JP3768388B2 - Biological magnesium material and method for producing the same - Google Patents
Biological magnesium material and method for producing the same Download PDFInfo
- Publication number
- JP3768388B2 JP3768388B2 JP2000216768A JP2000216768A JP3768388B2 JP 3768388 B2 JP3768388 B2 JP 3768388B2 JP 2000216768 A JP2000216768 A JP 2000216768A JP 2000216768 A JP2000216768 A JP 2000216768A JP 3768388 B2 JP3768388 B2 JP 3768388B2
- Authority
- JP
- Japan
- Prior art keywords
- magnesium
- oxide layer
- layer
- biological
- test piece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Materials For Medical Uses (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、義歯,人工骨,インプラント材等として使用される生体用マグネシウム材料及びその製造方法に関する。
【0002】
【従来の技術】
人工歯根,歯冠,義歯床等の歯科用材料や、人工関節,人工骨,骨折整復用材料等の生体内インプラント材料には、生体にかかる力や運動を支える構造材料としての機能及び生体環境における生体適合性(生体活性や生体不活性)が要求され、なかでも生体組織との変形特性の調和と強度が重要である。
このようなことから、金属質生体材料としてステンレス鋼,Co−Cr合金,Ti,Ti合金等が従来から使用されている(特開平12−144287号公報,特開2000−116673号公報)。しかし、ステンレス鋼からのFeイオン,Crイオン,Niイオンの溶出、Co−Cr合金からのCoイオン,Crイオンの溶出、Ti又はTi合金からのTiイオンやV等の合金成分イオンの溶出がアレルギーや毒性を示すとの報告もある。
【0003】
【発明が解決しようとする課題】
この点、マグネシウムは、生体必須元素であり、ステンレス鋼,Co−Cr合金,Ti,Ti合金等に比較して生体親和性に一層優れており、安全な材料でもある。しかも、比重が小さな材料であることから、生体材料としての要求特性をもっている。しかし、耐食性に難点があることから、マグネシウムを生体用に使用できない現状である。
すなわち、体液中にはClイオンが多く含まれており、このClイオンがMgと反応すると塩化マグネシウム(MgCl2)を生成することは十分に推測される。生成した塩化マグネシウムが金属Mgから離脱して生体液で搬送され、沈着物を形成し、或いはMgイオンが血管中に浸透して高濃度になり血栓を生じることが懸念される。
【0004】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、マグネシウム表面を改質処理することにより、生体環境における腐食を抑制し、生体親和性,機械的強度等のマグネシウム本来の特性を活用した生体用マグネシウム材料を提供することを目的とする。
【0005】
本発明の生体用マグネシウム材料は、その目的を達成するため、純度99.9%以上の金属マグネシウムを基材とし、基材表面に酸化物層を形成した後で該酸化物層の全て又は一部を除去してすることにより変質層が形成されていることを特徴とする。
この生体用マグネシウム材料は、純度99.9%以上の金属マグネシウムを生体用部材に加工した後、酸化雰囲気中で加熱処理して生体用部材の表面に酸化物層を形成し、更に該酸化物層の全て又は一部を除去して変質層を形成させることにより製造される。
【0006】
【作用】
本発明者等は、生体用には不適当なアルミニウムを含まない金属マグネシウムを用いて、生体材料としての金属マグネシウムの使用可能性を種々の観点から調査検討した。その過程で、金属マグネシウムの表面に酸化物層を一旦形成した後で酸化物層の全て又は一部を除去すると、金属マグネシウムの表面が変質し、この金属マグネシウムをハンクス液(擬似生体液)に浸漬すると、ハンクス液に含まれているCa,P,Cl等がマグネシウム表面に析出・浸透し、表面改質されることを見出した。
【0007】
改質表面は、硬質で且つ優れた保護作用を呈し、従来マグネシウムを生体用に使用しようとする際のネックであった耐食性不足を十分に解消することが判った。表面改質により耐食性が改善される理由は現在のところ不明であるが、Mg(基材)の表面近傍にCa,P,Cl等が検出されることからアパタイトが形成されていることに原因があるものと推察される。
【0008】
基材としては、生体材用として好ましくないAl,希土類元素(La,Ce,Pr,Nd,Sm,Gd,Yb等),Y,Si,Cr等の成分を含まない純度99.9%以上の金属マグネシウムが使用される。この金属マグネシウムは、生体必須元素であるZn,Ca,P,Cu等を少量含んでいてもよい。金属マグネシウムを必要形状に加工した後で酸化性雰囲気で加熱すると、酸化反応によって表面に酸化物層が生成する。所定厚み(具体的には5〜200μm)の酸化物層を形成するため、雰囲気:5%O2+95%Ar(N2),100%O2又は大気雰囲気,加熱温度:400〜600℃,加熱時間:3〜100時間の酸化処理条件が好ましい。生成した酸化物層は、研磨,超音波洗浄等で基材マグネシウムから容易に除去される。
【0009】
酸化物層の全て又は一部が除去された金属マグネシウムは表面変質している。Ca,P,Cl等を含むハンクス液(生体擬似液)に酸化物層の全て又は一部を除去した後の金属マグネシウムを浸漬すると、最表層にはMgO系の変質層が形成されるが、金属マグネシウムの表面側に耐食性に優れた変質層が形成される。そのため、ハンクス液への浸漬時間が長くなっても、変質層形成後は金属マグネシウムの腐食が進行しなくなる。予めハンクス液に浸漬することによって新たな変質層を形成してもよいが、生体液にはCa,P,Cl等が含まれていることから、酸化物層の全て又は一部を除去した後の金属マグネシウム製生体用部材をそのまま生体に埋め込みんでも変質層が形成される。この場合、金属マグネシウムから溶出するMgイオンは、本来生体必須元素であるため悪影響を及ぼすことはない。
【0010】
【実施例】
純度99.9%の金属アルミニウムを10mm×20mmのサイズで厚み2mmの試験片に加工した。試験片の表面状態を均一化するため、粒径0.1μmのアルミナパウダーを用いた研磨及びアセトンを用いた超音波洗浄を施した。
【0011】
試験片を電気炉に装入し、20%O2+80%N2雰囲気中で530℃に9時間加熱した。加熱後の試験片表面には厚さ47.4μmの酸化物層が形成されていた。加熱後に酸化物層をアセトン中で超音波洗浄して酸化物層を除去した後、試験片を切断し、粒径0.1μmのアルミナ粒子を用いて試験片断面を研磨した。研磨された試験片断面を走査型電子顕微鏡で観察したところ、厚さ20μmの変質層が形成されていることが判った。酸化物層が除去された試験片の表面硬度を測定したところ、母材硬度(40HV)に比較してビッカース硬さが43HVと硬質の皮膜が形成されていた。
【0012】
次いで、温度30℃のハンクス液(1リットルのH2O中にNaCl:8g,KCl:0.4g,Na2HPO4・2H2O:0.06g,KH2PO4:0.06g,MgSO4・7H2O:0.2g,CaCl2:0.14g,NaHCO3:0.35gを含む)に試験片を400時間浸漬した。浸漬後の試験片表面を観察したところ、図1に示すように基材マグネシウムと表層の酸化皮膜との界面に中間層が検出された。この中間層は、化学分析の結果P:24.58質量%、Cl:0.63質量%及びCa:38.51質量%を含んでいることが判った。
【0013】
比較のため、同じ金属マグネシウムを使用し、酸化物層の生成及び除去を施すことなく、同様な条件下でハンクス液に浸漬した。浸漬処理された試験片を顕微鏡観察したところ、図1に示すような中間層が形成されておらず、化学分析の結果もP,Cl,Ca等が検出されなかった。
【0014】
次いで、温度30℃の同じハンクス液に試験片を浸漬し、浸漬時間の経過に応じた試験片の重量減少を測定した。表1の測定結果にみられるように、本発明に従って表面改質した試験片では、400時間浸漬した後でも重量増加率が6.29%であり、25時間で4.30%の重量減少率,225時間で99.973%の重量減少率となり、225時間でほぼ全てが腐食のために溶解した。これに対し、改質処理を施していない試験片では、浸漬時間が長くなるに応じて重量減少が増加し、耐食性が不足することから生体用材用として不適当なことが判った。
【0015】
【0016】
【発明の効果】
以上に説明したように、本発明の生体用マグネシウム材料は、酸化皮膜の形成及び除去により硬質表面に改質されている。この硬質表面は、Ca,Cl,P等を含む生体液に接触する条件下ではCa,Cl,P等の拡散によって硬質で耐食性に優れた皮膜となる。そのため、生体親和性や強度に優れているものの、従来では耐食性不足のために生体用に使用できなかったマグネシウムの使用が可能となる。しかも、Mgが生体必須元素であることから,ステンレス鋼,Co−Cr合金,Ti,Ti合金のようにアレルギー,被毒等の悪影響を及ぼさない生体用材料として使用される。
【図面の簡単な説明】
【図1】 改質処理された金属マグネシウムの表面層を示す模式図[0001]
[Industrial application fields]
The present invention relates to a biological magnesium material used as a denture, artificial bone, implant material, and the like, and a method for producing the same.
[0002]
[Prior art]
For dental materials such as artificial tooth roots, crowns, and denture bases, and in-vivo implant materials such as artificial joints, artificial bones, and fracture reduction materials, functions and biological environments as structural materials that support forces and movements on the living body The biocompatibility (bioactivity and bioactivity) is required, and in particular, the harmony and strength of the deformation characteristics with the living tissue are important.
For this reason, stainless steel, Co—Cr alloy, Ti, Ti alloy and the like have been conventionally used as metallic biomaterials (JP-A Nos. 12-144287 and 2000-116673). However, elution of Fe ions, Cr ions and Ni ions from stainless steel, elution of Co ions and Cr ions from Co-Cr alloys, and elution of alloy component ions such as Ti ions and V from Ti or Ti alloys are allergic. Some reports show toxicity.
[0003]
[Problems to be solved by the invention]
In this respect, magnesium is an essential biological element, and is more excellent in biocompatibility than stainless steel, Co—Cr alloy, Ti, Ti alloy and the like, and is also a safe material. And since it is a material with small specific gravity, it has the required characteristic as a biomaterial. However, due to the difficulty in corrosion resistance, magnesium cannot be used for living organisms.
That is, the body fluid contains a large amount of Cl ions, and it is sufficiently speculated that magnesium chloride (MgCl 2 ) is produced when this Cl ion reacts with Mg. There is a concern that the produced magnesium chloride is detached from the metal Mg and transported in the biological fluid to form deposits, or Mg ions permeate into the blood vessel to a high concentration and cause a thrombus.
[0004]
[Means for Solving the Problems]
The present invention has been devised to solve such problems. By modifying the surface of magnesium, corrosion in the living environment is suppressed, and magnesium inherent in biocompatibility, mechanical strength, etc. An object of the present invention is to provide a biological magnesium material utilizing the characteristics.
[0005]
In order to achieve the object, the biological magnesium material of the present invention is based on metallic magnesium having a purity of 99.9% or more as a base material, and after forming an oxide layer on the surface of the base material, all or one of the oxide layers is formed. The altered layer is formed by removing the portion.
In this magnesium material for living body, after processing magnesium metal having a purity of 99.9% or more into a living body member, heat treatment is performed in an oxidizing atmosphere to form an oxide layer on the surface of the living body member. It is manufactured by removing all or part of the layer to form a modified layer.
[0006]
[Action]
The present inventors investigated and examined the possibility of using metallic magnesium as a biomaterial from various viewpoints using metallic magnesium that does not contain aluminum, which is inappropriate for living organisms. In the process, once the oxide layer is formed on the surface of the metal magnesium, if all or part of the oxide layer is removed, the surface of the metal magnesium is altered, and this metal magnesium is converted into a Hanks solution (pseudo-biological fluid). It was found that when immersed, Ca, P, Cl, etc. contained in the Hanks solution precipitate and permeate the magnesium surface and the surface is modified.
[0007]
It has been found that the modified surface is hard and exhibits excellent protective action, and sufficiently solves the lack of corrosion resistance, which has been a bottleneck when conventional magnesium is used for living organisms. The reason why the corrosion resistance is improved by surface modification is currently unknown, but the cause is that apatite is formed because Ca, P, Cl, etc. are detected near the surface of Mg (base material). Inferred to be.
[0008]
As a base material, it is not preferable for biomaterials and has a purity of 99.9% or more which does not contain components such as Al, rare earth elements (La, Ce, Pr, Nd, Sm, Gd, Yb, etc.), Y, Si, Cr, etc. Metallic magnesium is used. This metallic magnesium may contain a small amount of Zn, Ca, P, Cu, etc., which are essential biological elements. When metal magnesium is processed into a required shape and then heated in an oxidizing atmosphere, an oxide layer is formed on the surface by an oxidation reaction. In order to form an oxide layer having a predetermined thickness (specifically, 5 to 200 μm), atmosphere: 5% O 2 + 95% Ar (N 2 ), 100% O 2 or air atmosphere, heating temperature: 400 to 600 ° C., Heating time: Oxidation conditions of 3 to 100 hours are preferable. The generated oxide layer is easily removed from the base magnesium by polishing, ultrasonic cleaning or the like.
[0009]
The metallic magnesium from which all or part of the oxide layer has been removed has undergone surface alteration. When metallic magnesium after removing all or part of the oxide layer is immersed in a Hanks solution (biological simulated fluid) containing Ca, P, Cl, etc., an MgO-based altered layer is formed on the outermost layer. A deteriorated layer having excellent corrosion resistance is formed on the surface side of the metallic magnesium. Therefore, even when the immersion time in the Hanks solution is long, the corrosion of the metallic magnesium does not proceed after the formation of the deteriorated layer. A new deteriorated layer may be formed by pre-immersing in Hanks' solution, but since biological fluid contains Ca, P, Cl, etc., after removing all or part of the oxide layer Even if the metallic magnesium biomedical member is directly embedded in the living body, the altered layer is formed. In this case, Mg ions eluted from metallic magnesium are not essential elements for living organisms and therefore do not have an adverse effect.
[0010]
【Example】
Metal aluminum having a purity of 99.9% was processed into a test piece having a size of 10 mm × 20 mm and a thickness of 2 mm. In order to make the surface state of the test piece uniform, polishing using alumina powder having a particle size of 0.1 μm and ultrasonic cleaning using acetone were performed.
[0011]
The test piece was placed in an electric furnace and heated to 530 ° C. for 9 hours in a 20% O 2 + 80% N 2 atmosphere. An oxide layer having a thickness of 47.4 μm was formed on the surface of the test piece after heating. After heating, the oxide layer was ultrasonically washed in acetone to remove the oxide layer, and then the test piece was cut, and the cross section of the test piece was polished with alumina particles having a particle size of 0.1 μm. When the polished cross section of the test piece was observed with a scanning electron microscope, it was found that an altered layer having a thickness of 20 μm was formed. When the surface hardness of the test piece from which the oxide layer was removed was measured, a hard film having a Vickers hardness of 43 HV was formed as compared with the base material hardness (40 HV).
[0012]
Then, Hank's solution temperature 30 ° C. (1 liters NaCl in of H 2 O: 8g, KCl: 0.4g, Na 2 HPO 4 · 2H 2 O: 0.06g, KH 2 PO 4: 0.06g, MgSO 4 · 7H 2 O: 0.2 g, CaCl 2 : 0.14 g, NaHCO 3 : 0.35 g)), the test piece was immersed for 400 hours. When the surface of the test piece after immersion was observed, an intermediate layer was detected at the interface between the base magnesium and the surface oxide film as shown in FIG. As a result of chemical analysis, this intermediate layer was found to contain P: 24.58 mass%, Cl: 0.63 mass%, and Ca: 38.51 mass%.
[0013]
For comparison, the same magnesium metal was used and immersed in Hank's solution under similar conditions without generating and removing the oxide layer. When the immersion-treated test piece was observed with a microscope, an intermediate layer as shown in FIG. 1 was not formed, and P, Cl, Ca, etc. were not detected as a result of chemical analysis.
[0014]
Subsequently, the test piece was immersed in the same Hank's solution at a temperature of 30 ° C., and the weight loss of the test piece was measured over time. As can be seen from the measurement results in Table 1, the test piece surface-modified according to the present invention has a weight increase rate of 6.29% even after immersion for 400 hours and a weight loss rate of 4.30% in 25 hours. The weight loss rate was 99.973% in 225 hours, and almost all was dissolved due to corrosion in 225 hours. On the other hand, it was found that the test piece that was not subjected to the modification treatment was unsuitable for biomaterials due to an increase in weight loss and insufficient corrosion resistance as the immersion time increased.
[0015]
[0016]
【The invention's effect】
As described above, the biological magnesium material of the present invention is modified to a hard surface by forming and removing an oxide film. This hard surface becomes a hard and excellent corrosion-resistant film by the diffusion of Ca, Cl, P, etc. under the condition of contact with biological fluid containing Ca, Cl, P, etc. Therefore, although it is excellent in biocompatibility and strength, it is possible to use magnesium that could not be used for living bodies due to insufficient corrosion resistance. Moreover, since Mg is an essential biological element, it is used as a biomaterial that does not have adverse effects such as allergies and poisoning, such as stainless steel, Co—Cr alloy, Ti, and Ti alloy.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a surface layer of metal magnesium that has been modified.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000216768A JP3768388B2 (en) | 2000-07-18 | 2000-07-18 | Biological magnesium material and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000216768A JP3768388B2 (en) | 2000-07-18 | 2000-07-18 | Biological magnesium material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002028229A JP2002028229A (en) | 2002-01-29 |
JP3768388B2 true JP3768388B2 (en) | 2006-04-19 |
Family
ID=18711973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000216768A Expired - Fee Related JP3768388B2 (en) | 2000-07-18 | 2000-07-18 | Biological magnesium material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3768388B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10361941A1 (en) * | 2003-12-24 | 2005-07-28 | Restate Patent Ag | Coating for the outer surface of a medical implant, especially a stent or electrode, comprises magnesium, a magnesium alloy or a magnesium salt |
JP2006061381A (en) * | 2004-08-26 | 2006-03-09 | Terumo Corp | Intravascular implant |
US8034101B2 (en) * | 2005-11-16 | 2011-10-11 | National Institute For Materials Science | Magnesium-based biodegradable metallic material |
DE102006011348B4 (en) * | 2006-03-11 | 2015-10-08 | Biotronik Vi Patent Ag | A process for producing a physiological environment corrosion inhibiting layer on a molding |
EP1997522B1 (en) * | 2006-03-20 | 2015-05-13 | National Institute for Materials Science | Method of controlling degradation time of a biodegradable device |
JP2008125622A (en) * | 2006-11-17 | 2008-06-05 | National Institute For Materials Science | Biodegradable magnesium material |
EP2204196A4 (en) | 2006-11-17 | 2012-11-07 | Nat Inst For Materials Science | Magnesium-based medical device and process for producing the same |
DE102006060501A1 (en) * | 2006-12-19 | 2008-06-26 | Biotronik Vi Patent Ag | Forming corrosion-inhibiting anodized coating on bio-corrodible magnesium alloy implant, treats implant in aqueous or alcoholic solution containing specified ion concentration |
JP5517024B2 (en) * | 2009-02-02 | 2014-06-11 | 独立行政法人物質・材料研究機構 | Mg-based structural member |
JP2015119893A (en) * | 2013-12-25 | 2015-07-02 | 堤総研株式会社 | Organism implement |
-
2000
- 2000-07-18 JP JP2000216768A patent/JP3768388B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002028229A (en) | 2002-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shabalovskaya | Physicochemical and biological aspects of Nitinol as a biomaterial | |
Bazaka et al. | Metallic Implants for Biomedical Applications | |
Yang et al. | Mechanical properties and Young's modulus of plasma‐sprayed hydroxyapatite coating on Ti substrate in simulated body fluid | |
Hu et al. | Corrosion products and mechanism on NiTi shape memory alloy in physiological environment | |
Horandghadim et al. | Influence of tantalum pentoxide secondary phase on surface features and mechanical properties of hydroxyapatite coating on NiTi alloy produced by electrophoretic deposition | |
Lee et al. | XPS study of bioactive graded layer in Ti–In–Nb–Ta alloy prepared by alkali and heat treatments | |
Koopaie et al. | Advanced surface treatment techniques counteract biofilm-associated infections on dental implants | |
JP3768388B2 (en) | Biological magnesium material and method for producing the same | |
Sridhar et al. | Electrophoretic deposition of hydroxyapatite coatings and corrosion aspects of metallic implants | |
JPS6324952A (en) | Production of composite material coated with calcium phosphate compound | |
Kaur et al. | Characterization of hydroxyapatite coating on 316L stainless steel by sol–gel technique | |
De Aguiar et al. | Electrochemical behaviour of a cobalt–chromium–molybdenum dental alloy in artificial salivas | |
Elshamy et al. | Electrochemical characteristics of a biomedical Ti70Zr20Nb7. 5Ta2. 5 refractory high entropy alloy in an artificial saliva solution | |
Rokaya et al. | Modification of titanium alloys for dental applications | |
Manaka et al. | Galvanic Corrosion among Ti–6Al–4V ELI Alloy, Co–Cr–Mo Alloy, 316L-Type Stainless Steel, and Zr–1Mo Alloy for Orthopedic Implants | |
Suzuki et al. | Electrochemical property and corrosion behavior of multi-directionally forged titanium in fluoride solution | |
Aydin et al. | Preparation of hydroxyapatite coating by using citric acid sodium citrate buffer system in the biomimetic procedure | |
JP2003235954A (en) | Bone conductive biomaterial and manufacturing method therefor | |
JP5019346B2 (en) | Bone-compatible implant and method for producing the same | |
JP6358765B2 (en) | Bone repair material and manufacturing method thereof | |
PALICE | Determination of mechanical and functional properties by continuous vertical cast NiTi rod | |
Akahori et al. | Bioactive ceramic surface modification of β-type Ti-Nb-Ta-Zr system alloy by alkali solution treatment | |
Poljak-Guberina et al. | Dental alloys and corrosion resistance | |
JP3779368B2 (en) | Biological composite implant material | |
JP2000093498A (en) | Bone substitution material and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20031210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060131 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060201 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100210 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |