mounted on a single printed wiring board, once the multiple IC chips are connected to the relay board and all IC chips are confirmed to be normal, the relay board is printed. Often connected to a wiring board.
[0003]
The structure of such a conventional relay board will be described with reference to FIG. In the relay substrate 110 shown in FIG. 11A, vias 112 such as tungsten and molybdenum are formed in the through holes 111H opened between the two main surfaces 111A and 111B of the relay substrate body 111 made of alumina ceramic. Pads 113 and 114 such as tungsten and molybdenum are formed on the main surfaces 111A and 111B so as to cover the upper and lower sides, respectively. With such a relay substrate 110 interposed, as shown in FIG. 11B, electronic components D10 and D20 such as IC chips are connected to the printed wiring board P10.
[0004]
The electronic components D10 and D20 include a large number of pads D12 and D22 on connection surfaces D11B and D21B (lower surfaces in the drawing) of component bodies D11 and D21 made of silicon, respectively. For example, 95Pb-5Sn) and substantially hemispherical solder bumps D13 and D23 are provided. The printed wiring board P10 corresponds to the pads D12 and D22 (solder bumps D13 and D23) of the electronic components D10 and D20 on the connection surface P11A (upper surface in the drawing) of the wiring board body P11 made of a glass-epoxy resin composite material. In the arrangement, a connection pad P12 made of copper and a substantially hemispherical solder bump P13 made of high-temperature solder are provided. The solder bumps D13 and D23 and the pad 113 of the relay substrate 110 are connected, and the solder bump P13 and the pad 114 are connected by solder (for example, Pb-Sn eutectic solder 37Pb-63Sn) S1, S2 having a melting point lower than that of the high-temperature solder. To do.
[0005]
Other relay boards include those shown in FIG. In this relay substrate 120, a substantially cylindrical through-hole conductor 122 is formed by copper plating in a through hole 121H opened between two main surfaces 121A and 121B of a relay substrate body 121 made of a glass-epoxy resin composite material. Further, the inside is filled with a plug material 125 made of conductive resin (or insulating resin), and pads 123 and 124 are formed in a lid shape by copper plating, respectively. This relay board 120 can also be used in connection with the electronic components D10 and D20 and the printed wiring board P10 in the same manner as described above (see FIG. 11).
[0006]
[Problems to be solved by the invention]
However, since the relay board main body 111 is made of ceramic such as alumina, the relay board 110 described above has low toughness and causes problems such as breaking when stressed. Therefore, the thickness of the relay board main body 111 can be reduced. Can not. On the other hand, when the thickness is large, the length of the via 112 becomes long, so that the resistance and inductance of the via 112 become large, which is not preferable in terms of electrical characteristics. Moreover, since the stress resulting from the thermal expansion difference with the printed wiring board P10 will become large when thickness is thick, the connection reliability between both falls.
Further, as shown in FIG. 13A, for example, the relay substrate 110 is formed of tungsten paste in a through hole GH that penetrates the two main surfaces GA and GB of the ceramic green sheet G that becomes the relay substrate body 111 after firing. A conductive paste GP such as the above is filled, and a pad (not shown) is printed and fired. In this case, if the thickness of the green sheet G is small, the ability to hold the conductor paste GP in the through hole GH is poor, so that part or almost all of the conductor paste GP once filled during printing is dropped off. As a result, poor filling tends to occur and the yield decreases. Further, if the amount of the conductive paste GP is not constant, each pad is uneven, the coplanarity is lowered, and the connectivity with the electronic component D10 such as an IC chip is lowered.
[0007]
On the other hand, in the above-described relay board 120, migration occurs along the glass fiber included in the relay board main body 121. Therefore, when the interval between the adjacent through holes 121H is narrowed, for example, 200 μm or less, the relay board 120 has a high temperature. Since the reliability under high-humidity conditions decreases, the interval cannot be reduced. In addition, when the relay substrate 120 is filled with the plug material 125 and thermally cured, the surface 125S becomes uneven as shown in FIG. 13B, so that the surface 125S is flattened by polishing, and then the pad 123 is formed. , 124 is formed. However, if the thickness of the relay substrate main body 121 is reduced, polishing becomes difficult. Similarly to the conductive paste GP, when the thickness of the relay substrate main body 121 is reduced, the plug material (resin) 125 once filled is likely to fall off. Further, since the lid-like pads 123 and 124 are formed above and below the plug material 125, polishing is performed after the plug material 125 is formed, and further, the pads 123 and 124 are formed by plating. It is expensive. Further, in order to connect to the solder bump D13 of the electronic component D10 or the like, it is necessary to apply a low melting point solder paste to the pad 123 or the like in advance, and after soldering the electronic component D10 or the like, the solder paste is heated and melted for soldering. is there.
[0008]
The present invention has been made in view of such problems, and an object of the present invention is to provide a relay substrate that has a high yield and that can be easily formed and that can be easily soldered to an electronic component and the like, and a method of manufacturing the same.
[0009]
[Means, actions and effects for solving the problems]
The solving means includes a first main surface and a second main surface, a relay board main body having a through hole penetrating between the two main surfaces, and a bottom portion closing the second main surface side opening of the through hole. A substantially concave concave conductor provided with a side portion covering the inner peripheral surface of the through-hole, and a filling solder body that is filled in the concave portion of the concave conductor and protrudes toward the first main surface side. It is a relay board.
[0010]
According to the present invention, since it has a bottomed concave conductor having a bottom portion and a side portion, a part or all of the solder paste filled by screen printing or the like to make a filled solder body will not fall off, The amount of the filled solder body, and hence the protruding height becomes uniform, and the connectivity with terminals such as bumps and pads of electronic components such as IC chips becomes high. In addition, since there is no fear of dropping off when the solder paste is filled, the thickness of the relay substrate body can be reduced. Moreover, since the filling solder body protrudes to the first main surface side, it can be reliably connected when connecting to pads and bumps of electronic components to be connected.
[0011]
In addition, when the filling solder body is made of a material having a lower melting point than the bumps of the electronic parts and the like connected on the first main surface side, it is lower than the bumps and the like when connecting the electronic parts and the relay substrate. Work such as pre-applying a solder paste having a melting point can be eliminated.
[0012]
Here, the relay substrate body may be appropriately selected in consideration of toughness, insulation, moisture resistance, workability, and the like. For example, epoxy resins, polyimide resins, BT resins, PPE resins and other resins, glass-epoxy resin composite materials, etc., composite materials of these resins and glass fibers (glass woven fabric and glass nonwoven fabric), and these resins and polyamide fibers And a composite material obtained by impregnating a three-dimensional network fluorine-based resin such as continuous porous PTFE with an epoxy resin or the like.
The concave conductor may be selected in consideration of the material of the relay board body, and examples thereof include copper and nickel.
The filling solder body may be selected in consideration of the material of the electronic component such as the IC chip to be connected and the material of the bump of the printed wiring board. For example, Pb—Sn eutectic solder (37Pb-63Sn) may be selected. ) And high-temperature solder (95Pb-5Sn, 90Pb-10Sn, etc.), 96.5Sn-3.5Ag, 95Sn-5Sb solder, and the like.
[0013]
Furthermore, it is preferable that the relay board has the thickness of the relay board body of 200 μm or less.
[0014]
When the thickness of the relay board is thin, even if the through hole is filled with paste or the like as described above, it is liable to drop off later, especially when the thickness of the relay board body is 200 μm or less. It becomes difficult to hold the conductor paste and the resin paste for plug material in the through hole. On the other hand, since the bottomed concave conductor is provided in the present invention, the paste or the like does not fall off. In particular, even in the relay substrate body having a thickness of 200 μm or less, the solder paste is securely held and is uniform. It is possible to form a filling solder body having a proper protruding height. Therefore, the resistance and inductance of the concave conductor and the filled solder body can be further reduced. In addition, when the thickness is reduced, the shape of the concave conductor is relatively shallow at the bottom, which makes it easier to fill the solder paste with the solder paste. The height can be made more uniform. Furthermore, since the thickness of the relay board main body is thin, even if the electronic component and the printed circuit board are connected via the relay board, the overall height is much higher than when the direct connection is made without the relay board interposed. The height does not increase. Accordingly, it is possible to meet the demand for a low profile.
[0015]
Furthermore, in the relay board, a gap between the side portions of the adjacent concave conductors is 200 μm or less, and the relay board body is made of a resin-based composite material that does not contain glass fiber. It is better to use a relay board.
[0016]
When a resin-based composite material is used as the material of the relay substrate body, the thickness of the relay substrate body can be reduced because the toughness is higher than when ceramic such as alumina is used. Therefore, the resistance and inductance of the concave conductor and the filled solder body can be further reduced. In addition, when the thickness is reduced, the filling of the solder paste into the concave conductor becomes easier, and the volume and the protruding height of the filled solder body can be made more uniform.
Moreover, among the cases where resin-based composite materials are used, those containing glass fibers (for example, glass-epoxy resin composite materials) easily form a gap between the resin and the glass fibers when forming a through hole. Resin-based composite material that does not contain glass fiber in the present invention, although it tends to cause short-circuit due to migration of metal such as copper that forms a concave conductor along the surface of the glass fiber due to moisture such as plating solution that has entered the gap. Therefore, even if the gap between the side portions of the concave conductor is a short distance of 200 μm or less, no migration occurs and a highly reliable relay substrate can be obtained.
[0017]
Examples of the resin-based composite material that does not include glass fiber include a composite material of a resin such as epoxy resin, polyimide resin, BT resin, and PPE resin and organic fiber such as polyamide fiber, and three-dimensional such as continuous porous PTFE. Examples thereof include a composite material obtained by impregnating a net-like fluorine-based resin with an epoxy resin or the like.
[0018]
Furthermore, the relay substrate, comprising: a high-temperature solder bump made of solder having a melting point higher than that of the solder constituting the filling solder body on the second main surface side of the bottom of the concave conductor; Good.
[0019]
In general, since solders are compatible with each other even if their compositions are different, when a solder having a high melting point and a solder having a low melting point come into contact with each other in a molten state, the solder gradually mixes and the composition gradually changes.
In the present invention, a filling solder body is provided in the concave portion of the concave conductor, and a high-temperature solder bump having a higher melting point is provided on the second main surface side of the bottom portion of the concave conductor. Can be connected to the pads of the printed wiring board on which the bumps are not formed on the second main surface side.
In addition, at this time, the filled solder body and the high-temperature solder bump are partitioned by the bottom of the concave conductor, and, for example, when forming the high-temperature solder bump or when forming the filled solder body, the composition changes because they do not mix with each other. There is no. That is, the melting point of the filled solder body does not increase, or the melting point of the high-temperature solder bump does not decrease. Therefore, the composition and melting point change due to the compatibility of both the filled solder body and the high-temperature solder bump on the second main surface side even when heated many times for connection and removal to repair the connected IC chip, etc. Therefore, connection and repair can be performed repeatedly under the same conditions.
[0020]
Further, when an electronic component such as an IC chip is connected on the first main surface side, the IC chip or the like and the relay substrate of the present invention are as if an integrated substrate (electronic component having a high-temperature solder bump on the second main surface side). ) Can be easily connected by this high-temperature solder bump to connect it to a printed wiring board such as a mother board.
[0021]
Still another solution is to provide a relay board main body having a first main surface and a second main surface, a through hole that penetrates between the two main surfaces, and a bottom portion that closes the second main surface side opening of the through hole. A through-hole concave conductor forming step of forming a substantially concave concave conductor having a side portion covering the inner peripheral surface of the through-hole, and filling and heating a solder paste into the concave portion of the concave conductor from the first main surface side And a filling solder body forming step of forming a filling solder body that fills the concave conductor and protrudes toward the first main surface side.
[0022]
According to the present invention, since the through hole and the concave conductor are formed in the through hole concave conductor forming step, the solder paste can be reliably filled in the concave portion of the concave conductor in the filling solder body forming step. In addition, since a defect such as part or all of the solder paste falling off does not occur, the relay substrate can be manufactured with a high yield. In addition, since the amount of solder in the filled solder body can be made substantially constant and the protruding height can be made uniform, the connectivity can be enhanced when connecting to an electronic component such as an IC chip on the first main surface side. Moreover, since the filling solder body protrudes to the first main surface side, it can be reliably connected when connecting to pads or bumps of electronic components.
[0023]
Furthermore, another solving means includes a first main surface and a second main surface, and among the two main surfaces, at least the second main surface of the relay substrate body having the second main surface side metal layer, The relay board body can be drilled and the second main surface side metal layer cannot be drilled at a predetermined position having no metal layer on the first main surface and having the second main surface side metal layer only on the second main surface. A through hole forming step of drilling a through hole in which the second main surface side opening is closed by the second main surface side metal layer by laser processing from the first main surface side using a simple laser, and at least the above An exposed surface exposed toward the inside of the through hole in the second main surface side opening of the second main surface side metal layer and an inner peripheral surface in the through hole are plated to form a substantially concave concave conductor. The concave conductor forming step to be formed, and the solder paste is filled in the concave portion of the concave conductor from the first main surface side and heated. Te is a method for producing a connecting board, characterized in that it comprises a filling solder forming step of forming a filling solder bodies filled in the concave conductor projecting said first main surface side.
[0024]
According to the present invention, since the through hole is formed in the relay substrate body by laser processing using a laser that can drill the relay substrate body and cannot drill the second main surface side metal layer, the minute through hole can be drilled with high accuracy. . In addition, since a laser that cannot be drilled is applied to the second main surface side metal layer, the laser beam is reflected by the second main surface side metal layer, so that a through hole can be formed reliably. In addition, since there is no hole in the second main surface side metal layer, it can be used as it is as a base material when forming the bottom in the concave conductor forming step, so that it is easy to open the second main surface side of the through hole. The bottom of the concave conductor can be formed. In other words, the second surface side metal layer serves as a laser stopper (and reflector) in the through hole forming step and contributes to the drilling of the through hole, and is formed by plating in the concave conductor forming step. An exposed surface exposed in the through hole can be formed as a base material of the bottom of the concave conductor.
[0025]
Furthermore, since the bottomed concave conductor is formed, in the filling solder body forming step, the solder paste can be reliably filled in the concave portion of the concave conductor, and there is a problem that part or all of the solder paste is dropped. Since it does not occur, a relay board can be manufactured with high yield. In addition, since the amount of solder in the filled solder body can be made substantially constant and the protruding height can be made uniform, the connectivity can be enhanced when connecting to an electronic component such as an IC chip on the first main surface side. Moreover, since the filling solder body protrudes to the first main surface side, it can be reliably connected when connecting to pads or bumps of electronic components.
[0026]
Furthermore, in the through hole forming step of the above method for manufacturing a relay substrate, the diameter of the second main surface side metal layer that closes the diameter of the second main surface side opening of the through hole is made larger. A method of manufacturing a relay board characterized by
In the through hole forming step, when the diameter of the second main surface side metal layer is larger than the diameter of the second main surface side opening of the through hole to be formed as described above, The opening can be reliably closed by the second principal surface side metal layer.
[0027]
Furthermore, in the manufacturing method of the relay board, the through hole forming step includes at least the through hole of the first main surface side metal layer having a predetermined pattern of through holes on the first main surface and the second main surface. The relay substrate body having a second main surface side metal layer disposed at a position corresponding to the laser beam is irradiated to the through hole of the first main surface side metal layer wider than the through hole, A method for manufacturing a relay substrate, which is a conformal mask through-hole forming step for forming the through-holes having substantially the same cross section, is preferable.
According to the present invention, the through-hole is used as a conformal mask, and the laser is irradiated more widely than the through-hole to form the through-hole having the same diameter as the through-hole. it can. Further, it can be formed even if the positioning accuracy of the laser is low. Moreover, when parts other than the part which forms a through-hole are covered with the 1st main surface side metal layer, a several through-hole can also be formed simultaneously at once.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
A first embodiment according to the present invention will be described with reference to the drawings. FIG. 1A is a plan view of the relay board 10 according to the first embodiment, and FIG. 1B is a partially enlarged sectional view thereof. The relay substrate body 11 having a substantially square plate shape in plan view is made of a resin-resin composite material (thickness: 50 μm) that does not contain glass fiber and is cured by impregnating continuous porous PTFE with an epoxy resin, and has a first main surface 11A. And a second main surface 11B, and a large number of through holes 11H having a diameter of 50 μm that penetrate between the two main surfaces. The smallest gap (clearance) between the through holes 11H is 150 μm. The through hole 11H is formed with a concave conductor 12 made of copper and having a substantially concave shape. The bottom 12T closes the second main surface 11B side opening of the through hole 11H, and the side 12S has the through hole 11H. It arrange | positions so that an internal peripheral surface may be covered. Further, in the concave conductor 12 of the present embodiment, the side portion 12S extends to the first main surface side opening peripheral edge 11AP of the through hole 11H in the first main surface 11A, and the first main surface side opening peripheral edge portion. 12P is formed, and the bottom 12T extends to the second main surface side opening peripheral edge 11BP of the through hole 11H to form the second main surface side opening peripheral edge portion 12Q.
[0029]
Each concave conductor 12 includes a concave portion 12R formed by the concave conductor side portion 12S and the bottom portion 12T, that is, the inner peripheral surface 12SH of the concave conductor side portion 12S and the first main surface side surface (recess portion) of the bottom portion 12T. (Bottom surface) Filled in the recess 12R surrounded by 12TA, further spreads over the first main surface side opening peripheral edge portion 12P, toward the first main surface 11A side (upper in FIG. 1B), A filling solder body 13 protruding in a substantially spherical shape is provided.
This filling solder body 13 is made of Pb—Sn eutectic solder (37Pb-63Sn). As will be described later, this filling solder body 13 is used for connecting bumps of electronic components such as IC chips on the first main surface 11A side. The solder body 13 is melted and connected to bumps or the like.
The through hole 11H, the concave conductor 12 and the filling solder body 13 are arranged at positions corresponding to the arrangement of bumps and the like of the electronic component to be connected. In this embodiment, it can be easily understood from FIG. In addition, the filling solder bodies 13 are arranged separately in four groups, and are arranged in a lattice pattern in plan view, and connect four electronic components (hereinafter represented by electronic components D10 and D20). ing.
[0030]
This relay substrate 10 is used as follows, for example. As shown in FIG. 2A, first, connection is made with electronic components D10, D20... Such as IC chips. That is, the high-temperature solder bumps D13 and D23 that are fixed to the pads D12 and D22 formed on the connection surfaces (lower surfaces in the drawing) D11B and D21B of the electronic component main bodies D11 and D21 and have a substantially hemispherical shape are used as the filling solder body 13 of the relay substrate 10. Connect by soldering. Since the high-temperature solder bumps D13 and D23 are made of, for example, 95Pb-5Sn, only the filled solder body 13 made of Pb-Sn eutectic solder is heated to a melting temperature (for example, 230 ° C.) to melt the filled solder body 13. Then, soldering is performed by making contact with the high-temperature solder bumps D13 and D23. At this time, since the filling solder body 13 protrudes toward the first main surface 11A side, even if the high-temperature solder bumps D13 and D23 have variations in height, or the relay substrate body 11 is warped or wavy, the filling solder The body 13 and the high-temperature solder bump D13 can be reliably connected.
[0031]
Moreover, since it has the filling solder body 13 made of Pb-Sn eutectic solder having a lower melting point than the high-temperature solder bumps D13, D23 of the electronic components D10, D20 connected to the first main surface side, specifically, When the electronic component D10 or the like and the relay substrate 10 are connected, an operation such as applying a solder paste in advance becomes unnecessary.
In addition, since the bottomed concave conductor 12 is disposed in the through hole 11H, as will be described later, when forming the filled solder body 13, the solder paste filled and applied to the concave portion 12R may fall off thereafter. Since the amount of solder paste can be kept constant, the protruding height of the filled solder body 13 is uniform. Therefore, from this point, the connection with the high-temperature solder bump D13 or the like can be ensured. Further, even if the filling solder body 13 is melted, the solder volume of the filling solder body 13 becomes constant from this point because the second main surface side (the second main surface side surface 12TB of the bottom 12T) does not wet and spread. , Connection is ensured.
[0032]
Thereafter, the operation of the connected electronic components D10, D20, etc. is checked, and the defective one is removed and another electronic component is connected again. When any electronic component operates normally, it is further connected to the printed wiring board P10 as shown in FIG.
A high-temperature solder bump P13, which is fixed to a pad P12 formed on a connection surface (upper surface in the drawing) P11A of the printed wiring board main body P11 and has a substantially hemispherical shape, is formed on the bottom 12T of the concave conductor 12 of the relay substrate 10 with a Pb-Sn eutectic solder. Connect by soldering with SL. Specifically, Pb—Sn eutectic solder paste (not shown) is applied in advance to the bottom 12T of the concave conductor 12 or to the high-temperature solder bump P13, and the electronic components D10 and D20 are mounted on the printed wiring board P10. The relay substrate 10 is stacked and heated in a reflow furnace to melt the Pb—Sn eutectic solder paste, and the concave conductor 12 and the high-temperature solder bump P13 are soldered and connected. As a result, each of the electronic components D10, D20... Is connected to the printed wiring board P10 via the relay board 10.
[0033]
In this way, the relay substrate 10 that connects the electronic components D10 and D20 and the printed wiring board P10 is not a composite material containing glass fibers such as a glass-epoxy resin composite material, but is continuous porous as described above. Since it is a resin-resin composite material in which PTFE is impregnated and cured with an epoxy resin, it has high moisture resistance and hardly causes migration. For this reason, a short circuit or the like due to migration does not occur even when the gap between the through holes 11H is set to 150 μm as in the present embodiment.
[0034]
(Comparative forms 1 and 2)
On the other hand, as Comparative Examples 1 and 2, a material containing glass fiber as the material of the relay substrate body, specifically, a glass fiber BT having a thickness of 200 μm in which BT (bismaleimide-triazine) resin is impregnated into a glass fiber woven fabric. Using a resin composite material, a conventional relay substrate (see FIG. 12) having a via diameter (through hole diameter) of 300 μm and a minimum gap between vias of 200 μm and 400 μm was manufactured.
[0035]
(Embodiment 1B)
Further, as Embodiment 1B, it is made of the same material as that of the relay substrate 10 of Embodiment 1 above, but the thickness of the relay substrate body is 200 μm, which is four times thicker, and the concave conductor diameter (through hole diameter) is 50 μm. A relay board having a minimum gap between the concave conductor side portions of 50 μm and 200 μm was also manufactured.
[0036]
(Test example)
A moisture load test was performed using the relay substrate 10 according to the first and first embodiments and the first and second comparative embodiments, and the presence or absence of a decrease in insulation resistance due to the occurrence of migration was compared. Specifically, in a constant temperature and humidity chamber set to a temperature of 85 ° C. × humidity of 85% RH and atmospheric pressure, a voltage of DC 50 V is applied between the vias of each relay substrate and held, and insulation between the vias is made in a timely manner. Resistance (5 V × 60 seconds) was measured, and a period during which an insulation resistance of 100 MΩ or more was maintained was measured. The results are shown in Table 1.
[0037]
[Table 1]
Figure 0003779478
[0038]
As can be seen from Table 1, in Comparative Example 2 in which the minimum gap between vias is 400 μm, the insulation resistance of 100 MΩ or more is maintained for 1000 hours or more, whereas in Comparative Example 1, the insulation resistance is 500 hours. It became 100 MΩ or less. Specifically, copper migration occurred along the glass fiber of the relay substrate body, and an electrical path was formed between the vias. Therefore, when a resin-based composite material containing glass fibers, more specifically, a glass-BT resin composite material is used, the gap between vias may be maintained at about 400 μm, but this gap is 200 μm or less. Then, since migration occurs, it can be seen that the reliability of the relay substrate is significantly reduced.
[0039]
On the other hand, in each of Embodiments 1 and 1B, the insulation resistance of 100 MΩ or more is maintained for 1000 hours or more. In these embodiments, the material of the relay substrate body 11 or the like is a resin-based composite material that does not include glass fiber, specifically, a composite material in which a three-dimensional network fluorine-based resin is impregnated with an epoxy resin or the like, and more specifically Specifically, a resin-resin composite material obtained by impregnating and curing an epoxy resin in continuous porous PTFE was used. For this reason, it is considered that migration did not occur even when the gap between the concave conductors was 200 μm or less, specifically 200 μm (Embodiment 1B), and even 150 μm (Embodiment 1). Therefore, when a resin-based composite material that does not contain glass fiber, specifically, a resin-resin composite material in which continuous porous PTFE is impregnated with an epoxy resin is used for the relay substrate body, the sides of the concave conductors It can be seen that even when the gap is 200 μm or less, and further 150 μm or less, migration does not occur and a highly reliable relay substrate can be obtained.
[0040]
Next, a method for manufacturing the relay board 10 will be described with reference to FIGS. First, as shown in FIG. 3 (a), it is made of a composite material in which continuous porous PTFE is impregnated with an epoxy resin and cured, and has a first main surface 11A and a second main surface 11B. A relay substrate body 11 having a plate shape is prepared. The first main surface 11A of the relay substrate body 11 is provided with a 12 μm thick copper foil 14 having a through hole 14H having a diameter of 50 μm at a predetermined position, and the second main surface 11B is substantially 12 μm thick. The copper foil 15 is applied.
[0041]
Next, from the first main surface 11A side, the third harmonic (355 nm) of the YAG laser is irradiated over a wider range than the through hole 14H, and the through hole 14H is used as a mask pattern, as shown in FIG. A plurality of through-holes 11H having substantially the same cross section as the through-holes 14H are formed in the relay substrate body 11 at once. Since this laser beam is reflected by the copper foil 14, only the inside of the through hole 14H without the copper foil 14 is laser processed. That is, the copper foil 14 becomes a conformal mask in the conformal mask method. Further, since the copper foil 15 also reflects this laser beam, no through hole (through hole) is formed in the copper foil 15, so that the through hole 11 </ b> H is closed with the copper foil 15. Furthermore, since the laser light is reflected by the copper foil 15, the through hole 14H is reliably formed by the incident light and the reflected light. Thereby, in this embodiment, a large number of through holes 11H having a diameter of 50 μm and a minimum gap of 150 μm were formed.
[0042]
Thereafter, the surface of the copper foil 14 (upper surface in the figure), the surface of the copper foil 15 (lower surface in the figure), the exposed surface in the through hole 14H (upper surface in the figure), and the inner peripheral surface of the through hole 11H are not present. Electroless copper plating is performed to form electroless copper plating layers 16 and 17 each having a thickness of 1 μm (see FIG. 3C).
Further, a photosensitive plating resist film is applied onto the electroless plating layers 16 and 17, exposed and developed, and the electroless plating layer 16 in the through-hole 11H and the first main surface side opening periphery (diameter 120 μm), Further, plating resist layers MR1 and MR2 having through holes MR1H and MR2H are formed so as to expose the electroless plating layer 17 on the second main surface side of the through hole 11H and the peripheral edge of the opening (diameter 120 μm). Next, electrolytic copper plating is performed using the electroless copper plating layers 16 and 17 as a common electrode, and a substantially concave-shaped thickness of 6 μm is formed on the electroless plating layer 16 in the through hole 11H and on the peripheral edge of the first main surface side opening. The electrolytic copper plating layer 18 and the electrolytic copper plating layer 19 having the same thickness are formed on the second main surface side of the through hole 11H and the electroless plating layer 17 on the periphery of the opening (see FIG. 3D). .
[0043]
Thereafter, the plating resists MR1 and MR2 are dissolved and removed (see FIG. 3E), and the exposed electroless copper plating layers 16 and 17 and the copper foils 14 and 15 located therebelow are removed by etching. As shown to 4 (a), the concave conductor 12 of a substantially concave shape is formed in the through-hole 11H and its periphery. The concave conductor 12 closes the through hole 11H at the bottom 12T, covers the inner peripheral surface of the through hole 11H at the side 12S, and forms a recess 12R.
Further, as shown in FIG. 4B, using a mask M having a through hole MH corresponding to the position of the through hole 11H, Pb− is formed in the recess 12R and on the first main surface 11A side (upper side in the drawing). Fill and apply Sn eutectic solder paste SP. At this time, since the through-hole 11H is closed by the bottom 12T of the concave conductor 12 and becomes a bottomed (blind hole) state, the Pb—Sn eutectic solder paste SP filled in the recess 12R is replaced with a conventional one. As shown in FIG. 13 (a), since it does not fall off, it can be filled with a high yield.
Thereafter, by heating through a reflow furnace, the Pb—Sn eutectic solder paste is dissolved to form a filled solder body 13 to complete the relay substrate 10 (see FIG. 1). In this relay substrate 10, the solder volume of the filling solder body 13 is substantially constant, so that the protruding height of the filling solder body 13 is also substantially constant.
In this embodiment, since the copper foil 14 is used as a conformal mask, it is advantageous in that it is not necessary to increase the irradiation position accuracy of the laser beam. Further, since the first main surface 11A is covered with the copper foil 14 except for the through holes 14H, it is advantageous in that a plurality of through holes 11H can be formed at a time.
[0044]
(Embodiment 2)
Next, a second embodiment will be described with reference to FIG. The relay board 20 of the present embodiment is substantially the same as the relay board 10 of the first embodiment, as can be easily understood from the partially enlarged sectional view shown in FIG. 5A, but the second main surface of the bottom 12T. This is different in that a high-temperature solder bump 23 swelled in a substantially hemispherical shape is provided on the side surface 12TB. Therefore, in the following, description of similar parts will be omitted or simplified, and different parts will be described.
The high-temperature solder bumps 23 of the relay substrate 20 of the present embodiment are made of 90Pb-10Sn, and are welded to the second main surface side surface 12TB of the concave conductor 12 to form a substantially hemispherical shape. As described above, such a high-temperature solder bump 23 does not melt, for example, by heating (about 230 ° C.) to the extent that Pb—Sn eutectic solder is melted, and therefore, in the case of the first embodiment, the first main surface 11A. Similarly, the electronic components D10 and D20 can be connected on the side.
[0045]
On the other hand, when connecting to the printed wiring board P10, unlike the first embodiment, it is not necessary to previously form the high-temperature solder bumps P13 on the pads P12 of the printed wiring board P10. That is, as in the case where the electronic component D10 or the like is directly connected to the pad P12 without using the relay substrate 20, the high temperature solder bump 23 can be used to connect to the pad P12 without the high temperature solder bump P13 (not shown). Specifically, a Pb—Sn eutectic solder paste is applied on the high-temperature solder bumps 23 or the pads 12, and the printed wiring board P10 (but no high-temperature solder bumps P13) and the relay substrate 20 are overlaid and heated, and Pb− The Sn eutectic solder paste is melted and connected.
Therefore, if the relay substrate 20 is used, it is not necessary to previously form the high-temperature solder bump P13 on the printed circuit board P10.
[0046]
Next, a method for manufacturing the relay board 20 will be described. Among these, the process up to the formation of the concave conductor 12 shown in FIG. Thereafter, as shown in FIG. 5B, a mask M2 having a through hole M2H at a position corresponding to the second main surface side surface 12TB is prepared, and this is overlaid on the second main surface 11B side of the relay substrate body 11. Alignment is performed, and 90Pb-10Sn high-temperature solder paste SP2 is applied on the second main surface side surface 12TB (upper in FIG. 5B). Thereafter, the high-temperature solder paste SP2 is melted by heating to about 330 ° C., and a substantially hemispherical high-temperature solder bump 23 is formed on the second main surface side surface 12TB. Thereafter, as in the first embodiment, the Pb—Sn eutectic solder paste SP is filled in the recess 12R (see FIG. 4B), and this is heated and melted, whereby the filled solder body 13 is formed. Then, the relay substrate 20 is completed.
[0047]
(Embodiment 3)
Furthermore, as a third embodiment, a description will be given of what is substantially the same as the relay substrate 10 of the first embodiment, but is formed by a different manufacturing method. The relay substrate body 31 (see FIG. 6A) used in this manufacturing method is composed of a composite material in which continuous porous PTFE is impregnated with epoxy resin and cured, as in the first embodiment. The first main surface 31A and the second main surface 31B have a substantially plate shape. However, the relay substrate body 31 does not have a copper foil on the first main surface 31A side, and a circular copper foil 35 having a diameter of 120 μm is attached to a predetermined position on the second main surface 31B side. Yes. The third harmonic of the YAG laser is irradiated from the first main surface 31A side of the relay substrate body 31. However, the spot diameter of the laser beam is narrowed down and irradiated to a predetermined position, specifically, approximately the center of the circular copper foil 35, and as shown in FIG. 6B, the diameter of the copper foil 35 (120 μm). ) A through hole 31H having a smaller diameter of 50 μm is drilled. At this time, the through hole 31H is formed so as to be included in the copper foil 35 in a plan view. In the laser processing, the copper foil 35 is not perforated as in the case of the first embodiment.
[0048]
Next, the surface of the copper foil 35 (lower surface in the figure), the exposed surface in the through hole 31H (upper surface in the figure), the inner peripheral surface of the through hole 31H, and the first and second main surfaces 31A and 31B are not present. Electroless copper plating is performed to form electroless copper plating layers 36 and 37 having a thickness of 1 μm (see FIG. 6C).
Further, a photosensitive plating resist film is applied onto the electroless plating layers 36, 37, exposed and developed, and the electroless plating layer 36 in the through hole 31H and the opening periphery of the first main surface side (diameter 120 μm), The plating resist layers MR3 and MR4 are formed so that the electroless plating layer 37 on the copper foil 35 is exposed. Next, electrolytic copper plating is performed using the electroless copper plating layers 36 and 37 as a common electrode, and a substantially concave shape with a thickness of 6 μm is formed on the electroless plating layer 36 in the through hole 31H and on the periphery of the first main surface side opening. The electrolytic copper plating layer 38 is formed on the second main surface side of the through hole 31H and the peripheral edge of the opening, that is, on the electroless plating layer 37 on the copper foil 35 (downward in the drawing). , Respectively (see FIG. 6D).
[0049]
Thereafter, the plating resists MR3 and MR4 are dissolved and removed, and the exposed electroless copper plating layers 36 and 37 are removed by etching, so that substantially concave portions are formed in and around the through hole 31H as shown in FIG. A concave conductor 32 having a shape is formed. Similar to the relay substrate 10, the concave conductor 32 closes the through hole 31H at the bottom 32T, covers the inner peripheral surface of the through hole 31H at the side 32S, and forms a concave 32R. Further, the side portion 32S of the concave conductor 32 extends to the first main surface side opening peripheral edge of the through hole 31H in the first main surface 31A to form the first main surface side opening peripheral edge portion 32P. The bottom portion 32T extends to the second main surface side opening peripheral edge of the through hole 31H to form the second main surface side opening peripheral edge portion 32Q.
Thereafter, similarly to the first embodiment, the Pb—Sn eutectic solder paste SP is filled in the recesses 32R using the mask M (see FIG. 4B), and is heated and melted to form the filled solder body 33. To do. Thereby, as shown in FIG.7 (b), the relay board | substrate 30 substantially the same as the relay board | substrate 10 of Embodiment 1 is completed.
[0050]
Also in this relay substrate 30, when filling and applying the Pb—Sn eutectic solder paste SP, the through hole 31 </ b> H is closed by the bottom portion 32 </ b> T of the concave conductor 32 and becomes a bottomed (blind hole) state. The Pb—Sn eutectic solder paste SP filled in the recess 32R does not fall off as in the conventional case (see FIG. 13A). Therefore, also in the relay substrate 30, the solder volume of the filling solder body 33 becomes substantially constant, so that the protruding height of the filling solder body 33 can be made almost constant.
In the relay substrate 30, only the thin electroless plating layers 36 and 37 need only be removed by etching after removing the plating resists MR3 and MR4. Therefore, the intermediate substrate 30 can be etched by soft etching without using a strong chemical. Therefore, it is excellent in that etching and subsequent processing are easy. Moreover, since it is not necessary to form a copper foil corresponding to the copper foil 14 in the first embodiment on the first main surface 31A, the cost is reduced accordingly.
[0051]
(Embodiment 4)
Further, as a fourth embodiment, a manufacturing method that is substantially the same as the relay boards 10 and 30 of the first and third embodiments, but is different from these, will be described. The relay substrate body 41 (see FIG. 8A) used in this manufacturing method is made of a composite material in which continuous porous PTFE is impregnated with epoxy resin and cured, as in the first and third embodiments. The first main surface 41A and the second main surface 41B have a substantially plate shape. However, the relay substrate body 41 is provided with a ring-shaped copper foil 44 having an outer diameter of 120 μm and an inner diameter of 50 μm at predetermined positions on the first main surface 41A side, and a ring-shaped copper surface on the second main surface 41B side. A circular copper foil 45 having a diameter of 120 μm is deposited at a position corresponding to the foil 44, that is, a position that is concentric in plan view. The third harmonic of the YAG laser is irradiated from the first main surface 41A side of the relay substrate body 41. However, the spot diameter of the laser beam is reduced to about 80 μm and irradiated to the approximate center of the ring-shaped copper foil 44, so that the cross-sectional shape according to the inner diameter of the ring-shaped copper foil 44 is shown in FIG. A through hole 41H having a diameter of 50 μm is drilled. In the laser processing in the present embodiment, the copper foils 44 and 45 are not perforated as in the case of the first embodiment. Further, as can be easily understood, the ring-shaped copper foil 34 acts as a conformal mask whose inner diameter is a mask pattern.
[0052]
Next, the surface of the copper foil 44 (upper surface in the figure), the surface of the copper foil 45 (lower surface in the figure), the exposed surface in the through hole 41H (upper surface in the figure), the inner peripheral surface of the through hole 41H, the first, Electroless copper plating is performed on the second main surfaces 41A and 41B to form electroless copper plating layers 46 and 47 having a thickness of 1 μm (see FIG. 9A).
Further, a photosensitive plating resist film is applied onto the electroless plating layers 46 and 47, exposed and developed, and then the inside of the through hole 41H and the copper foil 44, that is, the inside of the through hole 41H and its peripheral edge on the first main surface side. Plating resist layers MR5 and MR6 having through holes MR5H and MR6H are formed so that the electroless plating layer 46 having a diameter of 120 μm and the electroless plating layer 47 on the copper foil 45 are exposed. Next, electrolytic copper plating is performed using the electroless copper plating layers 46 and 47 as a common electrode, and a substantially concave-shaped thickness of 6 μm is formed on the electroless plating layer 46 in the through hole 41H and on the periphery of the first main surface side opening. The electrolytic copper plating layer 48 is formed on the second main surface side of the through hole 41H and the peripheral edge of the opening, that is, on the electroless plating layer 47 on the copper foil 45 (downward in the figure). Each is formed (see FIG. 9B).
[0053]
Thereafter, the plating resists MR5 and MR6 are dissolved and removed (see FIG. 9C). Thereafter, the exposed electroless copper plating layers 46 and 47 are removed by etching, thereby forming a substantially concave concave conductor 42 in the through hole 41H as shown in FIG. Similar to the relay substrate 10, the concave conductor 42 closes the through hole 41H at the bottom 42T, covers the inner peripheral surface of the through hole 41H at the side 42S, and forms a concave 42R. Further, the side portion 42S of the concave conductor 42 extends to the first main surface side opening peripheral edge of the through hole 41H in the first main surface 41A to form the first main surface side opening peripheral edge portion 42P, and The bottom portion 42T extends to the second main surface side opening peripheral edge of the through hole 41H to form a second main surface side opening peripheral edge portion 42Q.
After that, as in the first embodiment, the Pb—Sn eutectic solder paste SP is filled into the recesses 42R using the mask M (see FIG. 4B), and is heated and melted to form the filled solder body 43. To do. As a result, as shown in FIG. 10B, a relay board 40 substantially the same as the relay board 10 of the first embodiment is completed.
[0054]
In the relay substrate 40 as well as the relay substrates 10 and 30, when filling and applying the Pb—Sn eutectic solder paste SP, the through hole 41H is closed by the bottom portion 42T of the concave conductor 42. Since it is in a (blind hole) state, the Pb—Sn eutectic solder paste SP filled in the recess 42R does not fall off as in the conventional case (see FIG. 13A). Therefore, also in the relay substrate 40, since the solder volume of the filling solder body 43 becomes substantially constant, the protruding height of the filling solder body 33 can also be made almost constant.
Note that, in the relay substrate 40, as in the relay substrate 30, only the thin electroless plating layers 46 and 47 need only be removed by etching after the removal of the plating resists MR5 and MR6. Therefore, it is excellent in that the etching and subsequent processing are easy. Moreover, since the through-hole 41H is formed by the conformal mask method using the ring-shaped copper foil 44, it is also excellent in that it is not necessary to increase the laser beam irradiation position accuracy.
[0055]
In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above embodiments, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the above-described embodiment, the conductor layers 12 and the like extend to the peripheral edges 11AP and 11BP such as the through holes 11H, and the first and second main surface side opening peripheral edges 12P and 12Q are also formed. These may not be formed.
The conductor layer 12 and the like are both made of copper foil and copper plating, but other metals such as nickel, or two or more kinds such as nickel plating on the copper foil or copper plating layer It may be made of metal.
In the above-described embodiment, the filling solder body 13 is illustrated as a spherical protrusion on the first main surface 1A side. However, the protrusion height of each filling solder body is a flat plate that does not get wet with solder such as ceramic or stainless steel during melting. It is preferable to regulate the thickness and cool as it is so that the top portion on the first main surface side of each filled solder body 13 becomes flat. By flattening according to the plane of the flat plate, it is possible to reduce the coplanarity of each filled solder body. This is because the connection with the solder bump can be ensured because the height is increased. In order to flatten the top of the filled solder body, each filled solder body 13 or the like solidified after melting may be pressed with a flat mold to flatten the top.
Moreover, in the said embodiment, although the concave conductor 12 etc. were formed using electroless plating and electrolytic plating, you may form a concave conductor only by electroless plating.
[Brief description of the drawings]
1A and 1B are a plan view and a partially enlarged cross-sectional view, respectively, of a relay board according to Embodiment 1;
2A is an explanatory view showing a state in which an IC chip is connected to the relay board of FIG. 1, and FIG. 2B is an explanatory view showing a state in which a printed wiring board is further connected.
FIG. 3 is an explanatory view showing steps until a plating resist is removed in the relay substrate manufacturing method according to the first embodiment;
FIG. 4 is an explanatory diagram showing steps until a recessed conductor is filled with a solder paste in the relay board manufacturing method according to the first embodiment;
5A is a partially enlarged cross-sectional view of a relay board according to a second embodiment, and FIG. 5B is an explanatory view showing a process of applying a high-temperature solder paste to the bottom side of a concave conductor in the relay board manufacturing method. It is.
FIG. 6 is an explanatory view showing steps up to electrolytic plating in the relay substrate manufacturing method according to the third embodiment.
7A is an explanatory view showing an etching step in the method for manufacturing a relay substrate according to the third embodiment, and FIG. 7B is a partially enlarged sectional view of the relay substrate according to the third embodiment.
FIG. 8 is an explanatory view showing steps up to formation of a through hole in the relay substrate manufacturing method according to the fourth embodiment.
FIG. 9 is an explanatory diagram showing steps up to resist removal in the relay substrate manufacturing method according to the fourth embodiment.
10A is an explanatory view showing an etching process in the method of manufacturing a relay board according to the fourth embodiment, and FIG. 10B is a partially enlarged sectional view of the relay board according to the fourth embodiment.
11A is a partially enlarged cross-sectional view of a conventional relay board, and FIG. 11B is an explanatory view showing a state in which an IC chip and a printed wiring board are connected to the upper and lower sides of the conventional relay board.
12 is a partial cross-sectional view of a conventional relay board different from FIG.
FIGS. 13A and 13B are explanatory diagrams for explaining how the paste filled in the through-holes falls off, and FIG. 13B shows that the paste filled in the through-holes is cured to make the paste (resin) uneven. It is explanatory drawing which shows the state.
[Explanation of symbols]
10, 20, 30, 40 Relay board
11, 31, 41 Relay board body
11A, 31A, 41A First main surface
11B, 31B, 41B Second main surface
11H, 31H, 41H Through hole
12, 32, 42 Concave conductor
12T, 32T, 42T (concave conductor) bottom
12S, 32S, 42S (concave conductor) side
12R, 32R, 42R (concave)
13, 33, 43 Filled solder body
23 Solder bump

Claims (8)

第1主面と第2主面とを備え、この2つの主面間を貫通する貫通孔を有する中継基板本体と、
上記貫通孔の第2主面側開口を塞ぐ底部と上記貫通孔内周面を覆う側部とを備える略凹形状の凹状導体と、
上記凹状導体の凹部内に充填され上記第1主面側に突出する充填ハンダ体と、を備えることを特徴とする中継基板。
A relay board body having a first main surface and a second main surface, and having a through-hole penetrating between the two main surfaces;
A substantially concave concave conductor comprising a bottom portion that covers the second main surface side opening of the through hole and a side portion that covers the inner peripheral surface of the through hole;
A relay board comprising: a filling solder body which is filled in a concave portion of the concave conductor and protrudes toward the first main surface side.
請求項1に記載の中継基板であって、
前記中継基板本体の厚さが200μm以下である
ことを特徴とする中継基板。
The relay board according to claim 1,
A relay board having a thickness of the relay board body of 200 μm or less.
請求項1または請求項2に記載の中継基板であって、
隣接する前記凹状導体の側部同士の間隙が、200μm以下であり、
前記中継基板本体が、ガラス繊維を含まない樹脂系複合材料からなる
ことを特徴とする中継基板。
The relay board according to claim 1 or 2,
The gap between the side portions of the adjacent concave conductors is 200 μm or less,
The relay board is characterized in that the relay board body is made of a resin-based composite material that does not contain glass fibers.
請求項1または請求項2に記載の中継基板であって、
前記凹状導体の底部のうち第2主面側に、前記充填ハンダ体をなすハンダよりも高融点のハンダからなる高温ハンダバンプを備える
ことを特徴とする中継基板。
The relay board according to claim 1 or 2,
A relay board comprising a high-temperature solder bump made of solder having a melting point higher than that of the solder forming the filling solder body on the second main surface side of the bottom of the concave conductor.
第1主面と第2主面とを備える中継基板本体に、上記2つの主面間を貫通する貫通孔及びこの貫通孔の第2主面側開口を塞ぐ底部と上記貫通孔内周面を覆う側部とを有する略凹形状の凹状導体を形成する貫通孔凹状導体形成工程と、
上記第1主面側から上記凹状導体の凹部内にハンダペーストを充填し加熱して、上記凹状導体内に充填され上記第1主面側に突出する充填ハンダ体を形成する充填ハンダ体形成工程と、
を備えることを特徴とする中継基板の製造方法。
A relay board main body having a first main surface and a second main surface is provided with a through hole penetrating between the two main surfaces, a bottom portion closing the second main surface side opening of the through hole, and an inner peripheral surface of the through hole. A through hole concave conductor forming step of forming a substantially concave concave conductor having a side portion to be covered; and
Filling solder body forming step of filling a solder paste into the concave portion of the concave conductor from the first main surface side and heating to form a filled solder body that fills the concave conductor and protrudes toward the first main surface side When,
A method for producing a relay board, comprising:
第1主面と第2主面とを備え、この2つの主面のうち少なくとも上記第2主面に第2主面側金属層を有する中継基板本体のうち、上記第1主面に金属層を有さず第2主面にのみ第2主面側金属層を有する所定位置に、上記中継基板本体を穿孔可能で上記第2主面側金属層を穿孔不能なレーザを用いた上記第1主面側からのレーザ加工により、上記第2主面側金属層で第2主面側開口を塞がれた貫通孔を穿孔する貫通孔形成工程と、
少なくとも上記第2主面側金属層のうち上記第2主面側開口において上記貫通孔内に向かって露出する露出面および上記貫通孔内の内周面にメッキを施して、略凹形状の凹状導体を形成する凹状導体形成工程と、
上記第1主面側から上記凹状導体の凹部内にハンダペーストを充填し加熱して、上記凹状導体内に充填され上記第1主面側に突出する充填ハンダ体を形成する充填ハンダ体形成工程と、
を備えることを特徴とする中継基板の製造方法。
Of the two main surfaces, a metal layer on the first main surface of the relay board body having a second main surface side metal layer on at least the second main surface of the two main surfaces. The first substrate using the laser that can drill the relay substrate body and cannot drill the second main surface side metal layer at a predetermined position having the second main surface side metal layer only on the second main surface. A through hole forming step of drilling a through hole in which the second main surface side opening is blocked by the second main surface side metal layer by laser processing from the main surface side;
At least the exposed surface exposed toward the inside of the through hole in the second main surface side opening of the second main surface side metal layer and the inner peripheral surface of the through hole are plated to form a substantially concave shape. A concave conductor forming step of forming a conductor;
Filling solder body forming step of filling a solder paste into the concave portion of the concave conductor from the first main surface side and heating to form a filled solder body that fills the concave conductor and protrudes toward the first main surface side When,
A method for producing a relay board, comprising:
請求項6に記載の中継基板の製造方法において、
前記貫通孔の第2主面側開口の径よりも、これを塞ぐ第2主面側金属層の径が大きくされている
ことを特徴とする中継基板の製造方法。
In the manufacturing method of the relay substrate according to claim 6,
A method for manufacturing a relay substrate, wherein the diameter of the second main surface side metal layer that closes the diameter of the second main surface side opening of the through hole is made larger.
請求項6または請求項7に記載の中継基板の製造方法において、
前記貫通孔形成工程は、前記第1主面に所定パターンの透孔を備える第1主面側金属層と前記第2主面のうち少なくとも上記透孔に対応する位置に配置された第2主面側金属層とを有する前記中継基板本体に、上記第1主面側金属層の透孔に対しこの透孔より広くレーザを照射し、透孔と断面略同形の前記貫通孔を形成するコンフォーマルマスク貫通孔形成工程であること
を特徴とする中継基板の製造方法。
In the manufacturing method of the relay substrate of Claim 6 or Claim 7,
The through hole forming step includes a first main surface side metal layer having a predetermined pattern of through holes on the first main surface and a second main surface disposed at a position corresponding to the through holes at least among the second main surface. The relay substrate body having a surface-side metal layer is irradiated with a laser wider than the through-hole in the first main surface-side metal layer to form the through-hole having substantially the same shape as the through-hole. A method for manufacturing a relay substrate, which is a formal mask through-hole forming step.
JP33803798A 1998-10-08 1998-11-27 Relay board and manufacturing method thereof Expired - Fee Related JP3779478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33803798A JP3779478B2 (en) 1998-10-08 1998-11-27 Relay board and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-286205 1998-10-08
JP28620598 1998-10-08
JP33803798A JP3779478B2 (en) 1998-10-08 1998-11-27 Relay board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000183242A JP2000183242A (en) 2000-06-30
JP3779478B2 true JP3779478B2 (en) 2006-05-31

Family

ID=26556208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33803798A Expired - Fee Related JP3779478B2 (en) 1998-10-08 1998-11-27 Relay board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3779478B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076561A (en) * 2000-08-24 2002-03-15 Sony Corp Solid circuit board device and manufacturing method therefor
JP4638768B2 (en) * 2005-05-20 2011-02-23 三井金属鉱業株式会社 Film carrier tape with capacitor circuit and manufacturing method thereof, surface mount film carrier tape with capacitor circuit and manufacturing method thereof
CN112888152B (en) 2014-11-21 2024-06-07 安费诺公司 Matched backboard for high-speed and high-density electric connector
US10201074B2 (en) 2016-03-08 2019-02-05 Amphenol Corporation Backplane footprint for high speed, high density electrical connectors
US10187972B2 (en) 2016-03-08 2019-01-22 Amphenol Corporation Backplane footprint for high speed, high density electrical connectors
JP7180602B2 (en) 2017-08-14 2022-11-30 ソニーグループ株式会社 Electronic component module, manufacturing method thereof, endoscope device, and mobile camera
WO2019241107A1 (en) * 2018-06-11 2019-12-19 Amphenol Corporation Backplane footprint for high speed, high density electrical connectors
WO2020236794A1 (en) 2019-05-20 2020-11-26 Amphenol Corporation High density, high speed electrical connector
US11637403B2 (en) 2020-01-27 2023-04-25 Amphenol Corporation Electrical connector with high speed mounting interface
CN115315855A (en) 2020-01-27 2022-11-08 安费诺有限公司 Electrical connector with high speed mounting interface

Also Published As

Publication number Publication date
JP2000183242A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
US6952049B1 (en) Capacitor-built-in type printed wiring substrate, printed wiring substrate, and capacitor
KR101168263B1 (en) Semiconductor package and fabrication method thereof
US6297553B1 (en) Semiconductor device and process for producing the same
US9059152B2 (en) Wiring substrate and manufacturing method of the same
KR20120029311A (en) Package substrate unit and method for manufacturing package substrate unit
US20040012097A1 (en) Structure and method for fine pitch flip chip substrate
JP3779478B2 (en) Relay board and manufacturing method thereof
JP4268434B2 (en) Wiring board manufacturing method
US8053886B2 (en) Semiconductor package and manufacturing method thereof
JP2012142557A (en) Wiring board and manufacturing method thereof
JP4769056B2 (en) Wiring board and method of manufacturing the same
JP4835629B2 (en) Manufacturing method of semiconductor device
US20110061907A1 (en) Printed circuit board and method of manufacturing the same
JP5479959B2 (en) Manufacturing method of wiring board having solder bump, mask for mounting solder ball
JP2022161152A (en) Printed wiring board and manufacturing method for printed wiring board
JP4161463B2 (en) Chip carrier manufacturing method
KR19990005679A (en) Manufacturing method of package for flip chip mounting
JP3897250B2 (en) Semiconductor package substrate and manufacturing method thereof
JP2017183337A (en) Wiring board, electronic device, and method of manufacturing wiring board
JP3759755B2 (en) How to make raised metal contacts on electrical circuits for permanent connection
KR101920916B1 (en) Printed circuit board having conductive post and method of manufacturing the same
JP3826414B2 (en) Method for manufacturing printed wiring board
JP2023063917A (en) Wiring board and functional device
EP1599077A1 (en) Method of creating gold contacts directly on printed circuit boards and product thereof
JPH11111766A (en) Wiring board and its manufacture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees