JP3769680B2 - Circulation filtration aquaculture equipment for seafood - Google Patents
Circulation filtration aquaculture equipment for seafood Download PDFInfo
- Publication number
- JP3769680B2 JP3769680B2 JP12447299A JP12447299A JP3769680B2 JP 3769680 B2 JP3769680 B2 JP 3769680B2 JP 12447299 A JP12447299 A JP 12447299A JP 12447299 A JP12447299 A JP 12447299A JP 3769680 B2 JP3769680 B2 JP 3769680B2
- Authority
- JP
- Japan
- Prior art keywords
- breeding
- water
- tank
- breeding water
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Farming Of Fish And Shellfish (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、魚介類養殖装置とそれを利用した効率的な超高密度魚介類養殖方法に関するものである。
【0002】
【従来の技術】
従来より、鑑賞魚の飼育や、水族館での魚介類の展示、活魚問屋や活魚料理店での魚介類の蓄養においては、一般に循環(濾過)式と呼ばれる濾過槽などを備えた水槽による魚類の飼育が行われている。また、一部、養殖用とした装置も散見される。
【0003】
【発明が解決しようとする課題】
しかし、従来の循環式と呼ばれる水槽あるいは装置を用いての魚介類の飼育密度は低く押えられている。
また、養殖用とされる装置においても、飼育密度は低く、産業用として用いるには改善が必要である。
これら上記の問題点は、循環式と呼ばれる水槽や装置の作製が経験と勘による部分が多いことに起因している。また、これまでの養殖装置の作製では、アンモニアの低毒性化に重点が置かれていて、魚介類の糞や、飼育水中の浮遊懸濁物の除去には重点が置かれず、沈澱槽が設けられている場合においては、その処理に多くの人力を投入する必要がある。さらに、現状の陸上養殖装置では、海水を汲み上げ1から2時間で排出する、いわゆる掛け流し方式で運用されるため、飼育水槽の保温性・断熱性については考慮されていない。
【0004】
このため、本発明者らは養殖対象魚介類の窒素排泄量などの生理学的知見、浄化微生物(硝化細菌)のアンモニア酸化速度、脱窒菌の生理的特性などに基づき設計・構築、運転をする循環濾過養魚システムを発明した(特公平7−55116号公報)。
この特公平7−55116号公報に記載の発明による空気を用いたヒラメの養殖方法では、設備中の飼育海水1m3 あたりヒラメ30kgの高密度生産が可能であった。
【0005】
上記養殖方法では、飼育水を掛け流し式で行う一般的なヒラメ養殖の2倍から3倍程度の養殖密度を達成したが、養殖を産業として捉えた場合、よりよい採算性を目指した魚介類飼育密度の増大が好ましい。また、設備の運転や水質管理は効率よくかつ低廉な費用で行えることが必要がある。
【0006】
【発明が解決しようとする課題】
本発明は、上記課題を解決するために、合理的な設備の組合せと運用により、養殖対象魚介類の飼育に適した水質管理を効率的かつ低廉で行い、超高密度で養殖を行う循環濾過魚介類養殖装置と養殖方法の提供を目的とする。また、フィルター装置の逆洗水を循環再利用する方法を発明したことにより、環境負荷の少ない養殖装置を提供することも目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するために本発明の循環濾過魚介類養殖装置は、船上、陸上などに設置した魚介類飼育水槽(養殖水槽)で魚介類の飼育に用いた飼育用水をポンプなどにより再び前記飼育水槽に供給して使用する循環設備を備えた養殖装置において、
魚介類の飼育に伴い発生する糞などの比重の重い物質と、
比重が比較的軽く飼育水槽に漂う浮遊懸濁物と、
飼育水中に溶け込んだアンモニアなどの溶存物とを、
効率的に除去する機能を有する沈澱槽、フィルター装置、バイオフィルター設備を順序よく組み込むことにより、魚介類を効率よく高密度で養殖できるようにしたことを特徴とするものである。
【0008】
本発明の循環濾過魚介類養殖装置は、より詳しくは、
魚介類飼育水槽と、
飼育水槽から排出された飼育水中の飼育水より比重の大きい魚介類の糞と残餌を渦巻き流により沈降させ捕集する沈澱槽と、
上記により捕集されない飼育水中の浮遊懸濁物を捕集するフィルター装置と、飼育水中のアンモニアを硝酸に酸化するバイオフィルター(生物濾過槽)と、この酸化作用により飼育水中に蓄積する硝酸を窒素ガスにして空気中に放出する脱窒槽と、
飼育水中に効率よく酸素を溶かし込む酸素溶入器と、
飼育水中のタンパク質などの溶存有機物を微細気泡とともに除去するための微細気泡発生装置と、
飼育水の殺菌と水中の有機物分解のための紫外線照射装置と、
さらに、飼育水温調節用のヒートポンプで構成されており、
本発明はさらに、魚介類を超高密度で養殖するために、該養殖装置を用いて飼育水中の溶存酸素濃度の維持に純酸素を用いる飼育方法をも提供するものである。
また、飼育水槽としては安価なシート水槽を採用したが、運転コストの低減を図るため断熱材を効率よく付設する工法を開発した。
【0009】
【発明の実施の形態】
本発明において沈澱槽は、飼育水槽から排出される飼育水を、直立円筒体部を有する処理水槽の該円筒体部の下部より該水槽の内壁面に沿って注入することにより渦巻き流を生じさせ、飼育水より比重の大きい魚類の糞と残餌を渦巻き流により効率よく沈降させて捕集し、処理水を処理水槽上方部壁面に沿った位置より排出するように構成されていることを特徴とする。
処理水槽の円筒体部の下部は平底状でも良いが、好ましくは逆円錐形若しくは漏斗状とし、沈降物が容易に下部に捕集でき排出することができるようにすると良い。処理水槽内への飼育水の注入は、円筒体部の下端側壁より行うようにし、円筒体部内で処理すべき飼育水が回転するように加圧噴射状に注入する。
飼育水の回転速度は、沈降すべきものに応じて定めると良い。
【0010】
沈澱槽の上部から排出される糞等の沈澱物が除去された飼育水(処理水)は、フィルター装置に導入されて処理される。フィルター装置はプラスチック製の網または多孔体若しくは金網、ガラスフィルター等のスクリーン状のもので構成され、このスクリーン状のもの(以下単にスクリーンという)の目詰まりを防ぐための逆洗水は処理水を循環再利用するようにする。
スクリーンの洗浄は、フィルター装置内の処理水の流れを一旦停止して逆方向から洗浄水を噴射して行うか、または処理水の流れ速度以上の速さで洗浄水を圧力噴射して行う。フィルター装置の洗浄はフィルターの濾過効率が低下したとき行うか、常時間欠的に行うかの何れの方法を採用しても良い。このほか、フィルター装置内のスクリーンを交換しても良い。
【0011】
本発明において飼育水槽は特に限定されないが、構成の簡易性、製作設置の容易性等から、水槽を自立させるために設置する基礎および支柱をコンクリートまたは鉄骨などにより作製し、該基礎上および支柱内に強化プラスチック(FRP)製壁枠を設け、該壁枠内に防水シートを張設して水槽となし、該シート底面と基礎との間および該シートと壁枠との間に、硬質発泡プラスチック材などによる断熱材を組み込む形式とすると良い。
壁枠は場合によってはアルミニウム等の金属板を使用しても良い。壁枠は支柱にボルト等でネジ止めするようにしても良いが、支柱に設けられた嵌合溝に嵌め込むようにしても良い。このほか、水槽が自立できる円筒体形状の場合は、支柱を設けることなく、壁枠を該円筒体の2個以上の分割体とし、これらの分割体を直接ボルトで締付け固定するか、外周に帯金等を巻いてボルト等で締付け固定して基礎上に水槽を組み立てるようにしても良い。
断熱材は成形性、加工性の点で硬質発泡ポリウレタン等の発泡プラスチックが好ましいが、無機質または有機質の繊維板等を使用しても良い。
防水シートは、帆布製のものに限定されず、プラスチックシート等の防水性のシートであれば良い。
【0012】
本発明の魚介類の養殖方法の特徴の一つは、飼育水槽中の飼育水の酸素飽和度を高濃度で保つため、酸素ガスボンベ、液体酸素ボンベ、酸素発生装置等のいずれかからの酸素ガス(純酸素)を飼育水中に導き入れ、飼育水中の酸素飽和度を飼育水槽排水口において70〜80%以上に保ちつつ、魚介類に体内酸素分圧調整のためのエネルギーを必要以上に使わせることなく魚介類を超高密度で飼育することにある。
酸素ガスは液体酸素からのガスのように100%酸素のものが好ましいが、市販の酸素ガスのように多少の他のガスを含むものであっても良い。
飼育水への酸素の供給は、直接飼育水槽に供給する方法もあるが、別に飼育水に酸素を溶かし込む酸素溶入器を設け、この酸素溶入器によって供給すると良い。必要酸素量は対象魚介類の生理的要求量と飼育量から算出し、効率的に供給する。
【0013】
本発明は上記構成によって、魚介類を超高密度で飼育している飼育水槽からの排水中の比較的比重の大きな糞や残餌がまず除去される。ついで、フィルター装置により浮遊懸濁物が除去され、これらによりバイオフィルターにおける有機物を分解する微生物の大量発生による濾材の閉塞が防止される。次に、アンモニアを含んだ飼育水はバイオフィルター(生物濾過槽)に移され、亜硝酸経由でアンモニアは硝酸に酸化される。この処理水は循環ポンプにより紫外線照射装置に送られ病原菌などの殺菌と有機物の分解が行われる。次に、酸素溶入器を通る間に、酸素発生装置あるいは酸素ガスボンベあるいは液体酸素ボンベのいずれかからの純酸素と接触し、水中の酸素濃度が高められた後、飼育水槽に戻され、これにより魚介類の超高密度養殖を行うことができる。
【0014】
酸素溶入器を通過した飼育水の一部はヒートポンプに送られ、飼育対象魚の生育適水温に調整され飼育水槽に戻される。これにより、飼育期間の短縮が図れる。また、本装置は飼育水中の硝酸を除去するための脱窒槽と飼育水中のタンパク質などの溶存有機物を除去するための微細気泡発生装置を備え、それぞれバイオフィルターとバイパスにより連絡を持ち、必要に応じて運転することが可能である。また、上記フィルター装置の逆洗水を異なったメッシュの濾布を用いて再生、再利用する。これにより、さらに環境にやさしい養殖装置として運用することが可能である。
【0015】
【実施例】
以下、本発明の一実施例を図面に基づき説明するが、本発明はこの実施例に限定されるものではない。
【0016】
実施例1
図1において、1は飼育水槽であり、円形、または六角、八角などの多角形のものを用いる。水槽の底部は1/10から1/20程度の傾斜を持ち、飼育水槽への注水の流れにより糞や残餌などが自動的に水槽中央部に集められ、水槽底部の排出口2より水とともに排出される。また、水槽の周囲には効率よく断熱材を組み込むことにより断熱性が向上されている。排出口2には、飼育中の魚介類の迷入、吸い込みを防止するためのプラスチック製筒状をした網を取り付ける。なお、飼育魚介類の大きさにより網の目合いを換えるため脱着式とする。
【0017】
沈澱槽3は飼育水槽1の水位調節槽を兼ねて設置する。形状は円筒または下部に逆円錐形状の部分を有する円筒形状とし、飼育水槽からの排水(飼育水)の注入口14は、前者にあっては円筒体部3a下部、後者の形状にあっては逆円錐形部分3b直上の円筒体部3a下部に開口し(図2)、その位置は図3に示すように円筒体の中心から外側にずらし、注入水が円筒体の内壁に沿って流れることにより渦巻き流を生じる位置に設ける。この渦巻き流によって排水中の糞や残餌を積極的に沈降させ捕集することができる。沈澱槽3の最下部には沈澱捕集された糞や残餌を水とともに排出できるように排出コック16を設ける。沈澱物が除去された処理飼育水は沈澱槽3の上部側壁に設けられた出水管15から排出される。この沈澱槽の効果により、次に設置した浮遊懸濁物除去のためのフィルター装置4への負荷を小さくでき、フィルター装置4のスクリーン部分の洗浄回数を減じることができ、また、このための逆洗水の使用量も少なくできる。なお、このフィルター装置は、水位センサーが取り付けられフィルター効率の低下を検知して自動逆洗が行えるようにする。
【0018】
バイオフィルター(生物濾過槽)5では、好気性バクテリアの働きにより毒性の高い魚介類の排泄物のアンモニアが亜硝酸を経由して毒性の低い硝酸に酸化される。バイオフィルターの容器の大きさおよび必要濾材量は、飼育水槽1で飼育される魚介類の大きさと個体数により変化するため、アンモニアなどの窒素排泄量と濾材のアンモニア酸化速度に基づき設計する必要がある。この設計方法については、本発明者らが先に提案した特公平7−55116号公報(特許第2035885号)の方法を用いる。また、バイオフィルター中の前方に堰板を設け、浮遊懸濁物除去フィルターからの水が滝落ちとなるようにする。これにより、飼育水中の二酸化炭素の除去と飼育水への空気を利用した酸素補給を行う。
【0019】
バイオフィルターからの飼育水は循環ポンプ6により紫外線照射装置7に通流される。紫外線照射は飼育水の殺菌にとどまらず、水中の有機物の分解(低分子化)の効果をも有する。
【0020】
次に、飼育水は酸素溶入器8に送られる。ここでは、酸素発生装置9から通気される純酸素を用いて飼育水中の酸素濃度を高める。通気量は魚介類の種類により飼育水槽中で酸素飽和度100から130%(ヒラメの場合150%でも支障がない)、排水口2から排出される飼育水の酸素飽和度が70から80%となるように調整する。この調整においては、対象魚介類の生理的要求量と飼育量から算定される酸素必要量に基づくものとする。後述するような魚介類の超高密度飼育において、このような高酸素飽和度を保つためには、従来から行われているブロワーやエアーコンプレッサーによる空気を用いた方法では、ほぼ不可能で、可能とする場合には、電力など多大のエネルギーの投入が必要となる。また、空気を用いた場合、水中への空気中酸素の溶解効率が純酸素の場合と同一とした場合でも、空気中の窒素をも水中に通気することになり、酸素の5倍の容量の空気により曝気され、この攪拌により「洗剤の泡」状の泡が形成される。これにより飼育水の表面が覆われ、魚介類を直視できなくなり、飼育管理が極めて困難なものとなる。
【0021】
酸素溶入器で酸素濃度を調整された飼育水は飼育水槽へと注入されるが、一部はヒートポンプ10に送られ対象生物の生育に適した水温に調整され、飼育水槽へと通流される。これにより、水温調節装置を持たない、掛け流し式やイケスを用いた養殖より生育期間の短縮が図れる。
【0022】
循環濾過式の魚介類飼育においては、バイオフィルターの働きによりアンモニアが酸化されて毒性の低い硝酸になり、飼育水中に蓄積してくる。この硝酸を嫌気性バクテリアの働きにより飼育水中から除去する脱窒槽11を本発明においてバイオフィルターとの間にバイパスにて組み込んだが、その設計並びに運用方法は、前記特公平7−55116号公報に記載の方法によるものとする。
【0023】
また、浮遊懸濁物除去のためのフィルターとバイオフィルターとの間に飼育水中のタンパク質などの溶存有機物を微細気泡とともに除去するための微細気泡発生装置12を組み込む。微細気泡の発生には空気を用い、小型のエアーブロワー13により給気する。
【0024】
本発明においては、魚介類をこれまでの養殖密度より高い超高密度で養殖するために、飼育水中の溶存酸素濃度の維持に純酸素を用いる飼育法を採用した。
次に、酸素を用いたヒラメの養殖実験の一例を示すが、本発明はこの魚種に限定されるものではない。
本発明の養殖装置を直径4mの水槽を用いて構築し、体重約1kgのヒラメを単位水量当たりの密度50kg/m3 以上の超高密度で養殖実験を行った。その結果、飼育水中の酸素飽和度を飼育水槽の出口で80%以上に保つことができ、本装置の性能と飼育方法が実証された。
【0025】
【発明の効果】
本発明は、以上説明したように構成され、飼育水槽から排出される魚介類の糞、残餌は沈澱槽で、浮遊懸濁物はフィルター装置で効率的に捕集するので、飼育水中のアンモニアを硝酸に酸化するバイオフィルター(生物濾過槽)への有機物により負荷が極めて小さくなり、アンモニアの酸化が効率よく行える。また、バイオフィルターの維持管理が容易となる。さらに、微細気泡発生装置により飼育水中のタンパク質などの溶存有機物藻除去できる。これらの設備の作用により、飼育水の透明度も50cm以上に保つことが出来、飼育水槽中の魚介類の管理が容易となる。
【0026】
魚介類飼育のための飼育水中への酸素補給は、純酸素を用いて行うため、従来の空気による曝気や水車などによる方法よりも、水中酸素濃度を高く維持することが容易で、目的とした魚介類をこれまでより超高密度で養殖することが可能である。また、魚類では動脈血の酸素分圧を維持するため酸素濃度の低下に対して、鰓での換水量を増大させ対処するが、飼育水中の酸素飽和度を飼育水槽排水口で80%以上と高く保てるので、鰓ポンプ作動のための余分なエネルギーが不要となり、その分成長の促進や、飼料効率の改善が期待できる。
【0027】
また、酸素の供給に酸素発生装置を用いるので使用電力量をこれまでのブロワーと比べて約5%以下とすることができ、低廉な費用でこれまでよりも効率的に飼育水中の酸素濃度が維持できる。
【図面の簡単な説明】
【図1】本発明に係わる循環濾過魚介類養殖装置の一実施例を示す構成図である。
【図2】本発明に係わる沈澱槽の側面概略図である。
【図3】本発明に係わる沈澱槽の横断面概略図である。
【符号の説明】
1 飼育水槽
2 排水口
3 沈澱槽
4 フィルター装置(逆洗水再生装置付)
5 バイオフィルター(生物濾過槽)
6 ポンプ
7 紫外線照射装置
8 酸素溶入器
9 酸素発生装置
10 ヒートポンプ
11 脱窒槽
12 微細気泡発生装置
13 ブロワー
14 沈澱槽への入水管
15 沈澱槽からの出水管
16 沈澱槽の排水(ドレイン)コック[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fish culture apparatus and an efficient ultra-high density fish culture method using the same.
[0002]
[Prior art]
Traditionally, in the breeding of appreciation fish, the display of seafood in aquariums, and the storage of seafood in live fish wholesalers and live fish restaurants, fish are usually raised in aquariums equipped with a filtration tank called a circulation (filter) type. Has been done. There are also some devices that are used for aquaculture.
[0003]
[Problems to be solved by the invention]
However, the rearing density of fish and shellfish using a conventional water tank or device called a circulation type is kept low.
In addition, even in an apparatus for aquaculture, the breeding density is low, and improvement is necessary for using it for industrial use.
The above problems are caused by the fact that the production of a water tank or a device called a circulation type is based on experience and intuition. Moreover, in the production of conventional aquaculture equipment, emphasis has been placed on reducing the toxicity of ammonia, and no emphasis has been placed on the removal of seafood dung and suspended suspended matter in the breeding water, and a settling tank has been provided. In such a case, it is necessary to invest a lot of human power in the processing. Furthermore, since the current terrestrial aquaculture apparatus is operated by a so-called pouring method in which seawater is pumped and discharged in 1 to 2 hours, the heat retention and heat insulation of the breeding aquarium are not taken into consideration.
[0004]
Therefore, the present inventors have designed, constructed, and operated circulation based on physiological knowledge such as nitrogen excretion of fish and shellfish to be cultured, ammonia oxidation rate of purified microorganisms (nitrifying bacteria), physiological characteristics of denitrifying bacteria, etc. Invented a filtration fish farming system (Japanese Patent Publication No. 7-55116).
In the method for cultivating flounder using air according to the invention described in Japanese Patent Publication No. 7-55116, high-density production of flounder 30 kg per 1 m 3 of breeding seawater in the facility was possible.
[0005]
The above culture method has achieved a culture density that is about 2 to 3 times that of general flounder culture, which is carried out by pouring the breeding water. However, when the culture is regarded as an industry, fish and shellfish aiming for better profitability. Increasing rearing density is preferred. Also, it is necessary to operate the equipment and manage water quality efficiently and at low cost.
[0006]
[Problems to be solved by the invention]
In order to solve the above-mentioned problems, the present invention provides a circulation filtration that performs aquaculture at an extremely high density by efficiently and inexpensively performing water quality management suitable for breeding fish and shellfish to be cultivated by combining and operating rational facilities. The purpose is to provide seafood aquaculture equipment and aquaculture methods. Another object of the present invention is to provide an aquaculture device with a low environmental load by inventing a method of circulating and reusing backwash water in a filter device.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the circulating filtration fish and shellfish aquaculture apparatus of the present invention uses a pump or the like to regenerate the water for raising fish and shellfish in a fish and fish breeding tank (aquaculture tank) installed on board or on land. In aquaculture equipment equipped with circulation equipment to be used by feeding to the breeding aquarium,
A substance with heavy specific gravity such as feces generated by the breeding of seafood,
Suspension suspended in the breeding tank with a relatively low specific gravity,
With dissolved substances such as ammonia dissolved in the breeding water,
It is characterized in that fish and shellfish can be cultivated efficiently and with high density by incorporating a sedimentation tank, a filter device, and a biofilter equipment having a function of efficiently removing them in order.
[0008]
In more detail, the circulating filtration seafood aquaculture device of the present invention,
Seafood breeding tanks,
A sedimentation tank that sinks and collects feces and residual food of seafood having a higher specific gravity than the breeding water in the breeding water discharged from the breeding tank,
Filter device that collects suspended suspension in breeding water that is not collected by the above, biofilter (biological filtration tank) that oxidizes ammonia in breeding water to nitric acid, and nitrogen that accumulates in breeding water by this oxidation action is nitrogen A denitrification tank that emits gas into the air;
An oxygen inserter that efficiently dissolves oxygen in the breeding water;
A fine bubble generator for removing dissolved organic matter such as proteins in the breeding water together with fine bubbles;
An ultraviolet irradiation device for sterilization of breeding water and decomposition of organic substances in water,
In addition, it consists of a heat pump for rearing water temperature adjustment,
The present invention further provides a breeding method using pure oxygen to maintain the dissolved oxygen concentration in the breeding water using the aquaculture apparatus for culturing fish and shellfish at an ultra-high density.
In addition, an inexpensive seat tank was adopted as a breeding tank, but a method for efficiently attaching a heat insulating material was developed in order to reduce operating costs.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the settling tank causes a swirl flow by injecting the breeding water discharged from the breeding tank along the inner wall surface of the tank from the lower part of the cylindrical section of the treated water tank having an upright cylindrical body section. It is configured to efficiently collect and collect feces and residual food of fish, which has a higher specific gravity than breeding water, by swirling flow, and discharge the treated water from a position along the upper wall surface of the treated water tank. And
The lower part of the cylindrical body part of the treatment water tank may have a flat bottom shape, but preferably has an inverted conical shape or a funnel shape so that the sediment can be easily collected and discharged at the lower part. The breeding water is injected into the treated water tank from the lower end side wall of the cylindrical body portion, and is injected in a pressurized jet shape so that the breeding water to be treated in the cylindrical body portion rotates.
The rotation speed of the breeding water should be determined according to what should be settled.
[0010]
Breeding water (treated water) from which sediments such as feces discharged from the upper part of the sedimentation tank have been removed is introduced into the filter device and treated. The filter device is composed of a plastic net or a screen-like material such as a porous or metal mesh, a glass filter, etc. Backwash water to prevent clogging of this screen-like material (hereinafter simply referred to as a screen) is treated water. Try to recycle.
The screen is washed by temporarily stopping the flow of treated water in the filter device and spraying the wash water in the reverse direction, or by jetting the wash water at a pressure higher than the flow rate of the treated water. The cleaning of the filter device may be performed either when the filtering efficiency of the filter is reduced or intermittently. In addition, the screen in the filter device may be replaced.
[0011]
In the present invention, the breeding aquarium is not particularly limited, but from the standpoint of simplicity of construction, ease of production and installation, etc., the foundation and strut to be installed in order to make the aquarium self-supporting are made of concrete or steel frame, and the foundation and in the strut A reinforced plastic (FRP) wall frame is provided, and a waterproof sheet is stretched in the wall frame to form a water tank. Between the bottom surface of the sheet and the foundation and between the sheet and the wall frame, a rigid foam plastic It is better to incorporate a heat insulating material such as a material.
In some cases, a metal plate such as aluminum may be used for the wall frame. The wall frame may be screwed to the column with a bolt or the like, but may be fitted into a fitting groove provided on the column. In addition, in the case of a cylindrical body shape in which the water tank can stand on its own, the wall frame is divided into two or more divided bodies of the cylindrical body without providing support columns, and these divided bodies are directly fastened and fixed with bolts or on the outer periphery. A water tank may be assembled on the foundation by winding a band or the like and tightening and fixing with a bolt or the like.
The heat insulating material is preferably a foamed plastic such as rigid foamed polyurethane in terms of moldability and processability, but an inorganic or organic fiberboard or the like may be used.
The waterproof sheet is not limited to those made of canvas, and may be a waterproof sheet such as a plastic sheet.
[0012]
One of the characteristics of the method for culturing seafood according to the present invention is that oxygen gas from any one of oxygen gas cylinders, liquid oxygen cylinders, oxygen generators, etc. is used to maintain the oxygen saturation of the breeding water in the breeding aquarium at a high concentration. (Pure oxygen) is introduced into the breeding water, keeping the oxygen saturation in the breeding water at 70-80% or higher at the drainage port of the breeding tank, while allowing the fish and shellfish to use more energy than necessary to adjust the partial pressure of oxygen in the body The goal is to keep seafood at a very high density.
The oxygen gas is preferably 100% oxygen like gas from liquid oxygen, but may contain some other gas like commercially available oxygen gas.
There is a method of supplying oxygen to the breeding water directly to the breeding aquarium, but it is preferable to provide an oxygen welder that dissolves oxygen in the breeding water and supply the breeding water with this oxygen welder. Necessary oxygen amount is calculated from the physiological requirement of the target fish and shellfish and the breeding amount, and supplied efficiently.
[0013]
According to the present invention, feces and residual food having a relatively high specific gravity are first removed from drainage from a breeding aquarium that rears fish and shellfish at an extremely high density. Subsequently, the suspended suspension is removed by the filter device, thereby preventing the filter medium from being clogged due to the large generation of microorganisms that decompose the organic matter in the biofilter. Next, the breeding water containing ammonia is transferred to a biofilter (biological filtration tank), and ammonia is oxidized to nitric acid via nitrous acid. This treated water is sent to the ultraviolet irradiation device by a circulation pump to sterilize pathogenic bacteria and decompose organic substances. Next, while passing through the oxygen inflator, it comes into contact with pure oxygen from either an oxygen generator or an oxygen gas cylinder or a liquid oxygen cylinder, and after the oxygen concentration in the water is increased, it is returned to the breeding tank. It is possible to perform ultra-high density aquaculture of seafood.
[0014]
A part of the breeding water that has passed through the oxygen injector is sent to the heat pump, adjusted to a suitable growth temperature for the fish to be raised, and returned to the breeding tank. As a result, the breeding period can be shortened. In addition, this equipment is equipped with a denitrification tank for removing nitric acid in the breeding water and a fine bubble generator for removing dissolved organic matter such as proteins in the breeding water, and communicates with the biofilter and bypass respectively. It is possible to drive. In addition, the backwash water of the filter device is regenerated and reused using different mesh filter cloths. Thereby, it is possible to operate as an environment-friendly aquaculture device.
[0015]
【Example】
Hereinafter, although one Example of this invention is described based on drawing, this invention is not limited to this Example.
[0016]
Example 1
In FIG. 1, reference numeral 1 denotes a breeding aquarium, which is circular or polygonal such as hexagonal or octagonal. The bottom of the aquarium has an inclination of about 1/10 to 1/20, and feces and residual food are automatically collected in the center of the aquarium by the flow of water into the breeding aquarium. Together with water from the
[0017]
The
[0018]
In the biofilter (biological filtration tank) 5, ammonia from highly toxic fishery products is oxidized to nitric acid having low toxicity via nitrous acid by the action of aerobic bacteria. Since the size of the biofilter container and the required amount of filter media vary depending on the size and number of fish and shellfish bred in the breeding aquarium 1, it is necessary to design them based on the amount of nitrogen excreted by ammonia and the ammonia oxidation rate of the filter media. is there. For this design method, the method of Japanese Patent Publication No. 7-55116 (Patent No. 2035885) previously proposed by the present inventors is used. In addition, a dam plate is provided in front of the biofilter so that the water from the suspended suspension removal filter falls down. As a result, the removal of carbon dioxide from the breeding water and the supply of oxygen using the air to the breeding water are performed.
[0019]
The breeding water from the biofilter is passed through the ultraviolet irradiation device 7 by the
[0020]
Next, the breeding water is sent to the
[0021]
The breeding water whose oxygen concentration has been adjusted by the oxygen infuser is injected into the breeding aquarium, but a part of the breeding water is sent to the
[0022]
In the circulation filtration type seafood breeding, ammonia is oxidized by the action of the biofilter into nitric acid having low toxicity and accumulates in the breeding water. The
[0023]
In addition, a
[0024]
In the present invention, in order to cultivate fish and shellfish at an ultra-high density higher than the conventional culturing density, a breeding method using pure oxygen was adopted to maintain the dissolved oxygen concentration in the breeding water.
Next, although an example of the culture experiment of the flounder using oxygen is shown, this invention is not limited to this fish species.
The aquaculture apparatus of the present invention was constructed using a water tank having a diameter of 4 m, and a culturing experiment was conducted on flounder having a body weight of about 1 kg at an ultra-high density of 50 kg / m 3 or more per unit water volume. As a result, the oxygen saturation in the breeding water can be maintained at 80% or more at the exit of the breeding tank, and the performance and breeding method of this apparatus have been demonstrated.
[0025]
【The invention's effect】
Since the present invention is configured as described above, the droppings of fish and shellfish discharged from the breeding aquarium, the remaining food is a sedimentation tank, and the suspended suspension is efficiently collected by a filter device. The organic substance to the biofilter (biological filtration tank) that oxidizes the nitric acid to nitric acid makes the load extremely small, and ammonia can be oxidized efficiently. In addition, maintenance and management of the biofilter is facilitated. Furthermore, dissolved organic algae such as proteins in the breeding water can be removed by the fine bubble generator. Due to the action of these facilities, the transparency of the breeding water can be kept at 50 cm or more, and the management of the seafood in the breeding aquarium becomes easy.
[0026]
Since oxygen supplementation to the breeding water for seafood breeding is done using pure oxygen, it is easier to maintain the oxygen concentration in water than the conventional method using aeration or water wheel, etc. It is possible to cultivate seafood at ultra-high density. In fish, the oxygen partial pressure of arterial blood is maintained to cope with the decrease in oxygen concentration by increasing the amount of water exchanged in the salmon. Therefore, it is unnecessary to use extra energy for the operation of the dredging pump, and it can be expected to promote growth and improve feed efficiency.
[0027]
In addition, since an oxygen generator is used to supply oxygen, the amount of power used can be reduced to about 5% or less compared to conventional blowers, and the oxygen concentration in the breeding water can be increased more efficiently than before at low cost. Can be maintained.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a configuration diagram showing an embodiment of a circulating filtration fish and shellfish cultivation apparatus according to the present invention.
FIG. 2 is a schematic side view of a precipitation tank according to the present invention.
FIG. 3 is a schematic cross-sectional view of a precipitation tank according to the present invention.
[Explanation of symbols]
1
5 Biofilter (Biofiltration tank)
6 Pump 7
Claims (5)
魚介類飼育水槽と、
飼育水槽から排出される飼育水を円筒状の内壁面に沿って注入させて渦巻き流を生じさせて飼育水中の魚介類の糞と残餌等を捕集する沈澱槽と、
上記により捕集されない飼育水中の浮遊懸濁物を捕集するフィルター装置と、 飼育水中のアンモニアを硝酸に酸化するバイオフィルター(生物濾過槽)と、 この酸化作用により飼育水中に蓄積する硝酸を窒素ガスにして空気中に放出する脱窒槽と、
飼育水の殺菌のための紫外線照射装置と、
飼育水中に所要量の酸素を溶かし込む酸素溶入器と、
酸素溶入器からの飼育水を飼育水槽に供給するための循環経路を分岐して、分岐した循環経路の一つに設けられた飼育水温調節用のヒートポンプ
とを順次接続して設けてなる、魚介類を高密度で養殖できるようにしたことを特徴とする魚介類養殖装置。It is a culture device equipped with a circulation facility for supplying and using the breeding water used for breeding the seafood in the fish breeding aquarium (culture tank) again to the breeding tank using a pump,
Seafood breeding tanks,
A settling tank that collects feces and residual food, etc. of seafood in the breeding water by injecting breeding water discharged from the breeding tank along the cylindrical inner wall surface to create a swirl flow;
A filter device that collects suspended suspensions in the breeding water that are not collected by the above, a biofilter (biological filtration tank) that oxidizes ammonia in the breeding water to nitric acid, and nitrogen that accumulates in the breeding water by this oxidation A denitrification tank that emits gas into the air;
An ultraviolet irradiation device for sterilization of breeding water;
An oxygen inserter that dissolves the required amount of oxygen in the breeding water;
The circulation path for supplying the breeding water from the oxygen injector to the breeding tank is branched, and a heat pump for breeding water temperature adjustment provided in one of the branched circulation paths is sequentially connected, and provided. A seafood aquaculture device characterized by being able to cultivate seafood at high density.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12447299A JP3769680B2 (en) | 1999-04-30 | 1999-04-30 | Circulation filtration aquaculture equipment for seafood |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12447299A JP3769680B2 (en) | 1999-04-30 | 1999-04-30 | Circulation filtration aquaculture equipment for seafood |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000312542A JP2000312542A (en) | 2000-11-14 |
JP3769680B2 true JP3769680B2 (en) | 2006-04-26 |
Family
ID=14886372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12447299A Expired - Fee Related JP3769680B2 (en) | 1999-04-30 | 1999-04-30 | Circulation filtration aquaculture equipment for seafood |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3769680B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008092846A (en) * | 2006-10-11 | 2008-04-24 | Km Kankyo Giken:Kk | Circulation type fish-farming system |
CN104322419A (en) * | 2014-11-10 | 2015-02-04 | 中国水产科学研究院黄海水产研究所 | Factorized totally-closed circulating aquaculture system of sea cucumbers |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3887319B2 (en) * | 2003-01-20 | 2007-02-28 | 株式会社陸上養殖工学研究所 | Seafood culture system and seafood culture method |
JP3887330B2 (en) * | 2003-02-25 | 2007-02-28 | 株式会社陸上養殖工学研究所 | Seafood farming equipment |
JP3887329B2 (en) * | 2003-02-25 | 2007-02-28 | 株式会社陸上養殖工学研究所 | Seafood farming equipment |
JP5787432B2 (en) * | 2010-10-19 | 2015-09-30 | 橋本電子工業株式会社 | How to process large numbers of fish eggs |
US8327803B2 (en) | 2010-10-20 | 2012-12-11 | Hashimoto Electronic Industry Co., Ltd. | Method for processing a large number of fish eggs |
CN102124992B (en) * | 2011-03-28 | 2012-07-25 | 中国水产科学研究院渔业机械仪器研究所 | Factory circulating water fish culture system and using method thereof |
CN102499131B (en) * | 2011-10-20 | 2013-03-27 | 莱州明波水产有限公司 | Energy-saving factorized fully-sealed seawater circulation culture process method and special device thereof |
CN102326522B (en) * | 2011-10-20 | 2013-03-20 | 莱州明波水产有限公司 | Automatic maintenance inoculation-free method for biological filter of circulating water culture system and special device |
CN102792909B (en) * | 2012-08-27 | 2014-02-26 | 中国水产科学研究院黑龙江水产研究所 | Fish culture method using saline-alkaline water |
CN103385217B (en) * | 2013-05-18 | 2015-09-30 | 海南省海洋与渔业科学院 | A kind of soft coral mass rearing device |
KR101551856B1 (en) * | 2013-12-04 | 2015-09-08 | 정석균 | Recirculating rearing system |
JP6218339B2 (en) * | 2014-01-24 | 2017-11-01 | 株式会社Mgグローアップ | Closed circulation filtration aquaculture system |
CN105210973A (en) * | 2015-10-30 | 2016-01-06 | 厦门人天景农业科技有限公司 | Shrimp culture system |
CN107484694B (en) * | 2017-07-27 | 2021-01-12 | 广西壮族自治区水产科学研究院 | Method and device for ecologically co-culturing caulerpa lentillifera and fishes and shrimps |
CN108157271B (en) * | 2017-11-30 | 2024-02-20 | 云南省渔业科学研究院 | Environment-friendly floating type sewage collection device for aquaculture system |
WO2019138590A1 (en) * | 2018-01-12 | 2019-07-18 | トスレック株式会社 | Shellfish purification method and shellfish purification system |
CN108651259A (en) * | 2018-03-21 | 2018-10-16 | 杭州唯康农业开发有限公司 | A kind of circulatory system for soft-shelled turtle ecologic breeding |
CN109220965B (en) * | 2018-11-15 | 2024-03-08 | 上海能正渔业科技开发有限公司 | Circulating water culture container and culture system |
CN110651752B (en) * | 2019-10-09 | 2022-04-12 | 广州市金佰达生物环保科技有限公司 | Water quality circulating purification and oxygen supply device for aquaculture pond |
JP6858996B1 (en) * | 2020-03-12 | 2021-04-14 | 株式会社林養魚場 | Seafood aquaculture equipment and methods |
CN112237166A (en) * | 2020-10-27 | 2021-01-19 | 佛山市汇盈丰电器有限公司 | Novel intelligent fish tank filtering system |
CN113371840A (en) * | 2021-06-10 | 2021-09-10 | 哈尔滨工业大学(深圳) | Biological method for improving transparency of enclosed micro-water body |
CN113455447B (en) * | 2021-06-30 | 2024-08-23 | 喃嵘实业(上海)有限公司 | Biological cultivation water tank |
CN115053851B (en) * | 2022-05-25 | 2023-06-02 | 中国水产科学研究院黄海水产研究所 | Device for delaying metamorphosis of bivalve larvae and application method thereof |
CN116138208B (en) * | 2022-09-07 | 2024-08-16 | 湖南申泰水产科技有限公司 | Internal circulation aquaculture purifying equipment and use method thereof |
-
1999
- 1999-04-30 JP JP12447299A patent/JP3769680B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008092846A (en) * | 2006-10-11 | 2008-04-24 | Km Kankyo Giken:Kk | Circulation type fish-farming system |
CN104322419A (en) * | 2014-11-10 | 2015-02-04 | 中国水产科学研究院黄海水产研究所 | Factorized totally-closed circulating aquaculture system of sea cucumbers |
CN104322419B (en) * | 2014-11-10 | 2017-01-11 | 中国水产科学研究院黄海水产研究所 | Factorized totally-closed circulating aquaculture system of sea cucumbers |
Also Published As
Publication number | Publication date |
---|---|
JP2000312542A (en) | 2000-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3769680B2 (en) | Circulation filtration aquaculture equipment for seafood | |
CN107251830B (en) | Circulating aquaculture process and system | |
KR101782736B1 (en) | Recirculating aquaculture system | |
KR102242705B1 (en) | Recirculating aquaculture system use of Biofloc Technology | |
CN1120658C (en) | Closed circulation cultivation system | |
US7682504B2 (en) | System for growing crustaceans and other fish | |
CN203692217U (en) | Sedimentation separation type culture pond | |
CN203952141U (en) | A kind of industrial circulating water aquiculture system | |
CN209152005U (en) | A kind of industrial circulating water aquiculture system | |
JP5544512B2 (en) | Circulation culture apparatus and method for seafood | |
KR101551856B1 (en) | Recirculating rearing system | |
CN105210978A (en) | A kind of prawn high-order breeding water body circularly purifying bacteria bed | |
KR101782735B1 (en) | The device for circulating and filtering of sea fish water tank for exhibition | |
KR101730409B1 (en) | Water treatment system for eel culture apparatus | |
JP2003023914A (en) | Fishery organism cultivation system | |
WO2018211513A1 (en) | Method and system for maintaining water quality | |
JP2013247949A (en) | Water treating device | |
WO1996036219A1 (en) | Fish culture equipment | |
US9193615B2 (en) | Portable biofilter and degasser | |
JP2024157354A (en) | Aquaponics System | |
KR102647881B1 (en) | cleaner unit and high density cycle filtration cultivation apparatus of the same | |
CN205161603U (en) | Biological filter is used to high -order breed of shrimp | |
Ranjan et al. | Recirculating Aquaculture System engineering: Design, components and construction | |
JP3427091B2 (en) | Fish water purification equipment | |
JPH0596291A (en) | Water filtering method and apparatus therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050303 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050629 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060118 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060125 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090217 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100217 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110217 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110217 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130217 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |