【0001】
【発明の属する技術分野】
本発明は、浄水、廃水等のオゾン処理や食品の消毒などを行うに際し、被処理液とこの被処理液を処理するための気体とを効率よく接触させるために用いられる気液接触反応装置に関する。
【0002】
【従来の技術】
従来、浄水、廃水等のオゾン処理や食品の消毒などにおいては、被処理液とこの被処理液を処理するための気体とを効率よく接触させるために、散気管式反応槽などが用いられている。
【0003】
散気管式反応槽は、反応槽の内部に被処理液を上向流または下向流をなすように導入し、この被処理液に槽内の底部で散気管を通じてオゾンガスなどの気体を注入するように構成されている。しかるに、被処理液中に含まれる処理対象物は通常、分解速度の異なる種々の有機物の混合物なので、1度に多量の気体を注入するのではなく、多段に気体を分注するようにしている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記したような散気管式反応槽では、散気管の散気孔近傍が最も気体濃度が高く、散気孔から離れるにしたがって気体濃度が低下するので、散気孔から離れた領域は反応効率の悪い領域となってしまう。また、多段に気体を分注する方式では、反応効率は上昇するものの装置構成が複雑になり、そのため、イニシャルコストが高くなるだけでなく、メンテナンスも容易でなくなる。
【0005】
本発明は上記問題を解決するもので、複雑な装置構成を要することなく、効率よく気体を注入できる気液接触反応装置を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記問題を解決するために、本発明の気液接触反応装置は、被処理液とこの被処理液を処理するための気体とを効率よく接触させる気液接触反応装置であって、上部より被処理液を導入して下向きに流動させる反応槽と、下端部が閉じられ、反応槽内に被処理液の一定水深下から底部にわたり上下方向に配置された通気路をなす気体透過膜と、前記気体透過膜の上部に接続し、気体透過膜の内側に前記気体を適当圧で供給する給気手段とを備えて、気体透過膜の内側に供給された前記気体が気体透過膜を通じて被処理液中に流入し、その流入気体量が水頭に反比例して、気体透過膜の上部において多く、下部ほど少なくなるように構成したものである。
【0007】
また本発明の気液接触反応装置は、反応槽内に被処理液の一定水深下から底部にわたり、通気路をなす気体透過膜を上下方向に多段に配置し、各気体透過膜の上部に給気手段を接続して、各気体透過膜の内側に供給された気体が気体透過膜を通じて被処理液中に流入し、その流入気体量が水頭に反比例して、上部の気体透過膜において多く、下部の気体透過膜ほど少なくなるように構成したものである。
【0008】
上記において、気体透過膜とは、気体のみ通過させて液体を通過させない多孔質の膜をいい、たとえばガラス粉を半融させて作製した多孔質ガラス膜がある。上記した構成によれば、反応槽の内部において、被処理液は下向きに流動し、この被処理液を処理するための気体は気体透過膜全体から被処理液中に、水深に反比例した量、すなわち気体透過膜の上部ほど多い量で流入する。これにより、被処理液中に含まれる処理対象物は、反応槽への流入時に気体透過膜の上部近傍で多量の気体と接触して大部分処理され、被処理液の下降につれて気体との接触は少なくなるものの、被処理液中に残存する処理対象物の量も少ないので、反応槽から流出するまでに良好に処理される。
【0009】
また、上下方向に多段に配置した気体透過膜によって、被処理液の一定水深下から底部にわたり上下方向に配置された単一の気体透過膜と同様の構成がなされるので、被処理液中に含まれる処理対象物は、反応槽への流入時に上部気体透過膜の近傍で多量の気体と接触して大部分処理され、残存する処理対象物も反応槽から流出するまでに良好に処理される。
【0010】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照しながら説明する。
図1において、1は、浄水、廃水等のオゾン処理や食品の消毒などにおいて、被処理液とこの被処理液を処理するための気体とを効率よく接触させるために用いられる気液接触反応装置である。
【0011】
気液接触反応装置1は、内部に適当水深の被処理液2が導入される反応槽3と、反応槽3内に被処理液2の一定水深下から底部にわたり上下方向に配置された管状の気体透過膜4と、この気体透過膜4の上部に接続して、気体透過膜4の内側に被処理液2を処理するためのオゾンガスなどの反応ガス5を適当圧で供給するガス供給管6などの給気手段とを備えている。
【0012】
反応槽2は、上部に被処理液流入口7を有し、底部に処理液流出口8を有していて、被処理液流入口7より導入した被処理液2を下向きに流動させるようになっている。
【0013】
気体透過膜4は、気体のみ通過させて液体を通過させない多孔質の膜であり、下端部が閉じられていて、ガス供給管6を通じて供給された反応ガス5がこの気体透過膜4の全体を通じて被処理液2中に流入するようになっている。この気体透過膜4は、予め適当な細孔分布のものを選択するとともに、供給するガス圧を適当圧に調整することにより、図2のグラフに示したように、気体透過膜の上部において供給ガス量が多く、下端部近傍において供給ガス量がごく少なくなるように構成されている。
【0014】
4aは気体透過膜4を上下方向に支持するホルダーであり、10は過剰の反応ガス5や反応槽2内で生じた分解ガスを処理系へと導く排気口である。
上記構成における作用を説明する。
【0015】
被処理液流入口7より反応槽3の内部に被処理液2を導入するとともに、ガス供給管6を通じて気体透過膜4の内側に反応ガス5を適当圧で供給すると、反応槽3内の被処理液2は矢印で示したように下向きに流動し、この被処理液2中に、気体透過膜4の上部において多量の反応ガス5が流入し、下端部近傍において少量の反応ガス5が流入する。
【0016】
これにより、被処理液2中に含まれる有機物などの処理対象物は、気体透過膜4の上部近傍で多量の反応ガス5と接触して大部分分解され、被処理液2の下降につれて反応ガス5との接触は少なくなるものの、被処理液2中に残存する処理対象物の量も少なくなるので、残存する処理対象物も反応ガス5によって良好に分解される。そして、処理対象物をほとんど含まない処理水9が処理液流出口8から流出する。
【0017】
このように、多量の処理対象物が含まれていて反応ガス5が必要とされる箇所に必要量の反応ガス5が供給されるので、スカベンジャーなどによって反応ガス5が無駄に消費されるのを防止することができ、反応ガス5の有効消費速度は、図3のグラフに示したように、気体透過膜の上部で大きく下端部近傍で小さいものとなる。
【0018】
次に、他の実施形態の気液接触反応装置を説明する。
図2に示した気液接触反応装置11においては、反応槽12の内部に、被処理液13の一定水深下から底部にわたり管状の気体透過膜14,15,16が上下方向に多段に配置され、各気体透過膜14,15,16の上部にそれぞれガス供給管17,18,19が接続している。反応槽12、気体透過膜14,15,16、ガス供給管17,18,19はそれぞれ上記実施形態のものと同様に構成されており、被処理液流入口20、処理液流出口21、排気口22、気体透過膜ホルダー14a,15a,16aが設けられている。
【0019】
この気液接触反応装置11では、ガス供給管17,18,19を通じて反応ガス23をそれぞれ適当圧で供給することにより、上段の気体透過膜14、中段の気体透過膜15、下段の気体透過膜16の順に多量の反応ガス23が被処理液13中に流入するように構成されている。また、たとえば上段の気体透過膜14の下部における流入量は中段の気体透過膜15の上部における流入量より多くなるように構成されている。
【0020】
すなわち、この気液接触反応装置11では、3本の管状気体透過膜14,15,16によって、上述の実施形態における単一の管状気体透過膜と同様の構成が実現されており、この構成によれば、単一の気体透過膜を用いるときよりも供給ガス量の制御が容易である。
【0021】
以下、し尿処理や埋立進出水処理における被処理液をオゾン処理する場合を例にとって、上記したような気液接触反応装置の効果を説明する。
通常、し尿処理や埋立進出水処理における被処理液中には、処理対象たる有機物以外に、炭酸イオン等の潜在スカベンジャーが高濃度に含まれている。このようなスカベンジャー存在下でオゾン注入すると、スカベンジャーによってオゾンが消費される割合が高くなってしまい、被処理液中の全炭酸濃度が10mg/Lを越えるとオゾンの有機物との反応速度が顕著に低下し、30mg/Lでは反応速度が半減する。
【0022】
しかるに、上記したような気液接触反応装置によれば、被処理液が流入する上部で多量のオゾンが供給されて多量に存在する有機物がオゾンにより分解され、これにより有機物濃度が低くなる下部ほど少量のオゾンが注入されて残存する有機物がオゾンにより分解される。このように、有機物の量に見合った量のオゾンが供給されて有機物との反応に消費されるので、スカベンジャーによって消費されるオゾンの割合は低くなる。その結果、必要オゾン量は1〜2割低減される。
【0023】
【発明の効果】
以上のように本発明によれば、被処理液が下向流をなす反応槽の内部に通気路をなす気体透過膜を上下方向に配置して、処理対象物が多量に存在する反応槽内上部に多量の気体を供給し、処理対象物濃度が低くなる下部ほど少量の気体を供給するように装置を構成したので、従来の下向流・散気管式反応槽よりも、スカベンジャーによる気体の消費を抑制し、気体の反応効率および利用効率を向上させることができる。このような気液接触反応装置は、たとえばし尿処理や埋立浸出水処理におけるオゾン処理に好適であり、処理に必要な気体量を大幅に低減できる。また、装置構成が簡単なので、イニシャルコストを低減できるとともに、メンテナンスが容易である。
【0024】
また、本発明によれば、通気路をなす気体透過膜を上下方向に多段に配置することにより、複数の気体透過膜によって、上記した単一の気体透過膜と同様の構成を実現できる。このような気液接触反応装置は、各気体透過膜における気体の流出量を容易に制御できるので、反応槽内の上部から底部にわたり被処理液に対して理想的な気体供給を行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の気液接触反応装置の概略全体構成図である。
【図2】図1に示した気液接触反応装置内に供給される供給気体量分布を気体透過膜の部位との関係で示したグラフである。
【図3】図1に示した気液接触反応装置内に供給された気体が消費される有効消費速度分布を気体透過膜の部位との関係で示したグラフである。
【図4】本発明の他の実施形態の気液接触反応装置の概略全体構成図である。
【符号の説明】
1 気液接触反応装置
2 被処理液
3 反応槽
4 管状気体透過膜
5 反応ガス
6 ガス供給管
11 気液接触反応装置
12 反応槽
13 被処理液
14,15,16 管状気体透過膜
17,18,19 ガス供給管
23 反応ガス[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas-liquid contact reaction apparatus used for efficiently contacting a liquid to be treated and a gas for treating the liquid to be treated when performing ozone treatment of purified water, waste water, etc. or disinfection of food. .
[0002]
[Prior art]
Conventionally, in ozone treatment of purified water, waste water, etc. and disinfection of foods, in order to efficiently contact the liquid to be treated and the gas for treating the liquid to be treated, an air diffuser type reaction tank or the like has been used. Yes.
[0003]
In the diffuser type reaction tank, the liquid to be treated is introduced into the reaction tank so as to flow upward or downward, and a gas such as ozone gas is injected into the liquid to be treated through the air diffuser at the bottom of the tank. It is configured as follows. However, since the object to be treated contained in the liquid to be treated is usually a mixture of various organic substances having different decomposition rates, a large amount of gas is not injected at once, but gas is dispensed in multiple stages. .
[0004]
[Problems to be solved by the invention]
However, in the air diffuser type reaction tank as described above, the gas concentration is the highest in the vicinity of the air diffuser of the air diffuser, and the gas concentration decreases with increasing distance from the air diffuser, so that the region away from the air diffuser has poor reaction efficiency. It becomes an area. In addition, in the method of dispensing gas in multiple stages, the reaction efficiency is increased, but the apparatus configuration is complicated, so that not only the initial cost is increased, but also maintenance is not easy.
[0005]
An object of the present invention is to solve the above problems, and to provide a gas-liquid contact reaction apparatus capable of efficiently injecting gas without requiring a complicated apparatus configuration.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a gas-liquid contact reaction apparatus of the present invention is a gas-liquid contact reaction apparatus that efficiently contacts a liquid to be treated and a gas for treating the liquid to be treated, and is subjected to the treatment from above. A reaction tank that introduces the treatment liquid and flows downward; a gas permeable membrane that forms a ventilation path in which the lower end portion is closed and is disposed in the reaction tank in a vertical direction from a certain depth to a bottom of the liquid to be treated; A gas supply means connected to the upper portion of the gas permeable membrane and supplying the gas at an appropriate pressure inside the gas permeable membrane, and the gas supplied to the inside of the gas permeable membrane passes through the gas permeable membrane to be treated liquid The amount of the inflowing gas is increased in the upper part of the gas permeable membrane and decreased in the lower part in inverse proportion to the water head.
[0007]
In the gas-liquid contact reaction apparatus of the present invention, gas permeable membranes forming a ventilation path are arranged in multiple stages in the vertical direction from the bottom to the bottom of the liquid to be treated in the reaction tank, and are supplied to the top of each gas permeable membrane. The gas supplied to the inside of each gas permeable membrane flows into the liquid to be treated through the gas permeable membrane, the amount of inflow gas is inversely proportional to the water head, and is large in the upper gas permeable membrane. The lower gas permeable membrane is configured to be smaller.
[0008]
In the above description, the gas permeable membrane refers to a porous membrane that allows only gas to pass but does not allow liquid to pass. For example, there is a porous glass membrane that is manufactured by semi-melting glass powder. According to the configuration described above, the liquid to be processed flows downward in the reaction tank, and the gas for processing the liquid to be processed is in an amount in inverse proportion to the water depth from the entire gas permeable membrane to the liquid to be processed. That is, it flows in a larger amount toward the upper part of the gas permeable membrane. As a result, the object to be treated contained in the liquid to be treated is mostly treated by contacting a large amount of gas in the vicinity of the upper part of the gas permeable membrane when flowing into the reaction tank, and contact with the gas as the liquid to be treated descends. However, since the amount of the processing object remaining in the liquid to be processed is small, it is satisfactorily processed before flowing out of the reaction tank.
[0009]
In addition, the gas permeable membranes arranged in multiple stages in the vertical direction have the same configuration as a single gas permeable membrane arranged in the vertical direction from a certain depth of water to the bottom of the liquid to be treated. The processing target contained is mostly treated by contacting a large amount of gas in the vicinity of the upper gas permeable membrane when flowing into the reaction tank, and the remaining processing target is also processed well until it flows out of the reaction tank. .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
In FIG. 1, reference numeral 1 denotes a gas-liquid contact reaction apparatus used for efficiently bringing a liquid to be treated into contact with a gas for treating the liquid to be treated in ozone treatment of purified water, waste water, etc. or food disinfection. It is.
[0011]
The gas-liquid contact reaction apparatus 1 includes a reaction tank 3 into which a liquid to be treated 2 having an appropriate water depth is introduced, and a tubular tank disposed in the reaction tank 3 in a vertical direction from a certain depth to a bottom of the liquid 2 to be treated. A gas permeable membrane 4 and a gas supply pipe 6 connected to the upper portion of the gas permeable membrane 4 and supplying a reaction gas 5 such as ozone gas for treating the liquid 2 to be treated inside the gas permeable membrane 4 at an appropriate pressure. Air supply means.
[0012]
The reaction tank 2 has a processing liquid inlet 7 at the top and a processing liquid outlet 8 at the bottom, so that the processing liquid 2 introduced from the processing liquid inlet 7 flows downward. It has become.
[0013]
The gas permeable membrane 4 is a porous membrane that allows only gas to pass but does not allow liquid to pass through. The lower end is closed, and the reaction gas 5 supplied through the gas supply pipe 6 passes through the entire gas permeable membrane 4. It flows into the liquid 2 to be treated. The gas permeable membrane 4 is selected in advance with an appropriate pore distribution, and the gas pressure to be supplied is adjusted to an appropriate pressure, so that the gas permeable membrane 4 is supplied at the upper portion of the gas permeable membrane as shown in the graph of FIG. The gas amount is large, and the supply gas amount is very small in the vicinity of the lower end.
[0014]
Reference numeral 4a denotes a holder that supports the gas permeable membrane 4 in the vertical direction, and reference numeral 10 denotes an exhaust port that guides excess reaction gas 5 and decomposition gas generated in the reaction tank 2 to the processing system.
The operation in the above configuration will be described.
[0015]
When the liquid 2 is introduced into the reaction tank 3 from the liquid inlet 7 and the reaction gas 5 is supplied to the inside of the gas permeable membrane 4 through the gas supply pipe 6 at an appropriate pressure, the liquid to be treated in the reaction tank 3 is obtained. The treatment liquid 2 flows downward as indicated by an arrow, and a large amount of reaction gas 5 flows into the liquid to be treated 2 at the upper part of the gas permeable membrane 4 and a small amount of reaction gas 5 flows near the lower end. To do.
[0016]
As a result, the processing object such as an organic substance contained in the liquid to be processed 2 comes into contact with a large amount of the reaction gas 5 in the vicinity of the upper portion of the gas permeable membrane 4 and is largely decomposed. Although the amount of contact with 5 is reduced, the amount of the processing object remaining in the liquid 2 to be processed is also reduced, so that the remaining processing object is also favorably decomposed by the reaction gas 5. Then, the treated water 9 containing almost no treatment object flows out from the treatment liquid outlet 8.
[0017]
In this way, since a necessary amount of the reaction gas 5 is supplied to a place where the reaction gas 5 is required because a large amount of the processing object is contained, the reaction gas 5 is consumed wastefully by a scavenger or the like. As shown in the graph of FIG. 3, the effective consumption rate of the reaction gas 5 is large in the upper part of the gas permeable membrane and small in the vicinity of the lower end part.
[0018]
Next, the gas-liquid contact reaction apparatus of other embodiment is demonstrated.
In the gas-liquid contact reactor 11 shown in FIG. 2, tubular gas permeable membranes 14, 15, 16 are arranged in multiple stages in the vertical direction from the bottom of the liquid 13 to be treated to the bottom in the reaction tank 12. The gas supply pipes 17, 18, and 19 are connected to the upper portions of the gas permeable membranes 14, 15, and 16, respectively. The reaction tank 12, the gas permeable membranes 14, 15, 16 and the gas supply pipes 17, 18, 19 are configured in the same manner as in the above-described embodiment, and the liquid inlet 20 to be processed, the liquid outlet 21, the exhaust gas A port 22 and gas permeable membrane holders 14a, 15a and 16a are provided.
[0019]
In this gas-liquid contact reaction device 11, the upper gas permeable membrane 14, the middle gas permeable membrane 15, and the lower gas permeable membrane are supplied by supplying the reaction gas 23 at appropriate pressures through the gas supply pipes 17, 18, 19. A large amount of the reaction gas 23 is configured to flow into the liquid 13 to be processed in the order of 16. Further, for example, the inflow amount at the lower portion of the upper gas permeable membrane 14 is configured to be larger than the inflow amount at the upper portion of the middle gas permeable membrane 15.
[0020]
That is, in this gas-liquid contact reaction device 11, the three tubular gas permeable membranes 14, 15, and 16 realize the same configuration as the single tubular gas permeable membrane in the above-described embodiment. According to this, it is easier to control the amount of supplied gas than when a single gas permeable membrane is used.
[0021]
Hereinafter, the effect of the gas-liquid contact reaction apparatus as described above will be described by taking as an example the case of subjecting the liquid to be treated in human waste treatment or landfill advance water treatment to ozone treatment.
In general, the liquid to be treated in human waste treatment or landfill advance water treatment contains a high concentration of potential scavengers such as carbonate ions in addition to organic substances to be treated. If ozone is injected in the presence of such a scavenger, the rate at which ozone is consumed by the scavenger increases, and if the total carbonic acid concentration in the liquid to be treated exceeds 10 mg / L, the reaction rate of ozone with organic matter becomes noticeable. The reaction rate decreases by half at 30 mg / L.
[0022]
However, according to the gas-liquid contact reaction apparatus as described above, a large amount of ozone is supplied at the upper part where the liquid to be treated flows in, and a large amount of organic substances are decomposed by ozone, thereby lowering the organic substance concentration. A small amount of ozone is injected and the remaining organic matter is decomposed by ozone. In this way, an amount of ozone commensurate with the amount of organic matter is supplied and consumed for reaction with the organic matter, so the proportion of ozone consumed by the scavenger is low. As a result, the required ozone amount is reduced by 10 to 20%.
[0023]
【The invention's effect】
As described above, according to the present invention, the gas permeable membrane that forms a ventilation path is arranged in the vertical direction inside the reaction tank in which the liquid to be processed flows downward, and the inside of the reaction tank in which a large amount of the processing object exists. Since the device was configured to supply a large amount of gas to the upper part, and to supply a smaller amount of gas to the lower part where the concentration of the object to be processed becomes lower, the gas generated by the scavenger is less than the conventional downflow / aeration tube type reaction tank. Consumption can be suppressed and reaction efficiency and utilization efficiency of gas can be improved. Such a gas-liquid contact reactor is suitable for ozone treatment in, for example, human waste treatment and landfill leachate treatment, and can greatly reduce the amount of gas required for the treatment. Moreover, since the apparatus configuration is simple, the initial cost can be reduced and maintenance is easy.
[0024]
Further, according to the present invention, by arranging the gas permeable membranes forming the air passages in multiple stages in the vertical direction, a configuration similar to the above-described single gas permeable membrane can be realized by a plurality of gas permeable membranes. Such a gas-liquid contact reactor can easily control the outflow amount of gas in each gas permeable membrane, so that an ideal gas can be supplied to the liquid to be treated from the top to the bottom in the reaction tank. .
[Brief description of the drawings]
FIG. 1 is a schematic overall configuration diagram of a gas-liquid contact reactor according to an embodiment of the present invention.
FIG. 2 is a graph showing the distribution of the amount of gas supplied to the gas-liquid contact reactor shown in FIG. 1 in relation to the part of the gas permeable membrane.
3 is a graph showing an effective consumption rate distribution in which a gas supplied into the gas-liquid contact reaction apparatus shown in FIG. 1 is consumed in relation to a portion of a gas permeable membrane.
FIG. 4 is a schematic overall configuration diagram of a gas-liquid contact reactor according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gas-liquid contact reaction apparatus 2 Processed liquid 3 Reaction tank 4 Tubular gas permeable membrane 5 Reaction gas 6 Gas supply pipe
11 Gas-liquid contact reactor
12 reactor
13 Liquid to be treated
14,15,16 Tubular gas permeable membrane
17,18,19 Gas supply pipe
23 reaction gas