JP3776589B2 - Saturated hydrocarbon polymer having primary hydroxyl group at its terminal and process for producing the same - Google Patents
Saturated hydrocarbon polymer having primary hydroxyl group at its terminal and process for producing the same Download PDFInfo
- Publication number
- JP3776589B2 JP3776589B2 JP11649298A JP11649298A JP3776589B2 JP 3776589 B2 JP3776589 B2 JP 3776589B2 JP 11649298 A JP11649298 A JP 11649298A JP 11649298 A JP11649298 A JP 11649298A JP 3776589 B2 JP3776589 B2 JP 3776589B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- polymer
- hydroxyl group
- double bond
- primary hydroxyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/26—Removing halogen atoms or halogen-containing groups from the molecule
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、新規な1級水酸基を末端に有する重合体主鎖が飽和な炭化水素系重合体(以下、1級水酸基を末端に有する飽和炭化水素系重合体という)およびこの製造方法に関する。
【0002】
【従来の技術】
一般に、アニオン重合によって合成されるポリブタジエンポリオールおよびポリイソプレンポリオールを水素添加することによって、末端に水酸基を有する飽和炭化水素系重合体が得られることが知られている。リビングアニオン重合では重合終了後にエチレンオキシドを作用させることによって容易に1級の水酸基を末端に、定量的に導入することが可能である。
【0003】
これらの水酸基末端ポリオールはイソシアネート化合物と容易に反応し、ウレタン系の硬化物を与える。このポリマーを用いることによって、ポリエーテル系あるいはポリエステル系ポリオールを成分とするウレタン組成物で問題とされている、耐候性、耐薬品性等の性能を向上させることが知られている。しかしこれらの水酸基末端ポリオールを用いたウレタン組成物の素材としての各種耐久性については、まだ十分とは言えない。また水酸基末端ポリオールを製造する際には、水素添加という困難な工程を経る必要があるという問題もある。
【0004】
一方、高耐候性が期待される飽和炭化水素系高分子重合体として、カチオン重合により得られるポリイソブチレンが知られている。特にリビングカチオン重合により、定量的にポリイソブチレンの末端に官能基を導入する反応は知られている。J.P.Kennedyらはリビングカチオン重合によって合成される塩素基を末端に有するポリイソブチレンをまず合成し、次いでtBuOKを用いて末端の脱塩酸反応をおこなうことによりイソプロペニル基末端基に誘導したり、あるいは四塩化チタン存在下でアリルトリメチルシランを反応させることでアリル基末端のポリイソブチレンを合成した後に、BH3または9−BBNといったヒドリド−ボラン試薬と過酸化水素を用いることによって定量的に末端に水酸基を導入する方法を開示している(例えばB. Ivan, J.P. Kennedy, and V. S. C. Chang, J. Polym. Sci., Polym. Chem, Ed., 1980, 18, 3177およびB. Ivan, and J. P. Kennedy, Polym. Mater. Sci. Eng., 1988, 58, 866など)。さらにJ.P.Kennedyらは、水酸基末端ポリイソブチレンとイソシアネート基を複数有する化合物との反応によって得られたウレタン樹脂が高耐候性を示すことも報告している。
【0005】
しかしながら、この方法はリビングカチオン重合によって得られた塩素末端のポリイソブチレンをオレフィン末端に誘導した後に、水酸基に変換する必要がある。さらに、用いる原料が極めて特殊であり、この方法は工業的スケールで飽和炭化水素系ポリオールを製造するには適していない。
【0006】
【発明が解決しようとする課題】
本発明はヒドリド−ボラン試薬のような特殊で高価な原料を用いることなく、カチオン重合によって得られる飽和炭化水素系重合体のハロゲン末端に1段反応で1級の水酸基を導入した、新規な1級水酸基を末端に有する飽和炭化水素系重合体とその製法を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明は、カチオン重合性単量体を主成分とする単量体成分を、炭素−炭素単結合を形成するようにカチオン重合して得られるハロゲン末端重合体に、1級水酸基および炭素−炭素二重結合を有する化合物を反応させることによって得られる、1級水酸基を末端に有し、重合体主鎖中に炭素−炭素二重結合を有さないカチオン重合性重合体の製造法に関する。
【0008】
重合開始剤を用いるリビングカチオン重合(イニファー法)によって得られるハロゲン基末端のテレケリックなポリイソブチレンに他の基質を作用させることにより、末端を修飾する反応に関しては多くの報告がなされている。ポリイソブチレン末端の塩素−炭素間にオレフィンを挿入する方法として、例えば塩化メチレン/ヘキサンの混合溶剤系、−80℃〜−30℃においてルイス酸を触媒として用いることで、共役および非共役のジエンをポリマー末端に導入する系が知られている(例えばUS5212248、特開平4−288309等)。ブタジエンなどの共役ジエンを作用させた系では高い反応性が期待されるハロゲン化アリル末端となり、更なる加水分解等で末端水酸基への変換も期待される。しかしながら、この方法ではハロゲン末端ポリイソブチレンから1ステップで水酸基末端に変換することは出来ない。そこで、検討を重ね、本発明をなすに至った。
【0009】
本発明における重合体主鎖中に炭素−炭素二重結合を有さないカチオン重合性重合体とは、カチオン重合性単量体を主成分とする単量体成分を、炭素−炭素単結合を形成するようにカチオン重合することによって得られた、主鎖中にはC−C二重結合を有さない(すなわち飽和な)カチオン重合性重合体を意味するが、主鎖にぶら下がったグラフト基にはC−C二重結合を有していてもよい。また、カチオン重合の際に用いる重合開始剤中にはC−C二重結合を有していても構わない。なお、本願においては、このような重合体を炭化水素系重合体または飽和炭化水素系重合体とよぶ場合がある。
【0010】
1級水酸基を末端に有する飽和炭化水素系重合体の構造は、カチオン重合によって得られる重合体主鎖が飽和なハロゲン末端炭化水素系重合体が式(1):
R1(A−X)a (1)
(式中、R1は単環または複数の芳香環を含む1価から4価までの炭化水素基、
Xは塩素基または臭素基、aは1から4の整数。Aは一種又は二種以上のカチオン重合性単量体の重合体で、aが2以上の時は同じでも異なっていてもよい。)
で表され、
1級水酸基および炭素−炭素二重結合を有する化合物が式(2):
CH2=C(R2)−B−CH2OH (2)
(式中、R2は水素または炭素数1から18の飽和炭化水素基を、Bは炭素数0から30の2価の炭化水素基を表す。)
で表されるものであることが好ましい。
【0011】
また前記式(2)の化合物としては、式(3):
CH2=C(R2)−(CH2)n−CH2OH (3)
(式中、R2は水素または炭素数1から18の飽和炭化水素基を、nは0から30の整数を表す。)
で表されるものであることがより好ましい。
【0012】
前記式(1)におけるカチオン重合性のモノマーには特に制限はないが、好ましいモノマーとしては、例えばイソブチレン、インデン、ピネン、スチレン、メトキシスチレン、クロルスチレン等を挙げることができる。
また本発明の重合体を硬化性組成物の原料とする場合には、架橋前には液状であり、架橋後にはゴム状の硬化物を与え得るイソブチレン系重合体を製造するのが好ましい。
【0013】
イソブチレン系重合体は、単量体単位のすべてがイソブチレン単位から形成されていてもよいし、イソブチレンと共重合体を有する単量体単位をイソブチレン系重合体中の好ましくは50%以下(重量%、以下同じ)、さらに好ましくは30%以下、とくに好ましくは10%以下の範囲で含有してもよい。
このような単量体成分としては、たとえば、炭素数4〜12のオレフィン、ビニルエーテル、芳香族ビニル化合物、ビニルシラン類、アリルシラン類などがあげられる。このような共重合体成分としては、たとえば1ーブテン、2ーブテン、2ーメチルー1ーブテン、3ーメチルー1ーブテン、ペンテン、4ーメチルー1ーペンテン、ヘキセン、ビニルシクロヘキセン、メチルビニルエーテル、エチルビニルエーテル、イソブチルビニルエーテル、スチレン、αーメチルスチレン、ジメチルスチレン、モノクロロスチレン、ジクロロスチレン、βーピネン、インデン、ビニルトリクロロシラン、ビニルメチルジクロロシラン、ビニルジメチルクロロシラン、ビニルジメチルメトキシシラン、ビニルトリメチルシラン、ジビニルジクロロシラン、ジビニルジメトキシシラン、ジビニルジメチルシラン、1,3−ジビニルー1,1,3,3−テトラメチルジシロキサン、トリビニルメチルシラン、テトラビニルシラン、アリルトリクロロシラン、アリルメチルジクロロシラン、アリルジメチルクロロシラン、アリルジメチルメトキシシラン、アリルトリメチルシラン、ジアリルジクロロシラン、ジアリルジメトキシシラン、ジアリルジメチルシラン、γーメタクリロイルオキシプロピルトリメトキシシラン、γーメタクリロイルオキシプロピルメチルジメトキシシランなどがあげられる。
【0014】
本発明において、さらに、導入した末端水酸基を多官能のイソシアネート化合物と反応させることにより、ウレタン架橋体を得る事ができるが、架橋反応によって架橋性高分子化合物を得る際に充分な強度、耐候性、ゲル分率等を達成するためには、前記式(1)の重合体のaが2または3の塩素基末端ポリイソブチレンであることが好ましい。
【0015】
ハロゲン末端炭化水素系重合体に作用させる基質である、前記式(2)で表される化合物としては、1置換あるいは1,1’−2置換の末端に水酸基を有するオレフィンであれば特に制限されるものではないが、反応性の高さから、
1置換または2置換オレフィンにおいては1−メチル1’−末端ヒドロキシルアルキルエチレンが好ましく、この中で、アリルアルコール、メタリルアルコール、3−ブテン−1−オール、4−ペンテン−1−オール、5−ヘキセン−1−オール、6−ヘプテン−1−オール、7−オクテン−1−オール、8−ノネン−1−オール、9−デセン−1−オールおよび10−ウンデセン−1−オールが特に好ましい。
【0016】
前記式(1)のカチオン重合によって得られるハロゲン末端飽和炭化水素系重合体に前記式(2)で表される1級水酸基および不飽和結合を有する化合物を反応させる際に、触媒としてルイス酸を用いることが可能である。この場合ルイス酸であれば特に制限されるものではないが、反応活性の高さからTiCl4、AlCl3、BCl3、SnCl4が好ましい。
【0017】
本発明において、反応溶剤としてハロゲン化炭化水素、芳香族炭化水素、及び脂肪族炭化水素から任意に選ばれる単独又は混合溶剤を用いることが可能であるが、ポリマーの重合条件下での溶解性や反応性からハロゲン化炭化水素として塩化メチレン、クロロホルム、1,1−ジクロルエタン、1,2−ジクロルエタン、n−プロピルクロライド、n−ブチルクロライドのなかから選ばれる1種以上の成分であることが好ましい。同様の理由で、芳香族炭化水素としてはトルエンが好ましく、脂肪族炭化水素としてはペンタン、n−ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサンのなかから選ばれる1種以上の成分が好ましい。
【0018】
環境への悪影響が心配されるハロゲン化炭化水素を用いない反応溶剤として、トルエンおよびエチルシクロヘキサンを用いることで、水酸基を末端に有する飽和炭化水素系重合体の製造が容易に達成出来る。
さらに、反応系中にピリジン、2−メチルピリジン、3−メチルピリジン、4−メチルピリジン、2,6−ジ−t−ブチルピリジンを共存させることで末端への水酸基の導入率を向上させることが可能であり、これらの化合物の添加が有効である。
【0019】
【発明の実施形態】
本発明にかかる水酸基を末端に有する飽和炭化水素系重合体の製法は、例えば以下のようにして行われる。すなわち、式(1)で示されるハロゲン基を末端に有する飽和炭化水素系重合体に1〜4当量の式(2)で表される1級水酸基を末端に有するオレフィン化合物を反応溶剤としてクロロホルム、塩化メチレン、1,1−ジクロルエタン、1,2−ジクロルエタン、n−プロピルクロライド、n−ブチルクロライド、トルエン、ペンタン、n−ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサンのなかから選ばれる1種以上の成分からなる溶剤に溶解する。これに、ピリジン、2−メチルピリジン、3−メチルピリジン、4−メチルピリジン、2,6−ジ−t−ブチルピリジン等のエレクトロンドナー共存下、−100℃〜−30℃の温度範囲でTiCl4、AlCl3、BCl3、SnCl4等のルイス酸触媒を添加し、30分〜5時間反応させることで、目的とする水酸基を末端に有する飽和炭化水素系重合体が得られる。
ところで一般に、ルイス酸と水酸基を持つ化合物は反応することによってハロゲン化水素を与えることが知られている。水酸基末端のオレフィン化合物をハロゲン末端炭化水素系重合体の末端に導入する反応条件下では、副反応としてオレフィンへのハロゲン化水素の付加反応が進行することを検討の結果明らかにした。ハロゲン化水素が付加した基質は重合体末端に反応することはできない事から、この副反応の存在は水酸基導入反応の効率を著しく低下させる。
【0020】
系中に存在するハロゲン化水素を塩基を用いてトラップすることによってオレフィンへの付加反応を押さえることが考えられる。塩基成分であれば有機塩基、無機塩基ともに用いることが可能であるが、反応溶剤に可溶な有機塩基が好ましく、導入効率への高さからピリジン、2−メチルピリジン、3−メチルピリジン、4−メチルピリジン、2,6−ジ−t−ブチルピリジンなどのピリジン誘導体の添加が好ましい。添加量としては、飽和炭化水素系重合体のハロゲン基末端あたり、0.05〜10当量が反応速度と水酸基導入率のバランスが良いという理由から好ましい。同様にルイス酸の一部は水酸基末端のオレフィン化合物と反応することで、触媒活性が低下する。従って、付加反応の際には水酸基末端のオレフィン化合物に対して当量以上が好ましい。逆に過剰のルイス酸の添加は、水酸基の導入量のわずかな低下を招くことも、検討の結果明らかになっている。以上のことから、ルイス酸量は1級水酸基を末端に有するオレフィン化合物に対して1〜20当量が好ましい。
【0021】
本発明において用いるルイス酸はイニファー法によるリビングカチオン重合に用いることが可能であり、まず、イニファー法によってハロゲン基末端の重合体を得、処理すること無しに1級水酸基を末端に有するオレフィン化合物および必要に応じてルイス酸、エレクトロンドナーの追加を行うことで、1ポットで1級水酸基を末端に導入することが可能である。
【0022】
式(1)におけるR1は重合開始剤の残基であり、イニファー法によるリビングカチオン重合に用いることが出来る1から4官能の開始剤であれば特に制限されるものではないが、好ましい官能基数としては2および3である。このうち、重合時の開始剤効率の高い化合物として以下に示すベンジル位に置換基を有する化合物が好ましい。
【0023】
【化1】
【0024】
(式中、Xは塩素基、臭素基、メトキシ基、アセチル基を表す。)
反応溶剤は前記の溶剤であれば特に制限されるものではないが、重合反応の後、1ポットで水酸基を導入することも可能となることから、重合反応溶剤と同様であることが好ましい。重合反応と末端への水酸基の導入反応に共通する反応溶剤としてハロゲン化炭化水素、芳香族炭化水素、及び脂肪族炭化水素から任意に選ばれる単独又は混合溶剤を用いることが可能であるが、ポリマーの重合条件下での溶解性や反応性からハロゲン化炭化水素として塩化メチレン、クロロホルム、1,1−ジクロルエタン、1,2−ジクロルエタン、n−プロピルクロライド、n−ブチルクロライドのなかから選ばれる1種以上の成分であることが好ましい。同様の理由で、芳香族炭化水素がトルエンが好ましく、脂肪族炭化水素としてはペンタン、n−ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサンのなかから選ばれる1種以上の成分が好ましい。
【0025】
近年、環境問題上、非ハロゲン化が重要な技術となっているが、本系に於いてもトルエンとエチルシクロヘキサンの溶剤系はリビングカチオン重合で、狭い分子量分布でポリマーを得ることが可能であり、この条件下で末端に水酸基を有するオレフィン化合物の付加反応も速やかに進行する。重合性、重合体の低温での溶解度の観点から、溶剤の混合比率としてはトルエン:エチルシクロヘキサン=6:4〜9:1(重量比)が好ましい。
【0026】
【実施例】
次に実施例を挙げて、本発明をより一層明らかにするが、実施例により本発明は何ら限定されるものではない。
(実施例1)500mlのセパラブルフラスコに三方コック、熱電対、および真空用シール付き撹拌機をつけて窒素置換を行った。これにモレキュラーシーブス3Aによって脱水したトルエン175ml、エチルシクロヘキサン21.7mlを加え、さらに1,4−ビス(1−クロル−1−メチルエチル)ベンゼン(1.63g, 7.04mmol)、2−メチルピリジン(77.4mg, 0.83mmol)を加えて−70℃に冷却した。冷却後、イソブチレンモノマー(35.5ml, 598mmol)を導入し、さらに、この温度で四塩化チタン(0.98ml, 8.93mmol)を添加し重合を開始した。この際に約15℃昇温した。約40分で重合は終了した(これに伴い反応系の発熱は観察されなくなった)。重合終了後に9−デセン−1−オール(5.1ml,28.2mmol)および四塩化チタン(5.7ml,51.7mmol)を添加した。1時間反応の後に、80℃に加熱したイオン交換水300mlに反応混合物を導入し、さらに、1Lの分液ロートに移液して振盪した。水層を除去した後、300mlのイオン交換水で3回水洗した後に、有機層を単離し、これに1 Lのアセトンを加えてポリマーを再沈殿させ、未反応の9−デセン−1−オールを除去した。沈殿物をさらにアセトン100 mlで2回洗浄し、さらにヘキサン50 mlに溶解した。溶液を300mlのなす型フラスコに移液し、オイルバスによる加熱条件下(180℃)、減圧(最終1Torr以下)によって溶媒留去を行い、目的とする水酸基を末端に有するポリイソブチレンを得た。
【0027】
得られたポリイソブチレンの分子量及び官能化率の分析はGPCおよびNMRを用いて行った。
(GPCシステム)
GPC;Waters社製システム(ポンプ600E、示差屈折計401)、
カラム;昭和電工(株)製 Shodex K−804(ポリスチレンゲル)、移動相;クロロホルム、数平均分子量はポリスチレン換算
(NMR)
Valian社製 Gemini−300、測定溶剤;四塩化炭素/重アセトン=4/1混合溶剤、定量方法;開始剤残基のシグナル(7.2ppm)を基準に末端のヒドロキシメチル基のエリア(3.45ppm)を比較して定量化した。
【0028】
結果を表1にまとめた。尚、表中でTiCl4 (total)は9−デセン−1−オール付加反応時に系中に存在する四塩化チタン量であり、PDIは分散度を表し、GPCにおける(重量平均分子量)/(数平均分子量)である。
Fn(CH2OH)は水酸基導入量であり、定量的に導入した時には今回用いた開始剤では2.0となる。
(実施例2)9−デセン−1−オールの量を2.55ml(14.1mmol)とした以外は実施例1と同様に行った。結果を表1にまとめた。
(実施例3)9−デセン−1−オールの量を10.2ml(56.4mmol)とした以外は実施例1と同様に行った。結果を表1にまとめた。
(実施例4)9−デセン−1−オール添加時の四塩化チタン添加量を2.1ml(19.2mmol)とした以外は実施例1と同様に行った。結果を表1にまとめた。
(実施例5)9−デセン−1−オール添加時の四塩化チタン添加量を3.65ml(33.3mmol)とした以外は実施例1と同様に行った。結果を表1にまとめた。
(実施例6)9−デセン−1−オール添加時の四塩化チタン添加量を11.4ml(94.5mmol)とした以外は実施例1と同様に行った。結果を表1にまとめた。
【0029】
【表1】
【0030】
(実施例7)500mlのセパラブルフラスコに三方コック、熱電対、および真空用シール付き撹拌機をつけて窒素置換を行った。これにモレキュラーシーブス3Aによって脱水したトルエン175ml、エチルシクロヘキサン21.7mlを加え、さらに1,4−ビス(1−クロル−1−メチルエチル)ベンゼン(1.63g,7.04mmol)、2−メチルピリジン(77.4mg,0.83mmol)を加えて−70℃に冷却した。冷却後、イソブチレンモノマー(35.5ml,598mmol)を導入し、さらに、この温度で四塩化チタン(0.98ml,8.93mmol)を添加し重合を開始した。この際に約15℃昇温した。約40分で重合は終了した(これに伴い反応系の発熱は観察されなくなった)。重合終了後に80℃に加熱したイオン交換水300mlに反応混合物を導入し、さらに、1Lの分液ロートに移液して振盪した。水層を除去した後、300mlのイオン交換水で3回水洗した後に、有機層を単離し、これに1Lのアセトンを加えてポリマーを再沈殿させ、沈殿物をさらにアセトン100mlで2回洗浄し、さらにヘキサン50mlに溶解した。溶液を300mlのなす型フラスコに移液し、オイルバスによる加熱条件下(80℃)、減圧(最終1Torr以下)によって溶媒留去を行い、塩素基を末端に有するポリイソブチレンを得た。
【0031】
分析結果;Mn(GPC)=5402、PDI=1.33
(実施例8)200 mlの3口丸底フラスコに三方コック、熱電対、および真空用シール付き撹拌機をつけて窒素置換を行った。これにモレキュラーシーブス3Aによって脱水したトルエン24ml、エチルシクロヘキサン6mlに実施例7で得られたポリイソブチレン(4.33g,0.87mmol)を溶解したものおよび9−デセン−1−オール(1.35ml,8.66mmol)を加えて−70℃に冷却した。冷却後、四塩化チタン(2ml,18.3mmol)を添加した。5時間反応の後に、80℃に加熱したイオン交換水100mlに反応混合物を導入し、さらに、500mlの分液ロートに移液して振盪した。水層を除去した後、100mlのイオン交換水で3回水洗した後に、有機層を単離し、これに300mlのアセトンを加えてポリマーを再沈殿させ、未反応の9−デセン−1−オールを除去した。沈殿物をさらにアセトン100mlで2回洗浄し、さらにヘキサン10mlに溶解した。溶液を300mlのなす型フラスコに移液し、オイルバスによる加熱条件下(180℃)、減圧(最終1Torr以下)によって溶媒留去を行い、目的とする水酸基を末端に有するポリイソブチレンを得た。得られたポリマーの水酸基導入量は以下の通り;Fn(CH2OH)=1.60。
(実施例9)9−デセン−1−オール添加時にピコリン2.55g(27.4mmol)を添加した以外は実施例2と同様に行った。得られたポリマーの水酸基導入量は以下の通り;Fn(CH2OH)=1.39(実施例2では1.21でありピコリンの添加によって、水酸基官能率の向上が確認された)。
(実施例10)試薬量を実施例7で得られたポリイソブチレン2.75g(0.51mmol)、トルエン12ml、エチルシクロヘキサン3mlとし、9−デセン−1−オールの替わりに5−ヘキセン−1−オール(0.50ml,4.2mmol)に変えた以外は実施例8と同様に行った。得られたポリマーの水酸基導入量は以下の通り;Fn(CH2OH)=1.60。
【0032】
【発明の効果】
本発明によって得られる重合体は末端に1級の水酸基を有する新規な飽和炭化水素系重合体であり、新規な合成法によって重合終了後、溶媒の交換、触媒の除去等の特別な処理することなく、1ポットで水酸基を効率的に導入することが可能である。本法によって得られた水酸基を末端に有する重合体主鎖が飽和な炭化水素系重合体はポリイソシアネートと反応させることで高耐候性のウレタン樹脂が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel hydrocarbon polymer having a saturated polymer main chain having a terminal primary hydroxyl group (hereinafter referred to as a saturated hydrocarbon polymer having a terminal primary hydroxyl group) and a method for producing the same.
[0002]
[Prior art]
In general, it is known that a saturated hydrocarbon polymer having a hydroxyl group at a terminal can be obtained by hydrogenating a polybutadiene polyol and a polyisoprene polyol synthesized by anionic polymerization. In living anionic polymerization, it is possible to easily introduce a primary hydroxyl group at the terminal quantitatively by allowing ethylene oxide to act after completion of the polymerization.
[0003]
These hydroxyl-terminated polyols easily react with isocyanate compounds to give urethane-based cured products. By using this polymer, it is known to improve performances such as weather resistance and chemical resistance, which have been a problem in a urethane composition containing a polyether or polyester polyol as a component. However, the various durability properties of urethane compositions using these hydroxyl-terminated polyols are still not sufficient. Moreover, when manufacturing a hydroxyl-terminated polyol, there also exists a problem that it is necessary to pass through the difficult process of hydrogenation.
[0004]
On the other hand, polyisobutylene obtained by cationic polymerization is known as a saturated hydrocarbon polymer that is expected to have high weather resistance. In particular, a reaction in which a functional group is introduced quantitatively at the terminal of polyisobutylene by living cationic polymerization is known. J. et al. P. Kennedy et al. Synthesized first polyisobutylene having a chlorine group is synthesized by living cationic polymerization to the end, then or induced isopropenyl endgroups by performing dehydrochlorination reaction ends using t BuOK, or four After synthesizing allyl group-terminated polyisobutylene by reacting allyltrimethylsilane in the presence of titanium chloride, a hydroxyl group is quantitatively formed at the terminal by using a hydride-borane reagent such as BH 3 or 9-BBN and hydrogen peroxide. Methods of introduction are disclosed (eg B. Ivan, JP Kennedy, and VSC Chang, J. Polym. Sci., Polym. Chem, Ed., 1980, 18, 3177 and B. Ivan, and JP Kennedy, Polym Mater. Sci. Eng., 1988, 58, 866, etc.). In addition, J.A. P. Kennedy et al. Also reported that the urethane resin obtained by the reaction of a hydroxyl-terminated polyisobutylene and a compound having a plurality of isocyanate groups exhibits high weather resistance.
[0005]
However, in this method, it is necessary to convert a chlorine-terminated polyisobutylene obtained by living cationic polymerization to an olefin terminal and then convert it to a hydroxyl group. Furthermore, the raw materials used are very specific, and this method is not suitable for producing saturated hydrocarbon polyols on an industrial scale.
[0006]
[Problems to be solved by the invention]
The present invention is a novel one in which a primary hydroxyl group is introduced into a halogen terminal of a saturated hydrocarbon polymer obtained by cationic polymerization in a one-step reaction without using a special and expensive raw material such as a hydride-borane reagent. It is an object of the present invention to provide a saturated hydrocarbon polymer having a terminal hydroxyl group and a method for producing the same.
[0007]
[Means for Solving the Problems]
The present invention provides a primary hydroxyl group and carbon-carbon to a halogen-terminated polymer obtained by cationic polymerization of a monomer component mainly composed of a cationic polymerizable monomer so as to form a carbon-carbon single bond. It is obtained by reacting a compound having a double bond, have a primary hydroxyl group at the terminal carbon in the polymer backbone - the cationically polymerizable polymer production method having no carbon double bond related.
[0008]
Many reports have been made on the reaction of terminal modification by allowing other substrates to act on the telechelic polyisobutylene having a halogen group terminal obtained by living cationic polymerization (Inifer method) using a polymerization initiator. As a method for inserting an olefin between chlorine and carbon at the end of polyisobutylene, for example, a mixed solvent system of methylene chloride / hexane, a Lewis acid is used as a catalyst at −80 ° C. to −30 ° C. A system for introducing a polymer terminal is known (for example, US Pat. No. 5,212,248, JP-A-4-288309, etc.). In a system in which a conjugated diene such as butadiene is allowed to act, an allyl halide terminal which is expected to have high reactivity is obtained, and conversion to a terminal hydroxyl group is expected by further hydrolysis or the like. However, this method cannot convert a halogen-terminated polyisobutylene to a hydroxyl-terminated end in one step. Therefore, studies have been made and the present invention has been made.
[0009]
The cationic polymerizable polymer having no carbon-carbon double bond in the polymer main chain in the present invention is a monomer component mainly composed of a cationic polymerizable monomer, and a carbon-carbon single bond. obtained by cationic polymerization to form, no C-C double bond in the main chain (i.e. saturated of) grafts means a cationically polymerizable polymers, hanging from the main chain May have a C—C double bond. Further, the polymerization initiator used in the cationic polymerization may have a C—C double bond. In the present application, such a polymer may be referred to as a hydrocarbon polymer or a saturated hydrocarbon polymer.
[0010]
The structure of the saturated hydrocarbon polymer having a primary hydroxyl group at the end is such that the halogen-terminated hydrocarbon polymer having a saturated polymer main chain obtained by cationic polymerization is represented by the formula (1):
R 1 (AX) a (1)
Wherein R 1 is a monovalent to tetravalent hydrocarbon group containing a single ring or a plurality of aromatic rings,
X is a chlorine group or bromine group, and a is an integer of 1 to 4. A is a polymer of one or two or more cationically polymerizable monomers, and when a is 2 or more, they may be the same or different. )
Represented by
A compound having a primary hydroxyl group and a carbon-carbon double bond is represented by the formula (2):
CH 2 = C (R 2) -B-CH 2 OH (2)
(Wherein R 2 represents hydrogen or a saturated hydrocarbon group having 1 to 18 carbon atoms, and B represents a divalent hydrocarbon group having 0 to 30 carbon atoms.)
It is preferable that it is represented by these.
[0011]
Moreover, as a compound of said Formula (2), Formula (3):
CH 2 = C (R 2) - (CH 2) n -CH 2 OH (3)
(In the formula, R 2 represents hydrogen or a saturated hydrocarbon group having 1 to 18 carbon atoms, and n represents an integer of 0 to 30.)
It is more preferable that it is represented by.
[0012]
Although there is no restriction | limiting in particular in the cationically polymerizable monomer in said Formula (1), As a preferable monomer, isobutylene, indene, pinene, styrene, methoxystyrene, chlorostyrene etc. can be mentioned, for example.
When the polymer of the present invention is used as a raw material for the curable composition, it is preferable to produce an isobutylene polymer that is liquid before crosslinking and can give a rubber-like cured product after crosslinking.
[0013]
In the isobutylene-based polymer, all of the monomer units may be formed from isobutylene units, or the monomer unit having a copolymer with isobutylene is preferably 50% or less (% by weight) in the isobutylene-based polymer. The same may apply hereinafter), more preferably 30% or less, and particularly preferably 10% or less.
Examples of such monomer components include olefins having 4 to 12 carbon atoms, vinyl ethers, aromatic vinyl compounds, vinyl silanes, and allyl silanes. Examples of such copolymer components include 1-butene, 2-butene, 2-methyl-1-butene, 3-methyl-1-butene, pentene, 4-methyl-1-pentene, hexene, vinylcyclohexene, methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, styrene, α-methylstyrene, dimethylstyrene, monochlorostyrene, dichlorostyrene, β-pinene, indene, vinyltrichlorosilane, vinylmethyldichlorosilane, vinyldimethylchlorosilane, vinyldimethylmethoxysilane, vinyltrimethylsilane, divinyldichlorosilane, divinyldimethoxysilane, divinyldimethylsilane 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, trivinylmethylsilane, tetravinylsilane Allyltrichlorosilane, allylmethyldichlorosilane, allyldimethylchlorosilane, allyldimethylmethoxysilane, allyltrimethylsilane, diallyldichlorosilane, diallyldimethoxysilane, diallyldimethylsilane, γ-methacryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropylmethyl Examples include dimethoxysilane.
[0014]
In the present invention, a urethane crosslinked product can be obtained by reacting the introduced terminal hydroxyl group with a polyfunctional isocyanate compound. However, sufficient strength and weather resistance can be obtained when a crosslinkable polymer compound is obtained by a crosslinking reaction. In order to achieve a gel fraction and the like, it is preferable that a of the polymer of the formula (1) is 2 or 3 chlorine group-terminated polyisobutylene.
[0015]
The compound represented by the formula (2), which is a substrate that acts on the halogen-terminated hydrocarbon polymer, is not particularly limited as long as it is an olefin having a hydroxyl group at the end of 1-substitution or 1,1′-2 substitution. Although it is not something, because of its high reactivity,
In the mono- or di-substituted olefin, 1-methyl 1′-terminal hydroxylalkylethylene is preferable, among which allyl alcohol, methallyl alcohol, 3-buten-1-ol, 4-penten-1-ol, 5- Hexen-1-ol, 6-hepten-1-ol, 7-octen-1-ol, 8-nonen-1-ol, 9-decene-1-ol and 10-undecen-1-ol are particularly preferred.
[0016]
When the halogen-terminated saturated hydrocarbon polymer obtained by the cationic polymerization of the formula (1) is reacted with a compound having a primary hydroxyl group and an unsaturated bond represented by the formula (2), a Lewis acid is used as a catalyst. It is possible to use. In this case, the Lewis acid is not particularly limited, but TiCl 4 , AlCl 3 , BCl 3 , and SnCl 4 are preferable because of high reaction activity.
[0017]
In the present invention, a single solvent or a mixed solvent arbitrarily selected from halogenated hydrocarbons, aromatic hydrocarbons, and aliphatic hydrocarbons can be used as a reaction solvent. In view of reactivity, the halogenated hydrocarbon is preferably at least one component selected from methylene chloride, chloroform, 1,1-dichloroethane, 1,2-dichloroethane, n-propyl chloride, and n-butyl chloride. For the same reason, toluene is preferable as the aromatic hydrocarbon, and one or more components selected from pentane, n-hexane, cyclohexane, methylcyclohexane, and ethylcyclohexane are preferable as the aliphatic hydrocarbon.
[0018]
By using toluene and ethylcyclohexane as a reaction solvent that does not use a halogenated hydrocarbon, which is likely to have an adverse effect on the environment, it is possible to easily produce a saturated hydrocarbon polymer having a hydroxyl group at the terminal.
Furthermore, by introducing pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, and 2,6-di-t-butylpyridine in the reaction system, the introduction rate of the hydroxyl group at the terminal can be improved. It is possible and the addition of these compounds is effective.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing a saturated hydrocarbon polymer having a hydroxyl group at the terminal according to the present invention is performed, for example, as follows. That is, a saturated hydrocarbon polymer having a halogen group represented by the formula (1) at the terminal is used as a reaction solvent with 1 to 4 equivalents of an olefin compound having a primary hydroxyl group represented by the formula (2) as a reaction solvent, chloroform, One or more components selected from methylene chloride, 1,1-dichloroethane, 1,2-dichloroethane, n-propyl chloride, n-butyl chloride, toluene, pentane, n-hexane, cyclohexane, methylcyclohexane, ethylcyclohexane Dissolve in a solvent consisting of To this, TiCl 4 is used in the temperature range of −100 ° C. to −30 ° C. in the presence of an electron donor such as pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,6-di-t-butylpyridine. By adding a Lewis acid catalyst such as AlCl 3 , BCl 3 or SnCl 4 and reacting for 30 minutes to 5 hours, a saturated hydrocarbon polymer having a terminal hydroxyl group is obtained.
In general, it is known that a compound having a Lewis acid and a hydroxyl group reacts to give a hydrogen halide. As a result of investigation, it was clarified that the addition reaction of hydrogen halide to olefin proceeds as a side reaction under the reaction conditions in which a hydroxyl-terminated olefin compound is introduced into the end of a halogen-terminated hydrocarbon polymer. Since the substrate to which hydrogen halide has been added cannot react with the polymer end, the presence of this side reaction significantly reduces the efficiency of the hydroxyl group introduction reaction.
[0020]
It is conceivable to suppress the addition reaction to the olefin by trapping the hydrogen halide present in the system using a base. Both organic bases and inorganic bases can be used as long as they are base components, but organic bases that are soluble in the reaction solvent are preferred, and pyridine, 2-methylpyridine, 3-methylpyridine, 4 Addition of pyridine derivatives such as -methylpyridine and 2,6-di-t-butylpyridine is preferred. The addition amount is preferably 0.05 to 10 equivalents per halogen group terminal of the saturated hydrocarbon polymer because the balance between the reaction rate and the hydroxyl group introduction rate is good. Similarly, a part of the Lewis acid reacts with the olefin compound having a hydroxyl group, so that the catalytic activity is lowered. Accordingly, in the addition reaction, an equivalent or more with respect to the hydroxyl group-terminated olefin compound is preferred. On the contrary, the addition of an excessive Lewis acid also causes a slight decrease in the amount of hydroxyl groups introduced, as a result of studies. From the above, the Lewis acid amount is preferably 1 to 20 equivalents relative to the olefin compound having a primary hydroxyl group at the terminal.
[0021]
The Lewis acid used in the present invention can be used for living cationic polymerization by the inifer method. First, a halogen-terminated polymer is obtained by the inifer method, and an olefin compound having a primary hydroxyl group at the end without treatment, and By adding a Lewis acid and an electron donor as required, it is possible to introduce a primary hydroxyl group into the terminal in one pot.
[0022]
R 1 in the formula (1) is a residue of a polymerization initiator, and is not particularly limited as long as it is a monofunctional to tetrafunctional initiator that can be used for living cationic polymerization by the inifer method. As 2 and 3. Among these, compounds having a substituent at the benzyl position shown below are preferred as compounds having high initiator efficiency during polymerization.
[0023]
[Chemical 1]
[0024]
(In the formula, X represents a chlorine group, a bromine group, a methoxy group, or an acetyl group.)
The reaction solvent is not particularly limited as long as it is the above-mentioned solvent, but it is preferable that the reaction solvent is the same as the polymerization reaction solvent because a hydroxyl group can be introduced in one pot after the polymerization reaction. As a reaction solvent common to the polymerization reaction and the hydroxyl group introduction reaction, a single or mixed solvent arbitrarily selected from halogenated hydrocarbons, aromatic hydrocarbons, and aliphatic hydrocarbons can be used. Selected from methylene chloride, chloroform, 1,1-dichloroethane, 1,2-dichloroethane, n-propyl chloride, and n-butyl chloride as halogenated hydrocarbons due to solubility and reactivity under polymerization conditions of The above components are preferable. For the same reason, the aromatic hydrocarbon is preferably toluene, and the aliphatic hydrocarbon is preferably one or more components selected from pentane, n-hexane, cyclohexane, methylcyclohexane, and ethylcyclohexane.
[0025]
In recent years, non-halogenation has become an important technology due to environmental problems, but in this system, solvent system of toluene and ethylcyclohexane is living cationic polymerization, and it is possible to obtain a polymer with a narrow molecular weight distribution. Under these conditions, the addition reaction of the olefin compound having a hydroxyl group at the terminal also proceeds promptly. From the viewpoint of polymerizability and solubility of the polymer at a low temperature, the mixing ratio of the solvent is preferably toluene: ethylcyclohexane = 6: 4 to 9: 1 (weight ratio).
[0026]
【Example】
EXAMPLES Next, although an Example is given and this invention is clarified further, this invention is not limited at all by an Example.
(Example 1) A 500 ml separable flask was purged with nitrogen using a three-way cock, a thermocouple, and a stirrer with a vacuum seal. To this was added 175 ml of toluene dehydrated with Molecular Sieves 3A and 21.7 ml of ethylcyclohexane, and further 1,4-bis (1-chloro-1-methylethyl) benzene (1.63 g, 7.04 mmol), 2-methylpyridine. (77.4 mg, 0.83 mmol) was added and cooled to -70 ° C. After cooling, isobutylene monomer (35.5 ml, 598 mmol) was introduced, and titanium tetrachloride (0.98 ml, 8.93 mmol) was further added at this temperature to initiate polymerization. At this time, the temperature was raised by about 15 ° C. The polymerization was completed in about 40 minutes (with this, no exotherm of the reaction system was observed). After the polymerization was completed, 9-decen-1-ol (5.1 ml, 28.2 mmol) and titanium tetrachloride (5.7 ml, 51.7 mmol) were added. After the reaction for 1 hour, the reaction mixture was introduced into 300 ml of ion-exchanged water heated to 80 ° C., transferred to a 1 L separatory funnel, and shaken. After removing the aqueous layer and washing three times with 300 ml of ion-exchanged water, the organic layer was isolated, 1 L of acetone was added thereto to reprecipitate the polymer, and unreacted 9-decene-1-ol. Was removed. The precipitate was further washed twice with 100 ml of acetone and further dissolved in 50 ml of hexane. The solution was transferred to a 300 ml eggplant type flask, and the solvent was distilled off under heating conditions (180 ° C.) using an oil bath under reduced pressure (final 1 Torr or less) to obtain polyisobutylene having a target hydroxyl group at the end.
[0027]
The molecular weight and functionalization rate of the obtained polyisobutylene were analyzed using GPC and NMR.
(GPC system)
GPC: Waters system (pump 600E, differential refractometer 401),
Column: Shodex K-804 (polystyrene gel) manufactured by Showa Denko KK, mobile phase: chloroform, number average molecular weight in terms of polystyrene (NMR)
Gemini-300 manufactured by Varian, measuring solvent; carbon tetrachloride / heavy acetone = 4/1 mixed solvent, determination method; area of terminal hydroxymethyl group (3. 3) based on initiator residue signal (7.2 ppm) 45 ppm) was compared and quantified.
[0028]
The results are summarized in Table 1. In the table, TiCl 4 (total) is the amount of titanium tetrachloride present in the system during the 9-decen-1-ol addition reaction, PDI represents the degree of dispersion, and (weight average molecular weight) / (number in GPC Average molecular weight).
Fn (CH 2 OH) is the amount of hydroxyl group introduced, and when introduced quantitatively, the initiator used this time becomes 2.0.
(Example 2) The same operation as in Example 1 was carried out except that the amount of 9-decen-1-ol was changed to 2.55 ml (14.1 mmol). The results are summarized in Table 1.
Example 3 The same procedure as in Example 1 was performed except that the amount of 9-decene-1-ol was 10.2 ml (56.4 mmol). The results are summarized in Table 1.
(Example 4) The same operation as in Example 1 was carried out except that the amount of titanium tetrachloride added at the time of 9-decen-1-ol addition was 2.1 ml (19.2 mmol). The results are summarized in Table 1.
(Example 5) The same operation as in Example 1 was carried out except that the amount of titanium tetrachloride added at the time of addition of 9-decen-1-ol was 3.65 ml (33.3 mmol). The results are summarized in Table 1.
(Example 6) The same operation as in Example 1 was carried out except that the amount of titanium tetrachloride added at the time of addition of 9-decen-1-ol was 11.4 ml (94.5 mmol). The results are summarized in Table 1.
[0029]
[Table 1]
[0030]
(Example 7) A 500-ml separable flask was purged with nitrogen using a three-way cock, a thermocouple, and a stirrer with a vacuum seal. To this were added 175 ml of toluene dehydrated with Molecular Sieves 3A and 21.7 ml of ethylcyclohexane, and further 1,4-bis (1-chloro-1-methylethyl) benzene (1.63 g, 7.04 mmol), 2-methylpyridine. (77.4 mg, 0.83 mmol) was added and cooled to -70 ° C. After cooling, isobutylene monomer (35.5 ml, 598 mmol) was introduced, and titanium tetrachloride (0.98 ml, 8.93 mmol) was further added at this temperature to initiate polymerization. At this time, the temperature was raised by about 15 ° C. The polymerization was completed in about 40 minutes (with this, no exotherm of the reaction system was observed). After completion of the polymerization, the reaction mixture was introduced into 300 ml of ion-exchanged water heated to 80 ° C., and further transferred to a 1 L separatory funnel and shaken. After removing the aqueous layer, it was washed with 300 ml of ion-exchanged water three times, the organic layer was isolated, 1 L of acetone was added thereto to reprecipitate the polymer, and the precipitate was further washed with 100 ml of acetone twice. Further, it was dissolved in 50 ml of hexane. The solution was transferred to a 300 ml eggplant type flask, and the solvent was distilled off under heating conditions (80 ° C.) using an oil bath under reduced pressure (final 1 Torr or less) to obtain polyisobutylene having a chlorine group at its terminal.
[0031]
Analysis result: Mn (GPC) = 5402, PDI = 1.33
(Example 8) A 200 ml three-necked round bottom flask was equipped with a three-way cock, a thermocouple, and a stirrer with a vacuum seal, and was purged with nitrogen. To this, 24 ml of toluene dehydrated with Molecular Sieves 3A, 6 ml of ethylcyclohexane, polyisobutylene obtained in Example 7 (4.33 g, 0.87 mmol) dissolved in 9-decen-1-ol (1.35 ml, 8.66 mmol) was added and cooled to -70 ° C. After cooling, titanium tetrachloride (2 ml, 18.3 mmol) was added. After the reaction for 5 hours, the reaction mixture was introduced into 100 ml of ion-exchanged water heated to 80 ° C., and further transferred to a 500 ml separatory funnel and shaken. After removing the aqueous layer and washing three times with 100 ml of ion-exchanged water, the organic layer was isolated, and 300 ml of acetone was added thereto to reprecipitate the polymer, and unreacted 9-decen-1-ol was removed. Removed. The precipitate was further washed twice with 100 ml of acetone and further dissolved in 10 ml of hexane. The solution was transferred to a 300 ml eggplant type flask, and the solvent was distilled off under heating conditions (180 ° C.) using an oil bath under reduced pressure (final 1 Torr or less) to obtain polyisobutylene having a target hydroxyl group at the end. The amount of hydroxyl groups introduced into the resulting polymer is as follows; Fn (CH 2 OH) = 1.60.
(Example 9) The same operation as in Example 2 was carried out except that 2.55 g (27.4 mmol) of picoline was added at the time of addition of 9-decen-1-ol. The amount of hydroxyl group introduced into the obtained polymer was as follows: Fn (CH 2 OH) = 1.39 (1.21 in Example 2, and the addition of picoline was confirmed to improve the hydroxyl functionality).
(Example 10) The amount of the reagent was 2.75 g (0.51 mmol) of polyisobutylene obtained in Example 7, 12 ml of toluene, 3 ml of ethylcyclohexane, and 5-hexene-1-ol instead of 9-decen-1-ol. The same procedure as in Example 8 was performed except that all (0.50 ml, 4.2 mmol) was used. The amount of hydroxyl groups introduced into the resulting polymer is as follows; Fn (CH 2 OH) = 1.60.
[0032]
【The invention's effect】
The polymer obtained by the present invention is a novel saturated hydrocarbon polymer having a primary hydroxyl group at the terminal, and is subjected to special treatments such as solvent exchange and catalyst removal after completion of polymerization by a novel synthesis method. In addition, it is possible to efficiently introduce a hydroxyl group in one pot. A hydrocarbon polymer with a saturated polymer main chain having a hydroxyl group at the end obtained by this method is reacted with polyisocyanate to obtain a highly weather-resistant urethane resin.
Claims (14)
R1(A−X)a (1)
(式中、R1は単環または複数の芳香環を含む1価から4価までの炭化水素基、Xは塩素基または臭素基、aは1から4の整数。Aは一種又は二種以上のカチオン重合性単量体の重合体で、aが2以上の時は同じでも異なっていてもよい。)で表され、1級水酸基および炭素−炭素二重結合を有する化合物が式(2):
CH2=C(R2)−B−CH2OH (2)
(式中、R2は水素または炭素数1から18の飽和炭化水素基を、Bは炭素数0から30の2価の炭化水素基を表す。)で表される請求項1記載の1級水酸基を末端に有し、重合体主鎖中に炭素−炭素二重結合を有さないカチオン重合性重合体の製造法。A halogen-terminated polymer obtained by cationic polymerization is represented by the formula (1):
R 1 (AX) a (1)
Wherein R 1 is a monovalent to tetravalent hydrocarbon group containing a single ring or a plurality of aromatic rings, X is a chlorine group or bromine group, a is an integer of 1 to 4, and A is one or more. And a compound having a primary hydroxyl group and a carbon-carbon double bond represented by the formula (2): :
CH 2 = C (R 2) -B-CH 2 OH (2)
The primary class according to claim 1, wherein R 2 is hydrogen or a saturated hydrocarbon group having 1 to 18 carbon atoms, and B is a divalent hydrocarbon group having 0 to 30 carbon atoms. have a hydroxyl group at the terminal carbon in the polymer backbone - the cationically polymerizable polymer production method having no carbon double bond.
CH2=C(R2)−(CH2)n−CH2OH (3)
(式中、R2は水素または炭素数1から18の飽和炭化水素基を、nは0から30の整数を表す。)で表される請求項2記載の1級水酸基を末端に有し、重合体主鎖中に炭素−炭素二重結合を有さないカチオン重合性重合体の製造法。A compound having a primary hydroxyl group and a carbon-carbon double bond is represented by the formula (3):
CH 2 = C (R 2) - (CH 2) n -CH 2 OH (3)
(Wherein the saturated hydrocarbon group R 2 from the number of 1 hydrogen or carbon 18, n represents. An integer of 0 to 30) have a primary hydroxyl group as claimed in claim 2, wherein represented by the terminal, A method for producing a cationic polymerizable polymer having no carbon-carbon double bond in the polymer main chain.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11649298A JP3776589B2 (en) | 1998-04-27 | 1998-04-27 | Saturated hydrocarbon polymer having primary hydroxyl group at its terminal and process for producing the same |
PCT/JP1999/002741 WO2000071588A1 (en) | 1998-04-27 | 1999-05-25 | Saturated hydrocarbon polymer having primary hydroxyl group at end and process for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11649298A JP3776589B2 (en) | 1998-04-27 | 1998-04-27 | Saturated hydrocarbon polymer having primary hydroxyl group at its terminal and process for producing the same |
PCT/JP1999/002741 WO2000071588A1 (en) | 1998-04-27 | 1999-05-25 | Saturated hydrocarbon polymer having primary hydroxyl group at end and process for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11302320A JPH11302320A (en) | 1999-11-02 |
JP3776589B2 true JP3776589B2 (en) | 2006-05-17 |
Family
ID=26440133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11649298A Expired - Fee Related JP3776589B2 (en) | 1998-04-27 | 1998-04-27 | Saturated hydrocarbon polymer having primary hydroxyl group at its terminal and process for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3776589B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006104486A (en) * | 1998-04-27 | 2006-04-20 | Kaneka Corp | Method for producing hydrocarbon polymer bearing hydroxy group on the chain terminal |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3776626B2 (en) * | 1998-04-27 | 2006-05-17 | 株式会社カネカ | Saturated hydrocarbon polymer having a functional group at its terminal and method for producing the same |
JP4596583B2 (en) * | 1999-11-08 | 2010-12-08 | Jx日鉱日石エネルギー株式会社 | Novel butene oligomer derivative having terminal 1,4-butanediol functional group capable of polycondensation and polyaddition reaction |
CN116410374A (en) * | 2021-12-29 | 2023-07-11 | 北京石油化工学院 | Star-branched telechelic polyisobutene, and preparation method and application thereof |
-
1998
- 1998-04-27 JP JP11649298A patent/JP3776589B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006104486A (en) * | 1998-04-27 | 2006-04-20 | Kaneka Corp | Method for producing hydrocarbon polymer bearing hydroxy group on the chain terminal |
Also Published As
Publication number | Publication date |
---|---|
JPH11302320A (en) | 1999-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3154529B2 (en) | Isobutylene polymer having functional group and method for producing the same | |
Bruzaud et al. | ω‐Chloro‐α‐olefins as co‐and termonomers for the synthesis of functional polyolefins | |
US6579959B2 (en) | Process for producing isobutylene polymers | |
JPH04183702A (en) | Production of isobutylene polymer having functional end | |
JP3776589B2 (en) | Saturated hydrocarbon polymer having primary hydroxyl group at its terminal and process for producing the same | |
EP1757631B1 (en) | Amphiphilic triblock copolymers comprising poly(2-vinyl pyridine) block and poly(alkyl isocyanate) block, and the preparation method thereof | |
JP3388865B2 (en) | Method for producing isobutylene polymer having olefin group | |
JP2929245B2 (en) | Isobutylene-based polymer having unsaturated group and method for producing the same | |
JPH04154815A (en) | Isobutylene polymer having terminal allyl group and its production | |
EP1225186B1 (en) | Saturated hydrocarbon polymer having primary hydroxyl group at its end and process for producing the same | |
JP3092875B2 (en) | Isobutylene polymer having vinyl group at terminal and method for producing the same | |
JPH06345821A (en) | Production of isobutylene-based polymer having unsaturated group | |
JP3473862B2 (en) | Isobutylene-based polymer containing carbon-carbon unsaturated group and method for producing the same | |
JP3776626B2 (en) | Saturated hydrocarbon polymer having a functional group at its terminal and method for producing the same | |
JP3816690B2 (en) | Saturated hydrocarbon polymer having carboxylic acid group derivative at terminal and method for producing the same | |
JP4287437B2 (en) | Process for producing hydrocarbon-based polymer having a hydroxyl group at the terminal | |
JP3630254B2 (en) | Isobutylene polymer having an unsaturated group at the terminal and method for producing the same | |
JPH0687920A (en) | Unsaturated group-containing isobutylene-based polymer and its production | |
JPH04154816A (en) | Production of isobutylene polymer having terminal silyl group | |
JP3388880B2 (en) | Isobutylene polymer and method for producing the same | |
JPH02245004A (en) | Production of functional group-terminated isobutylene polymer | |
JPH0425511A (en) | Production of graft copolymer | |
JP2000119363A (en) | Alcoholic hydroxyl-terminated hydrocarbon-based polymer and its production | |
JP2001019713A (en) | Hydrocarbon-based polymer containing hydrolyzable silyl group at end | |
JPH0687914A (en) | Unsaturated group-containing isobutylene-based polymer and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050726 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20051129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060223 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |