[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3771135B2 - Semiconductor switch - Google Patents

Semiconductor switch Download PDF

Info

Publication number
JP3771135B2
JP3771135B2 JP2001049556A JP2001049556A JP3771135B2 JP 3771135 B2 JP3771135 B2 JP 3771135B2 JP 2001049556 A JP2001049556 A JP 2001049556A JP 2001049556 A JP2001049556 A JP 2001049556A JP 3771135 B2 JP3771135 B2 JP 3771135B2
Authority
JP
Japan
Prior art keywords
circuit
transistor
current
semiconductor
semiconductor switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001049556A
Other languages
Japanese (ja)
Other versions
JP2002252552A (en
Inventor
勉 八尾
紀一 徳永
秀勝 小野瀬
俊夫 安田
三郎 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2001049556A priority Critical patent/JP3771135B2/en
Publication of JP2002252552A publication Critical patent/JP2002252552A/en
Application granted granted Critical
Publication of JP3771135B2 publication Critical patent/JP3771135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Keying Circuit Devices (AREA)
  • Electronic Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、交流の配電系統ならびに交流を電源とする電気回路を開または閉状態に切換える半導体開閉器に関する。
【0002】
【従来の技術】
商用の交流系統の開閉や交流電源に接続される各種の電気変換装置,電動機などの負荷のオン,オフには、金属接点を開閉する電磁遮断器,電磁開閉器,電磁接触器などが使われている。
【0003】
また、特開平5−122040号公報には開閉用に半導体素子を使用した無接点開閉器が開示されている。図2は特開平5−122040号公報に開示された無接点開閉器を示す。図2において、1は無接点開閉器、100は100Vまたは200Vの交流電源、101は同じ電圧の操作電源、200は電動機などの負荷である。電源100から負荷200に供給される交流電力を無接点開閉器内のトライアックS1で開閉する。開状態は操作電源の投入によって制御され、トライアックへのゲート信号はホトカプラーPCを通して与えられる。トライアックは、双方向サイリスタとも呼ばれ、2つのサイリスタが逆並列に一体化された半導体交流制御素子であり、電圧,電流容量の比較的小さな用途に簡便な交流スイッチとして多用されている。容量の大きな用途には個別の2つのサイリスタ素子を逆並列に接続する。かかる半導体開閉器は、長寿命,高頻度の開閉,無騒音,メンテナンスフリーなどの特長を有する。
【0004】
また、特開平10−112926号公報、特開平9−17660号公報には、自己ターンオフ機能を有するGTOサイリスタ,バイポーラトランジスタ,IGBT,MOSFET,SITなどを用いた開閉器が開示されている。
【0005】
【発明が解決しようとする課題】
上記従来技術の開閉器には以下の問題がある。
【0006】
前記金属接点を開閉する電磁遮断器,電磁開閉器,電磁接触器などの機械式接点では1)動作速度が遅く(通常0.1〜0.2秒の開閉時間)、2)接点の摩耗のため開閉頻度が制限されるという問題があるので、高速動作や高い信頼性を要求される電力利用システムには容易に適用できない。
【0007】
特開平5−122040号公報に開示された無接点開閉器では、電流通電時のサイリスタ素子では内部電圧降下が2V〜5Vになるために電力損失が大きいことや、開閉器が開から閉に移行するには最小限、交流の半波の通電時間すなわち8ミリ秒〜10ミリ秒の時間を要し、その間に定格電流の20〜30倍の極めて大きな短絡電流が生じる問題がある。
【0008】
また、前記特開平10−112926号公報や特開平9−17660号公報に開示された開閉器を商用電源の100V,200V,400V,3kV,6kVなどの高電圧配電に適用する場合、一般には、高圧素子のオン時の発生損失が通常のサイリスタより大きくなるので、先に述べた損失の問題は一層深刻になる。異常電流を検知してから可能な限り速やかに電流を遮断するので、開閉器の遮断によって、開閉器の負荷側に接続された電気機器への電力の供給が瞬時にストップされるため、これらの機器の異常時に対する電気的な対応が次の電力が供給されるまでの間一切できないと言う新たな問題が生じる。
【0009】
本発明の目的は、電流通電時の損失が低く小型,高速遮断の非接触開閉器の提供にある。
【0010】
本発明の他の目的は、小型,低損失,高速遮断の非接触開閉器を構成する交流制御用の半導体複合素子の新規な構造の提供にある。
【0011】
【課題を解決するための手段】
本発明の非接触交流開閉器は、開閉部のパワー半導体素子が、価電子バンドと伝導電子バンド間のバンドギャップエネルギ(バンドギャップエネルギと略す)が2.0eV 以上のワイドギャップ半導体結晶を素材としていて、しかも制御信号に対してリニアな出力特性を有するユニポーラ型トランジスタである。そして、少なくとも2個の該半導体素子が極性の向きを逆にして直列接続されていて、それぞれの半導体素子にほぼ同時に開閉する制御信号を与える制御回路を備えている交流スイッチ回路である。
【0012】
また、本発明の非接触交流開閉器は、開閉部のパワー半導体素子のオン制御信号レベルの調整、またはオン制御信号のパルス幅の調整によってパワー半導体素子通電電流を制限する。
【0013】
さらに本発明の非接触交流開閉器は、前記の交流スイッチ回路の構成要素を同じ半導体チップ内に一体化する。
【0014】
【発明の実施の形態】
以下、本発明を具体的な実施例をもとに詳細に説明する。
【0015】
(実施例1)
図1は本発明の本実施例の半導体開閉器の1相分の構成図である。図1の回路は交流の相数だけ並列に接続される。図1において、半導体開閉器1は交流電源100側の主端子81,82と負荷200側の主端子83,84と制御端子85とを外部端子として有し、内部には、バンドギャップエネルギが2.2〜3.3eVのシリコンカーバイ(SiC)の単結晶を素材とする2つの静電誘導トランジスタ(SIT)2,3と制御回路4とを備える。該SIT2,SIT3はそれぞれのドレイン電極7,8が導体13で互いに電気的に接続されるとともに、ソース電極9,10が内部導体31,32によって開閉器の主端子82,84にそれぞれ接続されている。制御回路4は、交流電源側の主端子82と81とに繋がる内部導体31,33から操作用の電源を取り込んだ電源部14と、高周波パルスを生成するOCS回路15と、制御信号のラッチング処理や過電流検出などの信号処理を行う論理部16と、論理部16に繋がる電流センス部6と、制御端子85から解除信号などを導入する内部導体20と、絶縁トランス17と、該トランスから前記2つのSIT2,3のゲート端子11,12へ制御信号を供給するゲート回路18,19とからなる。図1ではゲート回路18,19は絶縁トランスからのパルス信号をダイオードD1,D2で整流してコンデンサC1,C2を充電する回路構成を例示するが、本実施例はこの回路構成に限定されない。
【0016】
図3は図1の等価回路である。図3中の符号は図1の同じ符号に対応する。図3では、極性を逆にして直列接続したシリコンカーバイの2つのSIT2およびSIT3に対して、エネルギ吸収回路5を並列接続している。エネルギ吸収回路5は、例えばコンデンサと抵抗要素とサージ吸収素子とから構成されており、トランジスタの電流遮断時に回路のエネルギを吸収して素子に高電圧が印加しないようにする。
【0017】
本実施例の動作を図1,図3をもとに説明する。電源側の主端子81,82を交流電源100に、負荷側の主端子83,84を負荷200にそれぞれ接続した通常動作の初期状態では電流が遮断されていることが開閉器として必要な要件である。本実施例では、制御回路4のOCS回路15がSIT2およびSIT3のゲート端子11,12に、それぞれのソース端子9,10に対して負のゲート信号を与えている間は、前記2つのSITはオフ状態を維持する。2つのSITは極性が逆向きに接続しているので、電源からの交流電圧を双方向に阻止する。
【0018】
オフ状態の開閉器のオン状態への移行は、上記のゲートバイアスの維持を指示する論理部16のラッチング状態を解除する指令20を制御端子85に投入して始まる。SITはゲートの逆バイアス状態を解除すればオン状態に移行するが、オン状態の通電電流は正バイアスのゲート電圧を加えるとさらに増加する。そのため、通常は正バイアスのゲート信号を与えてオン状態を保持する。2つのSITがほぼ同時にオン状態に移行するので双方向の交流電流が負荷に流れる。オン状態からオフ状態への切換えは前記の最初の状態へ移行することなので、ゲート信号のバイアス方向を逆向きにすれば良い。
【0019】
図4は配線系統や負荷に異常が発生し過電流が流れた場合の動作説明図である。時刻t1において異常が発生したとすれば、図4(a)に示すようにそれまで流れていた正常な回路電流22は時刻t1で急峻に増大し、放置すると短絡電流24になる。前記した電流センサ6が検出した電流の増加率もしくは電流値が予め定めた規定値を越えた時点で論理部16が異常を検知する。論理部16が異常を検知する時間はマイクロ秒以下の短い時間である。異常を検知した論理部16は直ちにゲート信号に反映して通電電流の圧縮を開始する。図4に2つの制御方法を示す。
【0020】
図4(b)はSIT2,SIT3に供給するゲート制御信号の電圧値28を調整して通電電流を制御する方法である。すなわち、正バイアスのゲート電圧を時刻t2まで時間経過とともに減少させて通電電流を図4(a)の25から26に示すように減少させる。この場合、符号25,26で示す電流値は定常時の2〜3倍程度に設定するとよい。その後、時刻t3まではゲート電圧を低く保持する。ここで時刻t3は、電流を完全に遮断するか、あるいは事故復帰のシグナルを受けて通電をもとに復帰させるかの判断が出された時刻である。時刻t3までは正常時の電流23の5倍以内、好ましくは2〜3倍の大きさの電流27が通電する。勿論、この間状況によってはいつでも遮断動作を開始できる。すなわち、ゲート電圧をゼロもしくは逆方向にバイアスすれば、10マイクロ秒以内に遮断状態に移行できる。SIT2および3は、ユニポーラ型デバイスなので、バイポーラトランジスタやIGBT,GTOサイリスタなどのバイポーラ型デバイスのような少数キャリアの内部蓄積がなく、オフ状態への切換えが極めて速い。
【0021】
図4(c)はゲートパルス幅を調整して通電電流を制御する方法である。商用交流周波数(50〜60Hz)の数倍〜10倍の一定周波数でゲートパルス29を供給し、それぞれのパルス幅twを変えてSIT2,SIT3に流れる電流の通電期間を調整し、実効的な通電電流を制御する。前記図4(b)では、電流を縮小している期間中SIT内部の消費電力が大きいので、負荷状態や圧縮期間によっては素子の過渡的なパワー耐量を越えるおそれがあるが、これに対して、図4(c)の方法では、SIT内部の消費電力が小さいので、このような問題は少ない。
【0022】
本実施例では発生損失が大幅に低減する。これについて以下述べる。電力用半導体素子の通電時の電圧降下(VF)と通電電流(IF)とは、一般に次の関係式で表わされる。
【0023】
VF=a+b・IF …(1)
ここで、a,bは定数であって、aはpn接合における接合の拡散電位に依る接合電圧であり、bは電流と電圧の勾配を表わす。正弦波の交流では、実効電流をIRMSとすると通電電流(IF)は、
IF=1.414・IRMS・sinωt(ωは角速度) …(2)
と表わされるので、交流電流の通電による素子1個あたりの内部の発生損失<P>は、
<P>=0.9・a・IRMS+b・(IRMS)2 …(3)
と表わされる。
【0024】
従来技術のように2個のサイリスタを逆並列に接続した場合は、それぞれのサイリスタに半波電流が流れるので2個の全損失は上の式の値に等しくなるが、本実施例のようにSITを2個直列に接続する場合は、全損失は上の式の値の2倍になる。
【0025】
図5に、交流電圧220Vの開閉器に耐電圧600Vの半導体素子を適用した場合の、実効電流と開閉器1相分の素子の内部発生損失との関係を示す。図5において、34はシリコンカーバイ(SiC)のSITを2個直列に接続した本実施例の開閉器の場合を示し、35は同じ耐電圧のシリコン(Si)のサイリスタを2個並列に接続した従来技術の開閉器の場合を、36はシリコンカーバイのサイリスタを2個並列に接続した場合の発生損失を示す。いずれの場合も、半導体素子の1個あたりの面積を同じ条件で計算した。曲線34のシリコンカーバイのSITを使用した本実施例の損失は、シリコンのサイリスタを使用した従来技術の損失に比べて大きく低減していて、例えば、実効電流が30Aの場合、それぞれ2Wと40Wとなり、約1/20の損失に低減でき、開閉器の電圧電流容量の0.1% 以下にまで小さくできる。このような損失の差は、半導体材料の相違だけでなく素子の出力特性の相違にもよる。すなわち、SITでは、主端子のドレイン(D)とソース(S)間に流れる電流にはpn接合を通過する通電路がない。そのためSITはリニアな出力特性を示す。つまり、前述(1)式の電圧降下(VF)と通電電流(IF)の関係でa=0となる。その結果、上記(3)式の発生損失<P>の右辺第1項がゼロとなり、大幅な損失低減になる。他方、シリコンカーバイの半導体の場合、pn接合の接合電圧は約2.5V であり、シリコンのpn接合の1.0Vより1.5Vも高い。そのため、図5の曲線36のように、シリコンカーバイのサイリスタの損失はシリコンの場合より大きな損失となる。また、サイリスタの場合は前記(3)式の<P>の右辺第1項が支配的なので、半導体素子の面積を大きくしても全体の損失低減にはならない。一方、SITは素子面積を大きくすれば損失をより一層低減できる。
【0026】
(実施例2)
図6に本実施例の半導体開閉器の1相分の構成図を示す。図7は、図6に示す本実施例の等価回路である。図6,図7の符号は図3,図4の同符号の部分に対応する。本実施例では、開閉器の主端子82と84の間にシリコンカーバイの単結晶から製作された2個のSIT2,SIT3を直列接続している。SIT2,SIT3のそれぞれのソース電極9,10を導体37で互いに電気的に接続するとともに、ドレイン電極7,8が内部導体で開閉器の主端子82,84にそれぞれ接続している。実施例1との相違点は、2つのSITが内部導体によって直接接続される電極が相違する点だけである。すなわち、実施例1ではドレイン電極が直接接続しているが、本実施例ではソース電極がそれぞれ直接接続しており、その他の制御回路4の基本構成等は同じである。本実施例では、OCS回路からのゲートドライブ信号を2つのSITで共用できるので、ゲート回路を簡略化できる。
【0027】
(実施例3)
図8は本発明の開閉器に使用する静電誘導トランジスタ(SIT)の他の実施例を示す。図8(a),図8(b)はSITのセルの断面構造を示す。図8(a)では、半導体基体40はシリコンカーバイの半導体材料であって、その中に比較的低抵抗のn型基板41,比較的高抵抗のn型ドリフト層42,比較的低抵抗のp型ゲート層43ならびに低抵抗のn型ソース層44が形成されていて、前記のn型基板41,p型ゲート層43およびn型ソース層44の表面には、ドレイン電極7,ゲート電極11,ソース電極9がそれぞれ接続されている。さらに、前記n型ソース層44に、比較的低抵抗のp型層45が、基体40の表面より内部に向けて部分的に配置され、基体の表面で前記ソース電極9に低抵抗接触している。本実施例は前記のp型層45が設けられている点に特徴があって、通常のSITに逆並列のpn接合ダイオードを内蔵した構成に等しい。ただし、該ダイオードには電流がほとんど流れないのでその占める面積、すなわち、p型層45の部分の占める面積は極めて微小である。
【0028】
このSITを前記の図1,図6の開閉器に適用すると、内蔵したpn接合ダイオードによって、直列接続された2つのSITを連結する内部導体(図1では導体13、図6では導体37)の電位を、主端子82および84に対して一定の関係に保持できる。つまり、図1の場合は双方のドレイン電極(D)7および8の電位を、図6の場合は双方のソース電極(S)9および10の電位をそれぞれ主端子82または主端子84の電位に対して内蔵ダイオードの接合電位だけ低い値に保持できる。これによって、直列接続された2つのSITが、何らかの原因で、ゲート信号によって同時にオン,オフ動作を開始できない場合でも、個々のSITとしては確実なオン,オフ動作を開始できる。
【0029】
図8(b)の符号は図8(a)の同符号に対応している。図8(b)では図8(a)でpn接合ダイオードが設けられてたところに、ショットキーダイオードが形成されている点が相違する。すなわち、ソース層44のところどころに欠如部分440を設けて、そこにn型ドリフト層42の一部を露出させ、その基体表面にショットキー電極46を形成し、該ショットキー電極46を前記ソース電極44に低抵抗接触させた。図8(b)では図8(a)のpn接合ダイオードの接合電位がショットキーダイオードのショットキー障壁電位に代わりその他は同様である。
【0030】
(実施例4)
図9は本発明の開閉器に用いるSITの他の実施例を示す。図9(a)および図9(b)は、それぞれSITの平面図と線分A−A′の位置での断面図を示す。半導体基体40はシリコンカーバイの半導体材料で構成され、そこに極性を同じにした2つのSIT(SIT2およびSIT3)が並列に一体化されている。それぞれのSITは基本的には同じ構成である。すなわち、比較的低抵抗のn型基板41,比較的高抵抗のn型ドリフト層42,比較的低抵抗のp型ゲート層43ならびに低抵抗のn型ソース層44が形成され、前記のn型基板41,p型ゲート層43およびn型ソース層44の表面には、ドレイン電極7(共通),SIT2のゲート電極11とゲートリード111およびSIT3のゲート電極12とゲートリード121、ならびにSIT2のソース電極9およびSIT3のソース電極10とがそれぞれ低抵抗に接続されている。ただし、図9(a)ではこれらの電極は省略されているが、図9(b)に示すシリコン酸化膜47によってソース電極とゲート電極が電気的に絶縁されている。内蔵されたSIT2の領域とSIT3の領域を区分しているのは、それぞれの動作領域を取り囲むように配置した比較的低抵抗のp型層のガードリング481と482である。図9(a)には該ガードリングをそれぞれ1本ずつ具備した例を示すが、素子の耐電圧が高い場合には複数本のガードリングを配置する。
【0031】
図9(a),図9(b)に示す本実施例の複合型SITは、図1に示した実施例1に示す直列接続した2個のSIT2,SIT3を1個の半導体基体40の中に一体化したものである。本実施例のSIT本素子のソース電極9と10とを、内部導体31と32とによって、主端子82,84にそれぞれ接続するだけで開閉器の主要な半導体部分の結線が済むので、半導体開閉装置の小型化と組み立ての簡単化を図ることができる。
【0032】
(実施例5)
図10は本発明の開閉器に使用するSITの他の実施例を示す。図10(a),図10(b)は、それぞれSITの平面図および線分A−A′の位置の断面図を示す。半導体基体40はシリコンカーバイの半導体材料で構成されている。図10(b)に示すように、半導体基体40には、半絶縁性のシリコンカーバイド基板49の上に、ボロンが2×1016cm- の濃度にドープされたp型層50がエピタキシャル法で約8μmの厚さに形成され、該p型層50の表面より打ち込みエネルギ100keVで1.5×1013cm-2の量の窒素を打ち込んで形成された約0.3μmの深さのn型ドリフト層51と、該n型ドリフト層51の表面より打ち込みエネルギ30keVで1.5×1015cm-2の高濃度に窒素を打ち込んで形成した間隔および幅が約30μmの帯状のn+層441,442と、さらに、該n+層441と442の両サイドから約3.5μm離れた表面より打ち込みエネルギ30keV、打ち込み量1×1015cm-2の高濃度にボロンまたはアルミニウムを打ち込んで形成したp+層431,432とがある。さらに、半絶縁性のシリコンカーバイド基板49の表面に金属膜52が接着され、前記n+層441および442の表面にニッケルなどの主電極9および10が、さらに前記p+層431および432の表面にアルミニウムなどのゲート電極11および12がそれぞれ低抵抗接触している。
【0033】
また、図10(a)に示すように、ニッケル電極9および10は互いに噛み合う形に形成され、それぞれの電極の領域91,92ならびに102には外部リードが接続される部分が設けてある。さらに前記のゲート電極11および12のそれぞれの電極の領域には111および121の部分で外部リードが接続される。
【0034】
図10に示す本実施例は横形の交流制御型のSITである。すなわち、対向する2つの主電極9と10ならびに介在する2つのゲート電極11と12によって構成される半導体素子は、図1と図3の実施例1でドレイン(D)を互いに接続して直列接続した2個のSITと同等の等価回路になる。実施例1との相違点は、互いのドレイン領域を共有している点である。従って、2個のトランジスタを直列接続した際にドレイン領域の抵抗成分によって発生するオン損失は、本実施例の構成で半減できる。かかる構成は主端子の配置ならびに電流の流れる向きが横方向になる横形構造で実現できる。本実施例では耐電圧450Vの横形SITで、いわゆるRESURF構造にして耐電圧を保持しながらドリフト抵抗を低減し、約5mΩ・cm2のオン抵抗を実現できる。
【0035】
(実施例6)
図11は本実施例の半導体開閉器の1相分の構成を示す。図11の符号で図6と同符号は同じ部分に対応する。開閉器1の内部で直列に接続された2つの半導体素子2,3がシリコンカーバイの単結晶を素材とするMOSFETである点が先の実施例2と相違する。図11において、MOSFET62,MOSFET63はシリコンカーバイの単結晶を素材として作製されたものであって、n+基板,n-ドリフト層,p+ウエル層,n+ソース層がシリコンカーバイの単結晶の中に構成され、その表面にシリコン酸化膜等で絶縁されたゲート層(電極)11,12、ソース電極9,10ならびにドレイン電極7,8が配置されたものである。該2つのMOSFET62,63は、それぞれのソース電極9,10が導体38で接続され、ゲート電極11,12が導体37で互いに電気的に接続されるとともに、ドレイン電極7,8が内部導体31,32によって開閉器の主端子82,84に接続されている。制御回路1のOCS回路15からゲート信号が供給される信号線は導体37と導体38に接続している。
【0036】
本実施例の動作は、実施例1のSITをMOSFETに置き換えるとともに、ゲート信号のバイアスの向きを若干変えて説明できる。すなわち、電源側の主端子81,82を交流電源100に、負荷側の主端子83,84を負荷200にそれぞれ接続した通常動作の初期状態では電流が遮断されている。本実施例では、制御回路4内のOCS回路15がMOSFET62,MOSFET63のゲート端子11,12に、それぞれのソース端子9,10に対して、ゼロもしくは負電圧のゲート信号を与えている間、前記2つのMOSFETはオフ状態を維持する。2つのMOSFETは極性が逆向きに接続しているので、電源からの交流電圧を双方向に阻止できる。開閉器のオフ状態からオン状態への移行は、上記のゲートバイアスの維持を指示している論理部16のラッチング状態を解除する指令20が制御端子85より投入されて始まる。MOSFETはオン状態の通電電流が正バイアスのゲート電圧の増加とともに増加する性質がある。そのため、通常は正バイアスのゲート信号を与えてオン状態を保持する。2つのMOSFETがほぼ同時にオン状態に移行するので双方向の交流電流が負荷に流れる。オン状態からオフ状態への切換えは前記最初の状態へ移行させることなので、ゲート信号のバイアス方向を逆向きにすれば良い。また、配線系統や負荷に異常が発生し過電流が流れた場合の動作も、実施例1で図4(a)〜図4(b)の説明でSITをMOSFETに置き換えれば良い。さらに、本実施例により損失低減できる説明も実施例1の対応する部分の説明で同様にSITからMOSFETに置き換えれば良い。
【0037】
(実施例7)
本実施例は図12に示すように、サージ吸収素子に新規シリコンカーバイドの単結晶を素材として作製されたサージ吸収素子を適用した。開閉器の主端子81〜84,開閉用半導体素子2および3,制御回路内の論理部16,OSC回路15,電源部14ならびに制御端子85など、図12の符号で図3と同じ符号は同じ部分に対応する。図12において、71はシリコンカーバイドの単結晶を素材として作製された定電圧ダイオードもしくは両極性のサージ吸収素子であって、動作開始電圧からの保持電圧の平坦度がすぐれ、吸収できるサージエネルギが高く、かつ、酸化亜鉛などのセラミック製のアレスタと異なり、繰返しのサージ吸収動作に耐える。サージ吸収回路として多用されていたコンデンサと抵抗を接続したスナバ回路では、交流電流の通電損失が生じたが、本実施例ではこの通電損失が解消できる。
(実施例8)
図13は、本発明の交流220V,30A定格の3相交流開閉器の実装構造を示す。図13(a)は内部の平面配置を示し、図13(b)は断面図であって、主要部分を示す。取り付け穴500を備えた金属板502の上にAl23などの電気絶縁板504を介して内部電極13が配置される。各相の内部電極13には2個の半導体チップのドレイン電極がそれぞれ接着されている。U相では半導体チップU2,U3が接着され、該半導体チップのソース電極と主端子U82,U84はアルミニウムワイヤ31,32によって、それぞれ電気的に接続されている。なお、詳細は省略したが、各半導体チップのゲート電極もワイヤ503によって制御回路などに接続されている。以上ではU相の部分を説明したが、V相,W相に関しても同じ配列構成なので、記述は省略する。
【0038】
上記各相半導体チップはゲート制御回路505とともにエポキシ樹脂506でモールドされる。交流220V,30A定格の本実施例では外形寸法が長さ60mm,幅50mm,高さ20mmの大きさであり、従来の電磁開閉器の体積の約1/2である。本実施例では、220V,30A定格の場合を示したが、半導体チップの並列数を増やせば電流容量の増加に容易に対応できる。
【0039】
以上の実施例では、ワイドバンドギャップの半導体結晶材料として、シリコンカーバイドを例に説明したが、他にもバンドギャップが2.0eV 以上の半導体結晶であれば本発明が適用できる。バンドギャップが2.0eV 以上の半導体結晶にはシリコンカーバイドだけでなく、ガリウムナイトライドやダイヤモンドでも良い。また、半導体素子のタイプとして、主に静電誘導トランジスタ(SIT)やMOSFETを例に説明したが、出力特性がリニアな特性を有するデバイスであれば全て適用できので、SITやMOSFETだけでなく、接合型電界効果トランジスタ,MESFET,MISFETなどのタイプのデバイスでも良い。
【0040】
【発明の効果】
本発明によれば、低い電力損失で、高速動作し、異常時の電流を定常値の数倍以下に限流する機能を備えた非接触交流開閉器が容易に実現できる。本発明によれば、開閉器に使われる半導体素子を小型化できるだけでなく、開閉器の負荷側に取り付けられる各種の電気設備の短絡耐量が縮小されるので開閉器本体のみならず付帯の機器の信頼性の向上や低価格化が実現できる。
【図面の簡単な説明】
【図1】本発明の実施例の半導体開閉器の構成図。
【図2】従来技術のソリッドステートコンダクタの回路構成図。
【図3】本発明の実施例の半導体開閉器の簡単化された構成図。
【図4】本発明の半導体開閉器の電流制限動作を説明する図。
【図5】本発明の損失低減効果を説明する実効電流と発生損失との関係を示すグラフ。
【図6】本発明の実施例の半導体開閉器の構成図。
【図7】本発明の実施例の半導体開閉器の簡単化された構成図。
【図8】本発明の開閉器に適用される本発明の静電誘導トランジスタの断面図。
【図9】本発明の開閉器に適用される本発明の静電誘導トランジスタの断面図。
【図10】本発明の開閉器に適用される本発明の静電誘導トランジスタの断面図。
【図11】本発明の実施例の半導体開閉器の構成図。
【図12】本発明の開閉器の構成図。
【図13】本発明の開閉器の実施例の構造を示す図。
【符号の説明】
1…半導体開閉器、2,3…リニア出力特性を有する半導体素子、4…制御回路、5…エネルギ吸収回路、6…電流センサ、7,8…ドレイン電極、9,10…ソース電極、11,12…ゲート電極、13,37…内部導体、14…ゲート電源部、15…ゲートOSC回路、16…ゲート論理部、17…絶縁パルストランス、18,19…ゲート回路、20…信号配線、22,23…定常時の交流電流、24…短絡電流、25…限流開始電流、26…限流初期電流、27…限流時の通電電流、28…限流制御時のゲート信号、29…限流制御時のパルス信号、31,32,33…内部導体、34…本発明のシリコンカーバイド・トランジスタの発生損失、35…シリコン・サイリスタの発生損失、36…シリコンカーバイド・サイリスタの発生損失、38…導体、40…半導体基体、41…低抵抗半導体基板、42…比較的高抵抗の半導体層、43…ゲート層、44…ソース層、45…p+ 層、46…ショットキー電極、47…絶縁膜、50…pエピタキシャル層、51,441,442…n+ イオン打ち込み層、52…金属層、62,63…MOSFET、71…サージ吸収素子、81,82,83,84…主端子、85…ゲート制御端子、91,92,102,111,121…ワイヤボンディングパッド、100…交流電源、101…操作電源、200…負荷、431,432…p+ イオン打ち込み層、440…n+ 欠損部、481,482…ガードリング、500…取り付け穴、501…主端子穴、502…金属板、503…ゲートワイヤ、504…絶縁板、505…制御回路板、506…エポキシ樹脂。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an AC power distribution system and a semiconductor switch for switching an electric circuit using AC as a power source to an open or closed state.
[0002]
[Prior art]
In order to open and close commercial AC systems, various electrical converters connected to AC power sources, and loads such as motors, electromagnetic circuit breakers, electromagnetic switches, and electromagnetic contactors that open and close metal contacts are used. ing.
[0003]
Japanese Patent Laid-Open No. 5-122040 discloses a contactless switch using a semiconductor element for switching. FIG. 2 shows a contactless switch disclosed in Japanese Patent Laid-Open No. 5-122040. In FIG. 2, 1 is a contactless switch, 100 is an AC power supply of 100V or 200V, 101 is an operating power supply of the same voltage, and 200 is a load such as an electric motor. AC power supplied from the power supply 100 to the load 200 is opened and closed by a triac S1 in the contactless switch. The open state is controlled by turning on the operating power, and the gate signal to the triac is given through the photocoupler PC. The triac, also called a bidirectional thyristor, is a semiconductor AC control element in which two thyristors are integrated in antiparallel, and is often used as a simple AC switch for applications with a relatively small voltage and current capacity. For large capacity applications, two individual thyristor elements are connected in antiparallel. Such a semiconductor switch has features such as long life, high frequency switching, no noise, and maintenance-free.
[0004]
JP-A-10-12926 and JP-A-9-17660 disclose a switch using a GTO thyristor, bipolar transistor, IGBT, MOSFET, SIT, etc. having a self-turn-off function.
[0005]
[Problems to be solved by the invention]
The prior art switch has the following problems.
[0006]
For mechanical contacts such as electromagnetic circuit breakers, electromagnetic switches, and electromagnetic contactors that open and close the metal contacts, 1) the operating speed is slow (usually a switching time of 0.1 to 0.2 seconds), 2) contact wear Therefore, there is a problem that the opening / closing frequency is limited, so that it cannot be easily applied to a power utilization system that requires high-speed operation and high reliability.
[0007]
In the contactless switch disclosed in Japanese Patent Application Laid-Open No. 5-122040, the internal voltage drop is 2V to 5V in the thyristor element when current is applied, so that the power loss is large or the switch shifts from open to closed. However, there is a problem that an energization time of an alternating half-wave, that is, a time of 8 milliseconds to 10 milliseconds is required at the minimum, and an extremely large short-circuit current that is 20 to 30 times the rated current is generated.
[0008]
In addition, when the switches disclosed in Japanese Patent Laid-Open No. 10-12926 and Japanese Patent Laid-Open No. 9-17660 are applied to high-voltage power distribution such as 100 V, 200 V, 400 V, 3 kV, 6 kV of commercial power supply, Since the loss generated when the high-voltage element is on is larger than that of a normal thyristor, the above-described loss problem becomes more serious. Since the current is cut off as soon as possible after the abnormal current is detected, the supply of power to the electrical equipment connected to the load side of the switch is instantaneously stopped by cutting off the switch. There arises a new problem that an electrical response to a device malfunction cannot be made until the next power is supplied.
[0009]
An object of the present invention is to provide a non-contact switch that is low in loss when current is applied and that is small in size and fast.
[0010]
Another object of the present invention is to provide a novel structure of a semiconductor composite element for alternating current control that constitutes a small-sized, low-loss, high-speed non-contact switch.
[0011]
[Means for Solving the Problems]
In the contactless AC switch of the present invention, the power semiconductor element of the switch part is made of a wide gap semiconductor crystal whose band gap energy between the valence band and the conduction electron band (abbreviated as band gap energy) is 2.0 eV or more. In addition, it is a unipolar transistor having a linear output characteristic with respect to the control signal. The AC switch circuit includes a control circuit in which at least two semiconductor elements are connected in series with opposite polarities, and each of the semiconductor elements is supplied with a control signal that opens and closes almost simultaneously.
[0012]
The non-contact AC switch of the present invention limits the power semiconductor element energization current by adjusting the ON control signal level of the power semiconductor element of the switching part or adjusting the pulse width of the ON control signal.
[0013]
Furthermore, the contactless AC switch of the present invention integrates the components of the AC switch circuit in the same semiconductor chip.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on specific examples.
[0015]
  (Example 1)
  FIG. 1 is a configuration diagram for one phase of a semiconductor switch according to this embodiment of the present invention. The circuit of FIG. 1 is connected in parallel by the number of AC phases. In FIG. 1, the semiconductor switch 1 has main terminals 81 and 82 on the AC power supply 100 side, main terminals 83 and 84 on the load 200 side, and a control terminal 85 as external terminals. .2 to 3.3 eV silicon carbideDoTwo electrostatic induction transistors (SIT) 2 and 3 and a control circuit 4 made of a single crystal of (SiC) are provided. In the SIT2 and SIT3, the drain electrodes 7 and 8 are electrically connected to each other through the conductor 13, and the source electrodes 9 and 10 are connected to the main terminals 82 and 84 of the switch by the internal conductors 31 and 32, respectively. Yes. The control circuit 4 includes a power supply unit 14 that receives operation power from the internal conductors 31 and 33 connected to the main terminals 82 and 81 on the AC power supply side, an OCS circuit 15 that generates high-frequency pulses, and a control signal latching process. Logic unit 16 that performs signal processing such as detection of current and overcurrent, current sense unit 6 connected to the logic unit 16, an internal conductor 20 that introduces a release signal or the like from the control terminal 85, an insulation transformer 17, and the transformer It comprises gate circuits 18 and 19 for supplying control signals to the gate terminals 11 and 12 of the two SITs 2 and 3. In FIG. 1, the gate circuits 18 and 19 exemplify a circuit configuration in which the pulse signals from the insulation transformer are rectified by the diodes D1 and D2 to charge the capacitors C1 and C2, but this embodiment is not limited to this circuit configuration.
[0016]
  FIG. 3 is an equivalent circuit of FIG. The reference numerals in FIG. 3 correspond to the same reference numerals in FIG. In FIG. 3, silicon carbide connected in series with the polarity reversed.DoEnergy absorption for the two SIT2 and SIT3circuit5 are connected in parallel. Energy absorptioncircuit5 is composed of, for example, a capacitor, a resistance element, and a surge absorbing element, and absorbs the energy of the circuit when the current of the transistor is cut off so that a high voltage is not applied to the element.
[0017]
The operation of this embodiment will be described with reference to FIGS. It is a necessary requirement as a switch that the current is cut off in the initial state of normal operation in which the main terminals 81 and 82 on the power supply side are connected to the AC power supply 100 and the main terminals 83 and 84 on the load side are connected to the load 200, respectively. is there. In this embodiment, while the OCS circuit 15 of the control circuit 4 gives negative gate signals to the source terminals 9 and 10 to the gate terminals 11 and 12 of SIT2 and SIT3, the two SITs are Keep off. Since the two SITs are connected in opposite directions, the AC voltage from the power source is blocked in both directions.
[0018]
The transition of the switch in the off state to the on state is started by inputting the command 20 for releasing the latching state of the logic unit 16 instructing the maintenance of the gate bias to the control terminal 85. The SIT shifts to the on state when the reverse bias state of the gate is released, but the energization current in the on state further increases when a positive bias gate voltage is applied. For this reason, normally, a positive-biased gate signal is applied to hold the ON state. Since the two SITs are turned on almost simultaneously, bidirectional alternating current flows to the load. Since switching from the on state to the off state is a transition to the first state, the bias direction of the gate signal may be reversed.
[0019]
  FIG. 4 is an operation explanatory diagram when an overcurrent flows due to an abnormality in the wiring system or load. If an abnormality occurs at the time t1, the normal circuit current 22 that has flowed until then increases sharply at the time t1, as shown in FIG. When the current increase rate or current value detected by the current sensor 6 exceeds a predetermined value, the logic unit 16 detects an abnormality. The time for which the logic unit 16 detects an abnormality is a short time of microseconds or less.AbnormalThe logic unit 16 that detects this immediately reflects it in the gate signal and starts compressing the energization current. FIG. 4 shows two control methods.
[0020]
FIG. 4B shows a method of controlling the energization current by adjusting the voltage value 28 of the gate control signal supplied to SIT2 and SIT3. That is, the gate voltage of the positive bias is decreased over time until time t2, and the energization current is decreased as indicated by 25 to 26 in FIG. In this case, the current values indicated by reference numerals 25 and 26 may be set to about 2 to 3 times the steady state. Thereafter, the gate voltage is kept low until time t3. Here, the time t3 is a time when it is determined whether to completely cut off the current or to return based on energization in response to an accident recovery signal. Until the time t3, a current 27 having a magnitude within 5 times, preferably 2 to 3 times the normal current 23 is applied. Of course, the interruption operation can be started at any time depending on the situation. That is, if the gate voltage is biased to zero or in the reverse direction, the cut-off state can be entered within 10 microseconds. Since SIT2 and 3 are unipolar devices, there is no internal accumulation of minority carriers as in bipolar devices such as bipolar transistors, IGBTs, and GTO thyristors, and switching to the off state is extremely fast.
[0021]
FIG. 4C shows a method of controlling the energization current by adjusting the gate pulse width. The gate pulse 29 is supplied at a constant frequency several times to 10 times the commercial AC frequency (50 to 60 Hz), and the energization period of the current flowing through SIT2 and SIT3 is adjusted by changing the respective pulse widths tw. Control the current. In FIG. 4B, since the power consumption inside the SIT is large during the period of reducing the current, there is a possibility that the transient power tolerance of the element may be exceeded depending on the load state and the compression period. In the method of FIG. 4C, since the power consumption inside the SIT is small, such problems are few.
[0022]
In this embodiment, the generated loss is greatly reduced. This will be described below. The voltage drop (VF) and energization current (IF) during energization of the power semiconductor element are generally expressed by the following relational expression.
[0023]
VF = a + b · IF (1)
Here, a and b are constants, a is a junction voltage depending on the diffusion potential of the junction in the pn junction, and b represents a gradient between current and voltage. In an alternating sine wave, if the effective current is IRMS, the energization current (IF) is
IF = 1.414 · IRMS · sinωt (ω is angular velocity) (2)
Therefore, the internally generated loss <P> per element due to energization of alternating current is
<P> = 0.9 · a · IRMS + b · (IRMS)2             ... (3)
It is expressed as
[0024]
When two thyristors are connected in antiparallel as in the prior art, a half-wave current flows through each thyristor, so the total loss of the two is equal to the value of the above equation, but as in this embodiment When two SITs are connected in series, the total loss is twice the value of the above equation.
[0025]
  FIG. 5 shows the relationship between the effective current and the internally generated loss of the element for one phase of the switch when a semiconductor element with a withstand voltage of 600 V is applied to the switch of AC voltage 220V. In FIG. 5, 34 is silicon carbide.DoThe case of the switch of this embodiment in which two SITs of (SiC) are connected in series is shown, and 35 is the case of a prior art switch in which two thyristors of the same withstand voltage are connected in parallel. , 36 is silicon carbideDoThe generated loss when two thyristors are connected in parallel is shown. In either case, the area per semiconductor element was calculated under the same conditions. Curve 34 silicon carbideDoThe loss of this embodiment using the SIT is greatly reduced as compared with the loss of the prior art using the silicon thyristor. For example, when the effective current is 30 A, the loss is 2 W and 40 W, respectively, which is about 1/20. Loss can be reduced to 0.1% or less of the voltage / current capacity of the switch. Such a difference in loss is caused not only by differences in semiconductor materials but also by differences in output characteristics of elements. That is, in SIT, the current flowing between the drain (D) and the source (S) of the main terminal does not have a conduction path that passes through the pn junction. Therefore, SIT shows a linear output characteristic. That is, a = 0 because of the relationship between the voltage drop (VF) and the energization current (IF) in the above equation (1). As a result, the first term on the right side of the generated loss <P> in the above equation (3) becomes zero, and the loss is greatly reduced. On the other hand, silicon carbideDoIn the case of this semiconductor, the junction voltage of the pn junction is about 2.5V, which is 1.5V higher than 1.0V of the pn junction of silicon. Therefore, as shown by the curve 36 in FIG.DoThe loss of the thyristor is larger than that of silicon. In the case of a thyristor, the first term on the right side of <P> in the above formula (3) is dominant, so even if the area of the semiconductor element is increased, the overall loss is not reduced. On the other hand, the loss of SIT can be further reduced by increasing the element area.
[0026]
  (Example 2)
  FIG. 6 shows a configuration diagram of one phase of the semiconductor switch of this embodiment. FIG. 7 is an equivalent circuit of the present embodiment shown in FIG. 6 and 7 correspond to the same reference numerals in FIGS. In this embodiment, silicon carbide is provided between the main terminals 82 and 84 of the switch.DoTwo SIT2 and SIT3 manufactured from the single crystal are connected in series. The source electrodes 9 and 10 of SIT2 and SIT3 are electrically connected to each other by a conductor 37, and the drain electrodes 7 and 8 are connected to main terminals 82 and 84 of the switch by internal conductors, respectively. The only difference from the first embodiment is that the electrodes in which the two SITs are directly connected by the internal conductor are different. That is, although the drain electrode is directly connected in the first embodiment, the source electrode is directly connected in this embodiment, and the basic configuration of the other control circuit 4 is the same. In this embodiment, since the gate drive signal from the OCS circuit can be shared by the two SITs, the gate circuit can be simplified.
[0027]
  (Example 3)
  FIG. 8 shows another embodiment of the static induction transistor (SIT) used in the switch according to the present invention. 8A and 8B show the cross-sectional structure of the SIT cell.FIG. 8 (a)Then, the semiconductor substrate 40 is silicon carbide.DoIn the semiconductor material, a relatively low resistance n-type substrate 41, a relatively high resistance n-type drift layer 42, a relatively low resistance p-type gate layer 43 and a low resistance n-type source layer 44 are contained therein. The drain electrode 7, the gate electrode 11, and the source electrode 9 are connected to the surfaces of the n-type substrate 41, the p-type gate layer 43, and the n-type source layer 44, respectively. Further, a p-type layer 45 having a relatively low resistance is partially disposed on the n-type source layer 44 from the surface of the base 40 toward the inside thereof, and makes a low-resistance contact with the source electrode 9 on the surface of the base. Yes. This embodiment is characterized in that the p-type layer 45 is provided, and is equivalent to a configuration in which a pn junction diode in antiparallel is built in a normal SIT. However, since almost no current flows through the diode, the area occupied by the diode, that is, the area occupied by the p-type layer 45 is very small.
[0028]
When this SIT is applied to the switch of FIGS. 1 and 6, the internal conductor (conductor 13 in FIG. 1, conductor 37 in FIG. 6) that connects two SITs connected in series by a built-in pn junction diode. The potential can be held in a fixed relationship with respect to the main terminals 82 and 84. That is, in the case of FIG. 1, the potentials of both drain electrodes (D) 7 and 8 are set to the potential of the main terminal 82 or the main terminal 84, respectively, and in FIG. In contrast, the junction potential of the built-in diode can be held at a low value. As a result, even if two SITs connected in series cannot simultaneously start on / off operations due to a gate signal for some reason, each SIT can reliably start on / off operations.
[0029]
The reference numerals in FIG. 8B correspond to the same reference numerals in FIG. FIG. 8B is different from FIG. 8A in that a pn junction diode is provided and a Schottky diode is formed. That is, a missing portion 440 is provided in some places of the source layer 44, a part of the n-type drift layer 42 is exposed there, and a Schottky electrode 46 is formed on the surface of the substrate, and the Schottky electrode 46 is connected to the source electrode. 44 was brought into low resistance contact. In FIG. 8B, the junction potential of the pn junction diode in FIG. 8A is the same as the Schottky barrier potential of the Schottky diode.
[0030]
  (Example 4)
  FIG. 9 shows another embodiment of the SIT used in the switch according to the present invention. FIG. 9A and FIG. 9B show a plan view of the SIT and a cross-sectional view at the position of the line segment AA ′, respectively. The semiconductor substrate 40 is silicon carbide.DoThe two SITs (SIT2 and SIT3) having the same polarity are integrated in parallel. Each SIT basically has the same configuration. That is, a relatively low-resistance n-type substrate 41, a relatively high-resistance n-type drift layer 42, a relatively low-resistance p-type gate layer 43, and a low-resistance n-type source layer 44 are formed. On the surface of the substrate 41, the p-type gate layer 43 and the n-type source layer 44, the drain electrode 7 (common), the gate electrode 11 and gate lead 111 of SIT2, the gate electrode 12 and gate lead 121 of SIT3, and the source of SIT2 The electrode 9 and the source electrode 10 of SIT3 are each connected to a low resistance. However, although these electrodes are omitted in FIG. 9A, the source electrode and the gate electrode are electrically insulated by the silicon oxide film 47 shown in FIG. 9B. The built-in SIT2 region and SIT3 region are divided by p-type guard rings 481 and 482 of relatively low resistance arranged so as to surround the respective operation regions. FIG. 9A shows an example in which one guard ring is provided, but a plurality of guard rings are arranged when the withstand voltage of the element is high.
[0031]
The composite SIT of this embodiment shown in FIGS. 9A and 9B includes two SIT2 and SIT3 connected in series shown in Embodiment 1 shown in FIG. It is an integrated product. Since the source electrodes 9 and 10 of the SIT main element of this embodiment are connected to the main terminals 82 and 84 by the internal conductors 31 and 32, respectively, the main semiconductor parts of the switch can be connected. It is possible to reduce the size of the device and simplify the assembly.
[0032]
  (Example 5)
  FIG. 10 shows another embodiment of the SIT used in the switch of the present invention. 10 (a) and 10 (b))The plan view of SIT and the sectional view of the position of line segment AA ′ are shown respectively. The semiconductor substrate 40 is silicon carbide.DoIt is composed of semiconductor materials. As shown in FIG. 10 (b), the semiconductor substrate 40 has 2 × 10 boron on a semi-insulating silicon carbide substrate 49.16cm -2 A p-type layer 50 doped to a concentration of about 5 μm is formed by an epitaxial method to a thickness of about 8 μm, and 1.5 × 10 5 at an implantation energy of 100 keV from the surface of the p-type layer 50.13cm-2An n-type drift layer 51 having a depth of about 0.3 μm formed by implanting an amount of nitrogen, and 1.5 × 10 5 at an implantation energy of 30 keV from the surface of the n-type drift layer 51.15cm-2A band-shaped n having an interval and a width of about 30 μm formed by implanting nitrogen at a high concentration of+Layers 441, 442, and n+The implantation energy is 30 keV and the implantation amount is 1 × 10 from the surface approximately 3.5 μm away from both sides of the layers 441 and 442.15cm-2P formed by implanting boron or aluminum at a high concentration of+Layers 431 and 432. Further, a metal film 52 is bonded to the surface of the semi-insulating silicon carbide substrate 49, and the n+Main electrodes 9 and 10 such as nickel are further formed on the surfaces of the layers 441 and 442, and the p+Gate electrodes 11 and 12 such as aluminum are in low resistance contact with the surfaces of the layers 431 and 432, respectively.
[0033]
As shown in FIG. 10A, the nickel electrodes 9 and 10 are formed so as to mesh with each other, and regions 91, 92 and 102 of the respective electrodes are provided with portions to which external leads are connected. Further, external leads are connected to the respective electrode regions of the gate electrodes 11 and 12 at portions 111 and 121.
[0034]
This embodiment shown in FIG. 10 is a horizontal AC control type SIT. That is, the semiconductor element constituted by two opposing main electrodes 9 and 10 and two intervening gate electrodes 11 and 12 are connected in series by connecting the drains (D) to each other in the first embodiment of FIGS. The equivalent circuit is equivalent to the two SITs. The difference from the first embodiment is that each drain region is shared. Therefore, the on-loss caused by the resistance component of the drain region when two transistors are connected in series can be halved by the configuration of this embodiment. Such a configuration can be realized by a horizontal structure in which the arrangement of the main terminals and the direction of current flow are horizontal. In this embodiment, a lateral SIT with a withstand voltage of 450 V is used, so that the drift resistance is reduced while maintaining the withstand voltage by using a so-called RESURF structure, and approximately 5 mΩ · cm.2ON resistance can be realized.
[0035]
  (Example 6)
  FIG. 11 shows the configuration of one phase of the semiconductor switch of this embodiment. The same reference numerals in FIG. 11 as those in FIG. 6 correspond to the same parts. Two semiconductor elements 2 and 3 connected in series inside the switch 1 are made of silicon carbide.DoThis is different from the second embodiment in that it is a MOSFET made of a single crystal. In FIG. 11, MOSFET 62 and MOSFET 63 are silicon carbide.DoMade of a single crystal of n, and n+Substrate, n-Drift layer, p+Well layer, n+Source layer is silicon carbideDoThe gate layers (electrodes) 11 and 12, the source electrodes 9 and 10, and the drain electrodes 7 and 8 are arranged on the surface and insulated by a silicon oxide film or the like. In the two MOSFETs 62 and 63, the source electrodes 9 and 10 are connected by a conductor 38, the gate electrodes 11 and 12 are electrically connected by a conductor 37, and the drain electrodes 7 and 8 are connected by an inner conductor 31, 32 is connected to the main terminals 82 and 84 of the switch. A signal line to which a gate signal is supplied from the OCS circuit 15 of the control circuit 1 is connected to the conductor 37 and the conductor 38.
[0036]
The operation of the present embodiment can be explained by replacing the SIT of the first embodiment with a MOSFET and changing the bias direction of the gate signal slightly. That is, the current is cut off in the initial state of normal operation in which the main terminals 81 and 82 on the power supply side are connected to the AC power supply 100 and the main terminals 83 and 84 on the load side are connected to the load 200, respectively. In the present embodiment, while the OCS circuit 15 in the control circuit 4 gives a gate signal of zero or negative voltage to the gate terminals 11 and 12 of the MOSFET 62 and MOSFET 63 to the source terminals 9 and 10, respectively, The two MOSFETs remain off. Since the two MOSFETs are connected in opposite directions, AC voltage from the power source can be blocked in both directions. The transition from the OFF state to the ON state of the switch starts when a command 20 for releasing the latching state of the logic unit 16 instructing the maintenance of the gate bias is input from the control terminal 85. The MOSFET has a property that the energization current in the on-state increases as the gate voltage of the positive bias increases. For this reason, normally, a positive-biased gate signal is applied to hold the ON state. Since the two MOSFETs are turned on almost simultaneously, a bidirectional alternating current flows to the load. Since switching from the on state to the off state is a transition to the first state, the bias direction of the gate signal may be reversed. Further, in the case where an abnormality occurs in the wiring system or the load and an overcurrent flows, the SIT may be replaced with the MOSFET in the description of FIGS. 4A to 4B in the first embodiment. Further, the description that can reduce the loss by the present embodiment may be similarly replaced with the MOSFET from the SIT in the description of the corresponding portion of the first embodiment.
[0037]
  (Example 7)
  In this embodiment, as shown in FIG.surgeA surge absorption element made from a novel silicon carbide single crystal was used as the absorption element. The same reference numerals as those in FIG. 3 are used for the main terminals 81 to 84 of the switch, the semiconductor elements 2 and 3 for switching, the logic section 16 in the control circuit, the OSC circuit 15, the power supply section 14, and the control terminal 85. Corresponds to the part. In FIG. 12, reference numeral 71 denotes a constant voltage diode or bipolar surge absorbing element made of a silicon carbide single crystal, which has excellent flatness of the holding voltage from the operation start voltage and high surge energy that can be absorbed. And unlike ceramic arresters such as zinc oxide, it can withstand repeated surge absorption. In a snubber circuit in which a capacitor and a resistor, which are often used as a surge absorbing circuit, are connected, an AC current loss occurs. In this embodiment, this loss can be eliminated.
  (Example 8)
  FIG. 13 shows a mounting structure of an AC 220V, 30A rated three-phase AC switch according to the present invention. Fig.13 (a) shows internal planar arrangement | positioning, FIG.13 (b) is sectional drawing, Comprising: The main part is shown. Al on a metal plate 502 with mounting holes 5002OThreeThe internal electrode 13 is disposed via an electrical insulating plate 504 such as. The drain electrodes of two semiconductor chips are bonded to the internal electrodes 13 of each phase. In the U phase, the semiconductor chips U2 and U3 are bonded, and the source electrode of the semiconductor chip and the main terminals U82 and U84 are electrically connected by aluminum wires 31 and 32, respectively. Although details are omitted, the gate electrode of each semiconductor chip is also connected to a control circuit or the like by a wire 503. Although the U-phase portion has been described above, the description is omitted because the arrangement is the same for the V-phase and the W-phase.
[0038]
Each phase semiconductor chip is molded with an epoxy resin 506 together with a gate control circuit 505. In this embodiment rated for AC 220V, 30A, the outer dimensions are 60 mm in length, 50 mm in width, and 20 mm in height, which is about ½ of the volume of a conventional electromagnetic switch. In this embodiment, the case of 220V, 30A rating is shown. However, if the number of parallel semiconductor chips is increased, it is possible to easily cope with an increase in current capacity.
[0039]
In the above embodiments, silicon carbide has been described as an example of a semiconductor crystal material having a wide band gap. However, the present invention can be applied to any semiconductor crystal having a band gap of 2.0 eV or more. The semiconductor crystal having a band gap of 2.0 eV or more may be not only silicon carbide but also gallium nitride or diamond. In addition, as an example of the semiconductor element type, an electrostatic induction transistor (SIT) or a MOSFET has been described as an example, but any device having a linear output characteristic can be applied, so not only the SIT and MOSFET, A device such as a junction field effect transistor, MESFET, or MISFET may be used.
[0040]
【The invention's effect】
According to the present invention, it is possible to easily realize a non-contact AC switch having a function of operating at high speed with low power loss and limiting the current during an abnormality to several times the steady value or less. According to the present invention, not only can the semiconductor element used for the switch be downsized, but also the short circuit withstand capability of various electrical equipment attached to the load side of the switch can be reduced, so that not only the switch body but also the accompanying equipment can be reduced. Improved reliability and lower price.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a semiconductor switch according to an embodiment of the present invention.
FIG. 2 is a circuit configuration diagram of a conventional solid state conductor.
FIG. 3 is a simplified configuration diagram of a semiconductor switch according to an embodiment of the present invention.
FIG. 4 is a diagram illustrating a current limiting operation of the semiconductor switch according to the present invention.
FIG. 5 is a graph showing the relationship between effective current and generated loss for explaining the loss reduction effect of the present invention.
FIG. 6 is a configuration diagram of a semiconductor switch according to an embodiment of the present invention.
FIG. 7 is a simplified configuration diagram of a semiconductor switch according to an embodiment of the present invention.
FIG. 8 is a cross-sectional view of the static induction transistor of the present invention applied to the switch of the present invention.
FIG. 9 is a cross-sectional view of the electrostatic induction transistor of the present invention applied to the switch of the present invention.
FIG. 10 is a cross-sectional view of the electrostatic induction transistor of the present invention applied to the switch of the present invention.
FIG. 11 is a configuration diagram of a semiconductor switch according to an embodiment of the present invention.
FIG. 12 is a configuration diagram of a switch according to the present invention.
FIG. 13 is a diagram showing the structure of an embodiment of a switch according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Semiconductor switch, 2, 3 ... Semiconductor element which has linear output characteristic, 4 ... Control circuit, 5 ... Energy absorption circuit, 6 ... Current sensor, 7, 8 ... Drain electrode, 9, 10 ... Source electrode, 11, DESCRIPTION OF SYMBOLS 12 ... Gate electrode, 13, 37 ... Internal conductor, 14 ... Gate power supply part, 15 ... Gate OSC circuit, 16 ... Gate logic part, 17 ... Insulation pulse transformer, 18, 19 ... Gate circuit, 20 ... Signal wiring, 22, 23 ... AC current at normal time, 24 ... Short-circuit current, 25 ... Current limiting start current, 26 ... Current limiting initial current, 27 ... Current flowing at current limiting, 28 ... Gate signal at current limiting control, 29 ... Current limiting Pulse signal at the time of control, 31, 32, 33... Internal conductor, 34... Generation loss of silicon carbide transistor of the present invention, 35... Generation loss of silicon thyristor, 36. Loss, 38 ... conductor, 40 ... semiconductor substrate, 41 ... low-resistance semiconductor substrate, 42 ... relatively high resistance of the semiconductor layer, 43 ... gate layer, 44 ... source layer, 45 ... p+ Layer, 46 ... Schottky electrode, 47 ... insulating film, 50 ... p epitaxial layer, 51, 441, 442 ... n+ Ion implantation layer, 52 ... metal layer, 62, 63 ... MOSFET, 71 ... surge absorption element, 81,82,83,84 ... main terminal, 85 ... gate control terminal, 91,92,102,111,121 ... wire bonding Pad, 100 ... AC power supply, 101 ... Operation power supply, 200 ... Load, 431, 432 ... p+ Ion implantation layer, 440 ... n+ Defects, 481, 482 ... guard ring, 500 ... mounting hole, 501 ... main terminal hole, 502 ... metal plate, 503 ... gate wire, 504 ... insulating plate, 505 ... control circuit board, 506 ... epoxy resin.

Claims (8)

交流電源をパワー半導体素子で開閉する半導体開閉器において、
1相の交流の2つの主端子間に、シリコンカーバイド単結晶を基材とし、ゲートの制御信号レベルに応じてリニな出力特性を有する少なくとも2個の半導体トランジスタが、互いの極性を逆にして直列接続した双方向の交流スイッチ回路と、前記トランジスタに制御信号を与える制御回路と、前記トランジスタの通電状況を検知する回路と、前記直列接続されたトランジスタに並列に配線した、負荷の回路エネルギを吸収する回路とを備え、前記リニアな出力特性を有するトランジスタが、静電誘導トランジスタであることを特徴とする半導体開閉器。
In a semiconductor switch that opens and closes an AC power supply with a power semiconductor element,
Between two main terminals of one phase of the AC, the silicon carbide single crystal as a substrate, at least two semiconductor transistors having a linear A output characteristics in response to control signal level of the gate, to reverse the polarity of each other A bidirectional AC switch circuit connected in series, a control circuit for supplying a control signal to the transistor, a circuit for detecting a current-carrying state of the transistor, and circuit energy of a load wired in parallel to the transistor connected in series A semiconductor switch comprising: a circuit that absorbs the current , wherein the transistor having linear output characteristics is an electrostatic induction transistor .
交流電源をパワー半導体素子で開閉する半導体開閉器において、
1相の交流の2つの主端子間に、シリコンカーバイド単結晶を基材とし、ゲートの制御信号レベルに応じてリニアな出力特性を有する少なくとも2個の半導体トランジスタが、互いの極性を逆にして直列接続した双方向の交流スイッチ回路と、前記トランジスタに制御信号を与える制御回路と、前記トランジスタの通電状況を検知する回路と、前記直列接続されたトランジスタに並列に配線した、負荷の回路エネルギを吸収する回路とを備え、前記回路エネルギ吸収する回路が、シリコンカーバイド単結晶を素材として作製された定電圧ダイオードもしくは両極性のサージ吸収素子であることを特徴とする半導体開閉器。
In a semiconductor switch that opens and closes an AC power supply with a power semiconductor element ,
Between two main terminals of one-phase alternating current, at least two semiconductor transistors having a silicon carbide single crystal as a base material and having a linear output characteristic according to the gate control signal level are reversed in polarity. A bidirectional AC switch circuit connected in series, a control circuit for supplying a control signal to the transistor, a circuit for detecting a current-carrying state of the transistor, and circuit energy of a load wired in parallel to the transistor connected in series and a absorbing circuit, a semiconductor switch, wherein the circuit to absorb the circuit energy is a surge absorbing element of the constant voltage diode or bipolar produced silicon carbide single crystal as a material.
請求項の半導体開閉器において、前記リニアな出力特性を有するトランジスタが、シリコンカーバイド単結晶に形成したMOSFETであることを特徴とする半導体開閉器。 3. The semiconductor switch according to claim 2 , wherein the transistor having the linear output characteristic is a MOSFET formed in a silicon carbide single crystal. 請求項の半導体開閉器において、前記静電誘導トランジスタがソース層とそれに隣接して設けたpn接合もしくはショットキー障壁がソース電極によって短絡された静電誘導トランジスタであることを特徴とする半導体開閉器。2. The semiconductor switch according to claim 1 , wherein the electrostatic induction transistor is a static induction transistor in which a pn junction or a Schottky barrier provided adjacent to the source layer is short-circuited by a source electrode. vessel. 請求項1の半導体開閉器において、前記静電誘導トランジスタが、1枚のシリコンカーバイド単結晶基板に複数個形成されていることを特徴とする半導体開閉器。2. The semiconductor switch according to claim 1, wherein a plurality of the electrostatic induction transistors are formed on a single silicon carbide single crystal substrate. 交流電源をパワー半導体素子で開閉する半導体開閉器において、
1相の交流の2つの主端子間に、シリコンカーバイド単結晶を基材とし、ゲートの制御信号レベルに応じてリニな出力特性を有する少なくとも2個の静電誘導トランジスタが、互いの極性を逆にして直列接続した双方向の交流スイッチ回路と、前記トランジスタに制御信号を与える制御回路と、前記トランジスタの通電状況を検知する回路と、前記直列接続されたトランジスタに並列に配線した、負荷の回路エネルギを吸収する回路とを備えていて、前記制御回路が過電流を検出し、前記トランジスタに所定の期間流れる電流を定常時の5倍以内に限流することを特徴とする半導体開閉器。
In a semiconductor switch that opens and closes an AC power supply with a power semiconductor element,
Between two main terminals of one phase of the AC, the silicon carbide single crystal as a substrate, at least two static induction transistor having a linear A output characteristics in response to control signal level of the gate, the polarity of each other Conversely, a bidirectional AC switch circuit connected in series, a control circuit for supplying a control signal to the transistor, a circuit for detecting the energization state of the transistor, and a load wired in parallel to the transistor connected in series And a circuit for absorbing circuit energy, wherein the control circuit detects an overcurrent, and a current flowing through the transistor for a predetermined period of time is limited within five times the steady state.
請求項の半導体開閉器において、前記制御回路がトランジスタの制御信号の電圧のレベルを調整して流れる電流を制御することを特徴とする半導体開閉器。7. The semiconductor switch according to claim 6 , wherein the control circuit controls a flowing current by adjusting a voltage level of a control signal of the transistor. 請求項の半導体開閉器において、トランジスタの制御信号のパルス幅を調整して流れる電流を制御することを特徴とする半導体開閉器。7. The semiconductor switch according to claim 6 , wherein the flowing current is controlled by adjusting the pulse width of the control signal of the transistor.
JP2001049556A 2001-02-26 2001-02-26 Semiconductor switch Expired - Fee Related JP3771135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001049556A JP3771135B2 (en) 2001-02-26 2001-02-26 Semiconductor switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001049556A JP3771135B2 (en) 2001-02-26 2001-02-26 Semiconductor switch

Publications (2)

Publication Number Publication Date
JP2002252552A JP2002252552A (en) 2002-09-06
JP3771135B2 true JP3771135B2 (en) 2006-04-26

Family

ID=18910645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001049556A Expired - Fee Related JP3771135B2 (en) 2001-02-26 2001-02-26 Semiconductor switch

Country Status (1)

Country Link
JP (1) JP3771135B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102933974A (en) * 2010-06-03 2013-02-13 瓜达鲁佩·吉尔达多·布兰科·巴雷拉 Automatic and self-sustaining electronic system for detecting early short circuit faults

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4142429B2 (en) * 2002-12-26 2008-09-03 古河電気工業株式会社 Current detection circuit
US7375424B2 (en) * 2005-05-03 2008-05-20 International Rectifier Corporation Wirebonded device packages for semiconductor devices having elongated electrodes
JP2007135252A (en) * 2005-11-08 2007-05-31 Hitachi Ltd Power converter
JP2007294716A (en) * 2006-04-26 2007-11-08 Hitachi Ltd Semiconductor device
JP2010217943A (en) * 2009-03-13 2010-09-30 Merstech Inc Ac voltage control unit
JP5692357B2 (en) 2011-03-18 2015-04-01 富士通株式会社 Compound semiconductor device and manufacturing method thereof
EP3050742A1 (en) * 2015-02-02 2016-08-03 Magneti Marelli S.p.A. Solid-state relay including an electronic current detection block
JP2017028639A (en) * 2015-07-28 2017-02-02 新電元工業株式会社 Semiconductor relay module
CN109581912B (en) * 2018-11-20 2024-02-27 南京华士电子科技有限公司 Control method of redundant contactless logic control unit
CN111431165A (en) * 2020-05-19 2020-07-17 浙江巨磁智能技术有限公司 SiC safety component and protection method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216736A (en) * 1993-01-14 1994-08-05 Matsushita Electric Works Ltd Solid-state relay with varistor
CZ287568B6 (en) * 1993-09-08 2000-12-13 Siemens Ag Current inverter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102933974A (en) * 2010-06-03 2013-02-13 瓜达鲁佩·吉尔达多·布兰科·巴雷拉 Automatic and self-sustaining electronic system for detecting early short circuit faults

Also Published As

Publication number Publication date
JP2002252552A (en) 2002-09-06

Similar Documents

Publication Publication Date Title
EP0834212B1 (en) Converter circuit, circuitry having at least one switching device and circuit module
KR100305253B1 (en) Semiconductor protection device and power converter
CN110235244B (en) Power semiconductor module and power conversion device
US20150115289A1 (en) Hybrid wide-bandgap semiconductor bipolar switches
US20110215746A1 (en) Semiconductor device
Nakagawa et al. Improvement in lateral IGBT design for 500 V 3 A one chip inverter ICs
JP2009159184A (en) Circuit device having freewheel diode, circuit device using diode, and electric power converter using the circuit device
CN101414816A (en) Semiconductor device having diode-built-in igbt and semiconductor device having diode-built-in DMOS
TW201709522A (en) Semiconductor device
JP3771135B2 (en) Semiconductor switch
US20020070412A1 (en) Integrated semiconductor device having a lateral power element
JP2006158185A (en) Power semiconductor device
US20060071280A1 (en) Semiconductor diode, electronic component, voltage source inverter and control method
US11394194B2 (en) Semiconductor device with surge current protection
US5563435A (en) Insulated gate type semiconductor device having built-in protection circuit
JP4684505B2 (en) Semiconductor device and power conversion device
Chen Power semiconductors: Fast, tough, and compact: MOS field-effect transistors and gate turnoff thyristors are bringing new levels of performance in switching frequencies and current and voltage ratings
US20190386093A1 (en) Power Electronic Arrangement
Ming et al. A SiC-Si hybrid module for direct matrix converter with mitigated current spikes
JP2020099039A (en) Bidirectional switch
JP4853928B2 (en) Control device and control method for silicon carbide static induction transistor
JP4394301B2 (en) Current limiting device
Nistor et al. An IGCT chip set for 7.2 kV (RMS) VSI application
Lorenz Power semiconductors development trends
JP2023074722A (en) Semiconductor device and power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees