[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3764380B2 - Hot-dip galvanized steel sheet with excellent ductility, plateability, spot weldability and strength stability after heat treatment - Google Patents

Hot-dip galvanized steel sheet with excellent ductility, plateability, spot weldability and strength stability after heat treatment Download PDF

Info

Publication number
JP3764380B2
JP3764380B2 JP2001381666A JP2001381666A JP3764380B2 JP 3764380 B2 JP3764380 B2 JP 3764380B2 JP 2001381666 A JP2001381666 A JP 2001381666A JP 2001381666 A JP2001381666 A JP 2001381666A JP 3764380 B2 JP3764380 B2 JP 3764380B2
Authority
JP
Japan
Prior art keywords
quenching
strength
steel sheet
temperature
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001381666A
Other languages
Japanese (ja)
Other versions
JP2002241895A (en
Inventor
達也 浅井
哲夫 十代田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001381666A priority Critical patent/JP3764380B2/en
Publication of JP2002241895A publication Critical patent/JP2002241895A/en
Application granted granted Critical
Publication of JP3764380B2 publication Critical patent/JP3764380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車、電機、機械等の産業分野において、成形加工して部材を製造するのに用いられる薄鋼板に関するものであって、特性として優れた延性を有し、且つ熱処理条件の変動に関係なく高強度を確実に得ることができ(以下、この様な特性を単に「熱処理後の強度安定性」または「焼入れ後の強度安定性」ということがある)、更には耐食性、めっき性状およびスポット溶接性にも優れた薄鋼板に関するものである。尚、本発明の薄鋼板は、上記の様々な分野で使用されるものであるが、以下、代表的な用途例として自動車用鋼板に使用される場合を中心に説明を進める。
【0002】
【従来の技術】
薄鋼板を成形加工して得られる自動車用部材に求められる特性として、安全性の観点から、自動車衝突時に該部材が完全に破壊することなく変形して衝撃を吸収することが挙げられ、この様な特性を確保するため部材の板厚を一部厚くしたり、補強部材を重ねる等して強度を高めることが行われている。ところで近年では、自動車の燃費向上の観点から軽量化が進められており、上記補強等を行わなくても安全性を確保できるよう鋼板の強度をより高めることが進められている。しかしながら高強度鋼板は一般に加工性に乏しいため、部材成形時の加工性も同時に確保することが要求されている。この様な課題を解決する手段として、特開平11−152541号では、比較的延性の高い鋼板を成形加工した後、必要箇所を焼入れして部分的に強度を高めた高強度鋼板部材が提案されている。また特開2000−144319号では、Mnを添加することで強度および加工性を確保する技術が開示されている。
【0003】
この様な鋼材では、焼入れ後の強度を高めることを目的にC,Mn等が比較的多く添加されており、C添加量を増加させることで焼入れ後の強度は高まるが、強度向上と反比例して溶接性等が劣化しやすくなるため、Cの代わりにMn含有量を増加させることが行われている。しかしながらMn量を増加させると、鋼の二相域温度が低下するため、冷延後の再結晶焼鈍時にマルテンサイトやベイナイトなど硬質相が生じ易く、素材の延性が低下することとなる。従って、複雑な加工が行われる自動車用鋼板等として用いる場合には、Mn含有量を抑えてより優れた延性を確保することが重要となってくる。
【0004】
ところで、上述のように部材の強度を高めるため焼入れ処理が行われるが、高周波焼入れやプレス焼入れ等のいずれの方法で焼入れを行う場合も、加熱温度や冷却開始温度が50℃程度変動し易く、この様な焼入れ温度の変動に伴って焼入れ後の強度も変動しやすくなるため、部材として一定の高強度を確保することができないという問題がある。
【0005】
図1は、焼入れ温度と焼入れ後の引張強度との関係をMn濃度別に示したグラフであり、その実験条件は次の通りである。即ち、C:0.13%,Mn:1.5%を含む高Mn鋼、およびC:0.16%,Mn:0.38%を含む低Mn鋼を、それぞれ仕上圧延温度(FDT)890℃、巻取温度(CT)650℃の条件で熱間圧延を行って板厚2mmとした後、冷間圧延を行って板厚1mmとし、次に720℃で60秒間焼鈍を行い、最後にスキンパスを行って1%圧延した。この様にして得られた鋼板から1.0mm×30mm×300mmの平板を切り出し、700℃、800℃、850℃、900℃、950℃または1050℃の各温度にて焼入れを行った後、JIS5号試験片を採取して引張試験を行い、引張強度を測定したものである。
【0006】
図1に示されるように、焼入れ温度の変化に伴う焼入れ後の強度の変動(バラツキ)は、焼入れ温度を高くしたり、Mnを多量に添加したり、または設備的な改善を行うことで抑えることが可能であるが、焼入れ温度を高くすると、めっき鋼板における焼入れ部位のめっき密着性が劣化したりめっき層が消失し、また、熱延鋼板または冷延鋼板の塗装性を劣化させることとなり、結果として耐食性が劣化するため好ましくない。
【0007】
図2は、焼入れ温度とめっき層中の鉄含有量の関係を示すグラフであり、図3は、めっき層中の鉄含有量と耐食性試験における最大穴あき深さの関係を示すグラフである。図2は、実験条件として連鋳スラブを4.0mmまで熱間圧延した後に酸洗し、冷間圧延で2.0mmまで圧延した後、溶融亜鉛めっきラインにてめっき処理(めっきの目付け量:両面共に45g/m2)、焼鈍および合金化を行ったものであり、焼入れは図1と同様にして行った。また図3は、前記の様にして焼入れを行った鋼板を用い、耐食性試験をJASO(自動車材料腐食試験方法)に従う条件で行ったものである。前記試験は2.0mm×70mm×150mmの試験片を用い、塩水噴霧(35℃、5%塩水)8時間、乾燥(60℃、相対湿度30%)4時間、湿潤(50℃、相対湿度90%)2時間を1サイクルとし、170サイクル後に最大穴あき深さを測定した。
【0008】
図2および図3から、めっき鋼板の焼入れ温度が高すぎると、めっき合金化が進みすぎてめっき層中のFe含有量が増加する傾向にあり、この様にめっき層中のFe含有量が増加すると錆が生じ易く、耐食性試験における最大穴あき深さが大きくなる、即ち耐食性が劣化することがわかる。
【0009】
この様に素材がめっき鋼板の場合、焼入れ部位の耐食性は、焼入れによる合金化程度あるいはめっき層の残存程度に依存し、焼入れ温度を高くするとめっき合金化が進みすぎたりめっき層が消失して、めっき層による防食効果が失われるのである。
【0010】
図4は、焼入れ温度と塗膜残存率の関係を示すグラフであり、実験条件として、めっき処理を施したことを除き図2および3と同様の条件で鋼板を製造し、塗膜残存率は、焼入れした鋼板にりん酸塩処理および電着塗装を施した後、碁盤目試験を行って測定した。
【0011】
この図4から、冷延鋼板や熱延鋼板の焼入れ温度を高くすると、塗膜残存率が低下することがわかるが、これは、焼入れ温度が高いと焼入れ部位に発生する酸化スケール層が厚くなり、該スケール層上に塗装を施しても塗膜がスケール層ごと剥離しやすくなるからであり、この様に塗膜が剥離して塗膜残存率が低下すると腐食の進行が懸念される。
【0012】
更に、焼入れ温度を高くすると成形加工品の熱変形が大きくなるという問題も生じてくる。また焼入れ後の強度の変動を抑えるためMnを多量に添加した場合には、上述の通り延性を確保することが困難となる。
【0013】
従って、延性を確保するため低Mn濃度とし、更に、焼入れ部位の酸化スケール層厚さを薄くしあるいはめっき合金化を抑えて、耐食性を未焼入れ部と同程度とするには、850〜950℃と比較的低温域で焼入れを行う必要があるが、この様な場合、焼入れ後の強度のバラツキが問題となってくる。
【0014】
しかしながら、この様に焼入れ後の強度のバラツキを低減することについては、これまで特筆すべき技術は開発されておらず、本発明者らは、特開2000−248338号にて、広範囲のMn濃度域を規定した高周波焼入用鋼板を既に提案しているが、この技術は、本発明の如く低Mn濃度域における焼入れ後の強度のバラツキについてまで検討しているものではない。
【0015】
【発明が解決しようとする課題】
本発明は、この様な事情に鑑みてなされたものであって、その目的は、複雑な成形を行うことのできる優れた延性、および熱処理温度条件の変動に関係なく焼入れ後の高強度を確実に得ることを同時に達成することができ、更には耐食性、めっき性状およびスポット溶接性に優れた有用な溶融亜鉛めっき鋼板を提供することにある。
【0016】
【課題を解決するための手段】
本発明に係る溶融亜鉛めっき鋼板とは、質量%で、C:0.11〜0.22%、Mn:0.1〜0.5%未満、Cr及び/又はMo:総和で0.1〜0.5%、B:0.0005〜0.005%、Ti:0.01〜0.04%、Al:0.06%以下を満たすとともに、
0.19≦{[C]+([Cr]+[Mo])/5}…(1)
{式中、[C]、[Cr]、[Mo]は、それぞれC、Cr、Mnの含有量(質量%)を示す}を満たし、残部鉄および不可避的不純物からなり、
焼入温度850℃で焼入れ後の引張強度と焼入温度950℃で焼入れ後の引張強度との差が100MPa以下であるところに特徴を有するものであり、式(1)における右辺は、0.28以下であることが好ましい。
【0017】
【発明の実施の形態】
本発明者らは前述した様な状況の下で、延性に優れかつ焼入れ後の高強度を確実に得ることができ、更には、焼入れ部の耐食性および溶接性にも優れた薄鋼板の実現を目指して鋭意研究を進めた結果、Mn量を低減した上で、特にC量と、Cr量及び/又はMo量とを組み合わせて規定することが有効であることを突き止め、これらの化学成分の定量的作用効果について更に追求を重ねた結果、上記本発明に想到したのである。
【0018】
以下、本発明で化学成分を規定した理由について詳細に説明する。
【0019】
C:0.11〜0.22%
Cは鋼の焼入れ性を高めて高強度を確保するのに必要な元素であり、含有量が少なすぎると十分な焼入れを行っても所望の強度が得られ難いため、0.11%以上、好ましくは0.12%以上添加する。しかし、C含有量が多過ぎるとスポット溶接性が劣化し、溶接を行った場合に該溶接部位が脆くなるため、0.22%以下、好ましくは0.20%以下に抑える。
【0020】
Cr及び/又はMo:総和で0.1〜0.5%
Cr,Moは、焼入れ性を高めるのに必須の元素である。また、C量を増加させれば焼入れ後の強度安定性は向上するが、本発明では上述の通り、スポット溶接性を確保すべくCを0.22%以下と低濃度に抑え、焼入れ後の強度安定性を確保すべくCr,Moを総和で0.1%以上、好ましくは0.2%以上添加することとした。しかしCr,Moのいずれの元素も、含有量が多過ぎると不めっき、りん酸塩処理等の化成処理性劣化の原因となったり、製造時のめっき付着の不良(不めっき)が生じることとなるため、総和で0.5%以下、好ましくは0.45%以下に抑える必要がある。
【0021】
0.19≦{[C]+([Cr]+[Mo])/5} …(1)
図5は、後述する実施例の結果を用いて、C含有量と(Cr+Mo)含有量の関係が焼入れ後の強度バラツキに及ぼす影響を示したグラフであり、図中プロットの添え字は、本発明で定義する強度バラツキ(焼入温度850℃で焼入れ後の引張強度と焼入温度950℃で焼入れ後の引張強度との差)の値を示すものである。尚、図5中には、本発明範囲の枠から外れているにもかかわらず、強度バラツキの小さなものもみられるが、これらは、前述した成分規定理由または後述する実施例に示す通り、その他の必要な特性であるめっき処理後のめっき性状またはスポット溶接性に劣るものである。
【0022】
図5に示されるように、焼入れ後の強度バラツキ(焼入温度850℃で焼入れ後の引張強度と焼入温度950℃で焼入れ後の引張強度との差)を望ましい範囲内(100以下)とするには、本発明で規定するC量および、Cr及び/又はMoの総量を満たす範囲内で、上記式(1)の右辺が0.19以上、好ましくは0.20以上となるよう、C、CrおよびMoを含有させることが大変有効なのである。一方、上記式(1)の右辺の値が大きすぎても、溶接後の溶接部硬さが必要以上に上昇し、溶接部の接合強度の低下が懸念されるため、好ましくは0.28以下、より好ましくは0.27以下とするのがよい。
【0023】
Mn:0.1〜0.5%未満
図6は、Mn含有量に対する鋼板の伸びを示したグラフであり、実験条件として、下記表1に示すC,Mn量を含む鋼を、それぞれ仕上圧延温度(FDT)890℃、巻取温度(CT)650℃の条件で熱間圧延を行って板厚2mmの薄鋼板とした後、この薄鋼板からJIS5号試験片を採取し、引張試験を行って伸びを測定したものである。この図6から、Mn含有量を抑えることによって伸び、即ち延性が飛躍的に向上することがわかる。本発明では優れた延性を確保するため、Mn含有量を0.5%未満、好ましくは0.45%未満、より好ましくは0.4%以下に抑えることとした。
【0024】
【表1】

Figure 0003764380
【0025】
一方、MnもCと同様、鋼の焼入れ性を高めて高強度を確保するのに有効な元素であり、かつ前記図1に示したように焼入れ後の強度の安定化を図るのにも有効であるため、Mn量の下限を0.1%、好ましくは0.2%とする。
【0026】
B:0.0005〜0.005%
Bは、焼入れ性を高めて低温でも十分な焼入れ組織を得るのに必要な元素であり、この様な効果を有効に発揮させるには、0.0005%以上、好ましくは0.001%以上添加する必要がある。しかしながらB含有量が多すぎると、鉄窒化物が多量に析出して延性が劣化する原因となるため、0.005%以下、好ましくは0.004%以下に抑える。
【0027】
本発明は、以上に示した通り、Mn含有量を抑えて十分に優れた延性を確保した上で、本発明で規定する量のC、B、Cr及び/又はMoを組み合わせて添加することによって、焼入れ性を高め、かつ焼入れ後のバラツキを抑えて薄鋼板の高強度を確実に得ることができたものである。また上記の如く成分を規定することで、スポット溶接性、および焼入れ後の耐食性をも確保することができたのである。
【0028】
本発明における代表的な化学成分組成は以上の通りであるが、必要によってはTi,Alを適量含有させて、次の様な改善効果を得ることも有効である。即ちTiは、Bを窒化物として析出させずに固溶状態ままにしてBの焼入れ効果を高めるのに有効であるため、0.01%以上添加することが好ましいが、添加量が多すぎると延性が劣化するため、好ましくは0.04%以下に抑える。また、Alは脱酸材として有効であるが、含有量が多過ぎると「へげ・スリバ」等の表面欠陥が増加するため、0.06%以下とすることが好ましく、より好ましくは0.05%以下である。
【0029】
本発明鋼板中に含まれる元素は上記の通りであり、残部成分は実質的にFeであるが、該鋼板中に微量の不可避不純物の含有が許容されるのは勿論のこと、前記本発明の作用に悪影響を与えない範囲で、更に他の元素を積極的に含有させることも可能である。積極添加が許容される他の元素の例としては、焼入れ性改善効果を有するSi,Cu,Ni等が挙げられる。
【0030】
尚、本発明は薄鋼板の製造方法まで特定するものではなく、本発明の薄鋼板は熱間圧延、またはその後に冷間圧延を行って得られるものでもよいし、圧延後、更にめっき処理を施してめっき鋼板としてもよく、これら熱間圧延における再加熱温度、仕上げ圧延温度、冷却、巻取等の条件や、冷間圧延における冷延率、再結晶焼鈍等の条件、またはめっき処理におけるめっき浴の種類、めっき浴温度、めっき付着量、めっき合金化処理等の条件まで特定するものでもない。
【0031】
また本発明は、焼入れの方法を限定するものでもなく、高周波加熱−焼入れ(高周波焼入れ)、加熱炉での加熱−焼入れ、または加熱後、成形と同時に金型内で焼入れ(プレス焼入れ)する等、どの様な熱処理法で焼入れを行なった場合であっても適用可能である。
【0032】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。即ち以下の実施例では、冷延鋼板またはめっき鋼板を最終製品とし、熱処理を高周波焼入れ法で行っているが、上述したように本発明は薄鋼板の製造条件を特定するものではなく、種々の製造条件で製造されたものに本発明を適用することも本発明範囲に含まれる。
【0033】
【実施例】
表2に示す化学成分組成を満たす鋼を溶製して厚さ230mmのスラブを製造した後、このスラブを用いて下記表3に示す条件で熱間圧延を行い板厚2.0mmとした後、更に冷間圧延を行って板厚1.0mmの薄鋼板とした。表2および表3に示すNo.10は、冷間圧延して得られた薄鋼板を表3に示す温度で40秒間焼鈍した後、最後にスキンパス圧延(伸び率1%)を行ったものである。またNo.1〜9は、次に示すようにめっき処理を施したものである。即ち、冷間圧延して得られた薄鋼板を表3に示す温度で40秒間焼鈍した後、溶融亜鉛めっき処理を施し、更に該めっきの合金化を表3に示す温度で行い、最後にスキンパス圧延(伸び率1%)を実施したものである。
【0034】
この様にして得られた薄鋼板から、1.0mm×30mm×300mmの平板を、850℃、900℃および950℃の各焼入れ温度につき3枚ずつ切り出し、高周波焼入れを行った。焼入れは、上記平板を鋼板ガイドから対向配置された高周波コイルの間に送り込み、850℃、900℃または950℃の各焼入温度で平板全体に焼入れを施した。焼入温度到達後は速やかにシャワー冷却を行った。その後、各平板からJIS5号試験片を作製して引張試験を行い引張強度(TS)を測定した。表3に示す強度偏差(ΔTS)は、850℃で焼入れした試料のうちのTS最低値と、950℃で焼入れした試料のうちのTS最高値との差を示している。
【0035】
尚、表3に示す焼入れ前の鋼板の機械的特性は、上記平板と同サイズの板を焼入れ前の鋼板から切り出してJIS5号試験片を作製し、引張試験を行って降伏点(YP)、引張強度(TS)および伸び(El)を測定したものである。
【0036】
まためっき性状の評価は、得られためっき処理鋼板の表面性状が良好なものを「○」、不めっきが発生したものを「×」と判断して行った。これらの結果を表3に併記する。
【0037】
【表2】
Figure 0003764380
【0038】
【表3】
Figure 0003764380
【0039】
表2および表3に示す実験結果より、No.2〜4,6は本発明の規定を満たすものであり、延性が良好で焼入れ後の強度のバラツキが小さく、かつ不めっきも発生しないめっき性状の良好な薄鋼板が得られた。これに対し、No.1,5,7〜9は本発明の規定を満たすものではないため、No.1,5,9では焼入れ後の強度安定性が劣る結果となり、またNo.7,8ではめっき性状、延性またはスポット溶接性のいずれかが劣る結果となった。
【0040】
即ちNo.1は、C量が不足し、かつ前記式(1)も満足しないため、焼入れ後の強度バラツキが大きくなる結果となった。No.9は、Cr及び/又はMoの総量および前記式(1)の右辺がともに本発明の範囲を下回るものとなり、No.5は、C量と、Cr及び/又はMoの総量について本発明範囲を満たしているものの、前記式(1)の右辺が0.19未満であるため、焼入れ後の強度バラツキが大きくなる結果となった。No.7は、Cr及び/又はMoの総量が規定範囲を超えているため、めっき前の素地鋼板表面上に酸化物が形成されて不めっきが発生する結果となった。No.8は、Mnが規定量を超えているため、焼入れ後の強度バラツキは小さいものの延性が劣る結果となった。
【0041】
尚、No.10は参考例として示すものであり、この様にCを本発明の規定範囲を超えて多く添加すると、焼入れ後の強度のバラツキを小さくすることができるが、スポット溶接性を確保することが困難となるため好ましくない。
【0042】
【発明の効果】
本発明は以上のように構成されており、上述の如く化学成分組成を適切に制御することによって、焼入れにより高強度を確実に得ることおよび優れた延性の確保を同時に達成することができ、更には良好な耐食性、めっき性状およびスポット溶接性も確保することができたのである。そして、この様な延性および焼入れ後の強度安定性に優れた薄鋼板の実現によって、複雑な成形が行われ、かつ高強度であることが求められる自動車用鋼板や建築用鋼板、機械構造部材用鋼板等を供給できることとなった。
【図面の簡単な説明】
【図1】焼入れ温度と焼入れ後の引張強度との関係をMn濃度別に示したグラフである。
【図2】焼入れ温度とめっき層中の鉄含有量の関係を示すグラフである。
【図3】めっき層中の鉄含有量と耐食性試験における最大穴あき深さの関係を示すグラフである。
【図4】焼入れ温度と塗膜残存率の関係を示すグラフである。
【図5】焼入れ後の強度バラツキに影響を及ぼす、C含有量と(Cr+Mo)含有量の関係を示したグラフである。
【図6】鋼板中のMn含有量と鋼板の伸びの関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin steel plate used for manufacturing a member by forming in an industrial field such as an automobile, an electric machine, and a machine, and has excellent ductility as a characteristic and is subject to fluctuations in heat treatment conditions. High strength can be reliably obtained regardless of the following (hereinafter, such characteristics may be simply referred to as “strength stability after heat treatment” or “strength stability after quenching”), and further, corrosion resistance, plating properties and The present invention relates to a thin steel plate excellent in spot weldability. In addition, although the thin steel plate of this invention is used in said various field | areas, description is advanced focusing on the case where it uses for a steel plate for motor vehicles as a typical example of use below.
[0002]
[Prior art]
From the viewpoint of safety, the characteristics required for automotive parts obtained by forming thin steel sheets include that the parts are deformed without being completely destroyed at the time of automobile collision and absorb impact. In order to ensure sufficient characteristics, the strength of the member has been increased by partially increasing the thickness of the member or by stacking reinforcing members. By the way, in recent years, weight reduction has been promoted from the viewpoint of improving the fuel efficiency of automobiles, and the strength of steel sheets has been further increased so as to ensure safety without performing the above-described reinforcement or the like. However, high-strength steel sheets are generally poor in workability, so that it is required to ensure workability at the time of forming a member. As means for solving such a problem, Japanese Patent Application Laid-Open No. 11-152541 proposes a high-strength steel plate member in which a relatively high ductility steel plate is formed and then subjected to quenching of a necessary portion to partially increase the strength. ing. Japanese Patent Laid-Open No. 2000-144319 discloses a technique for ensuring strength and workability by adding Mn.
[0003]
In such a steel material, a relatively large amount of C, Mn, etc. is added for the purpose of increasing the strength after quenching, and the strength after quenching increases by increasing the amount of C added, but is inversely proportional to the strength improvement. Therefore, the Mn content is increased instead of C because weldability and the like are likely to deteriorate. However, when the amount of Mn is increased, the temperature of the two-phase region of the steel is lowered, so that a hard phase such as martensite and bainite is easily generated during recrystallization annealing after cold rolling, and the ductility of the material is lowered. Therefore, when using as a steel plate for automobiles and the like that are subjected to complicated processing, it is important to suppress the Mn content and ensure better ductility.
[0004]
By the way, as described above, a quenching process is performed to increase the strength of the member. However, when performing quenching by any method such as induction quenching or press quenching, the heating temperature and the cooling start temperature are likely to fluctuate by about 50 ° C. Since the strength after quenching is likely to fluctuate with such a variation in quenching temperature, there is a problem that a certain high strength cannot be secured as a member.
[0005]
FIG. 1 is a graph showing the relationship between the quenching temperature and the tensile strength after quenching for each Mn concentration, and the experimental conditions are as follows. That is, a high Mn steel containing C: 0.13% and Mn: 1.5%, and a low Mn steel containing C: 0.16% and Mn: 0.38%, respectively, have a finish rolling temperature (FDT) 890. After hot rolling under conditions of ℃ and coiling temperature (CT) of 650 ° C. to a sheet thickness of 2 mm, cold rolling to a sheet thickness of 1 mm, and then annealing at 720 ° C. for 60 seconds, finally A skin pass was performed and rolled 1%. A 1.0 mm × 30 mm × 300 mm flat plate was cut out from the steel plate thus obtained and quenched at 700 ° C., 800 ° C., 850 ° C., 900 ° C., 950 ° C. or 1050 ° C., and then JIS 5 No. test piece was sampled and subjected to a tensile test to measure the tensile strength.
[0006]
As shown in FIG. 1, the fluctuation (variation) in the strength after quenching due to the change in quenching temperature is suppressed by increasing the quenching temperature, adding a large amount of Mn, or improving the equipment. However, if the quenching temperature is increased, the plating adhesion of the quenching site in the plated steel sheet is deteriorated or the coating layer is lost, and the paintability of the hot rolled steel sheet or cold rolled steel sheet is degraded. As a result, the corrosion resistance deteriorates, which is not preferable.
[0007]
FIG. 2 is a graph showing the relationship between the quenching temperature and the iron content in the plating layer, and FIG. 3 is a graph showing the relationship between the iron content in the plating layer and the maximum perforation depth in the corrosion resistance test. FIG. 2 shows an experimental condition in which a continuously cast slab is hot-rolled to 4.0 mm, pickled, cold-rolled to 2.0 mm, and then plated in a hot dip galvanizing line (plating basis weight: Both surfaces were 45 g / m 2 ), annealed and alloyed, and quenching was performed in the same manner as in FIG. FIG. 3 shows the result of the corrosion resistance test performed under the conditions in accordance with JASO (Automobile Material Corrosion Test Method) using the steel plate quenched as described above. The test uses a 2.0 mm × 70 mm × 150 mm test piece, salt spray (35 ° C., 5% salt water) for 8 hours, dry (60 ° C., relative humidity 30%) for 4 hours, wet (50 ° C., relative humidity 90). %) 2 hours as one cycle, and the maximum perforation depth was measured after 170 cycles.
[0008]
From FIG. 2 and FIG. 3, when the quenching temperature of the plated steel sheet is too high, the alloying of the plating proceeds too much and the Fe content in the plated layer tends to increase, and thus the Fe content in the plated layer increases. Then, it is found that rust is easily generated, and the maximum perforation depth in the corrosion resistance test is increased, that is, the corrosion resistance is deteriorated.
[0009]
In this way, when the material is a plated steel sheet, the corrosion resistance of the quenched part depends on the degree of alloying by quenching or the remaining degree of the plating layer, and when the quenching temperature is increased, the plating alloying proceeds too much or the plating layer disappears, The anticorrosion effect by the plating layer is lost.
[0010]
FIG. 4 is a graph showing the relationship between the quenching temperature and the coating film remaining rate. As an experimental condition, a steel plate was manufactured under the same conditions as in FIGS. 2 and 3 except that the plating treatment was performed. After the tempered steel sheet was subjected to phosphate treatment and electrodeposition coating, it was measured by performing a cross cut test.
[0011]
From FIG. 4, it can be seen that when the quenching temperature of the cold-rolled steel sheet or hot-rolled steel sheet is increased, the residual ratio of the coating film decreases. However, if the quenching temperature is high, the oxide scale layer generated at the quenching site becomes thick. This is because even if the coating is applied on the scale layer, the coating film is easily peeled off together with the scale layer. If the coating film is peeled and the coating film residual ratio is lowered in this way, there is a concern about the progress of corrosion.
[0012]
Further, when the quenching temperature is increased, there is a problem that the thermal deformation of the molded product increases. Further, when a large amount of Mn is added to suppress fluctuations in strength after quenching, it becomes difficult to ensure ductility as described above.
[0013]
Therefore, in order to make the Mn concentration low in order to ensure ductility, and further to reduce the thickness of the oxide scale layer at the quenching site or to suppress the formation of a plating alloy, the corrosion resistance is made to be about the same as that of the unquenched part. However, it is necessary to perform quenching in a relatively low temperature range. In such a case, the strength variation after quenching becomes a problem.
[0014]
However, no special technique has been developed so far to reduce the strength variation after quenching, and the inventors have disclosed a wide range of Mn concentrations in Japanese Patent Application Laid-Open No. 2000-248338. Although the steel sheet for induction hardening which prescribed | regulated the area | region has already been proposed, this technique is not examining even the intensity | strength variation after hardening in a low Mn density | concentration area | region like this invention.
[0015]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and its purpose is to ensure excellent ductility capable of performing complex molding and high strength after quenching regardless of fluctuations in heat treatment temperature conditions. It is another object of the present invention to provide a useful hot-dip galvanized steel sheet that is excellent in corrosion resistance, plating properties and spot weldability.
[0016]
[Means for Solving the Problems]
The hot dip galvanized steel sheet according to the present invention is in mass%, C: 0.11 to 0.22%, Mn: 0.1 to less than 0.5%, Cr and / or Mo: 0.1 to 0.1% in total. 0.5%, B: 0.0005-0.005%, Ti: 0.01-0.04%, Al: satisfying 0.06% or less,
0.19 ≦ {[C] + ([Cr] + [Mo]) / 5} (1)
{Wherein [C], [Cr], and [Mo] represent the contents (% by mass) of C, Cr, and Mn, respectively)} and consist of the balance iron and unavoidable impurities,
The difference between the tensile strength after quenching at a quenching temperature of 850 ° C. and the tensile strength after quenching at a quenching temperature of 950 ° C. is 100 MPa or less. It is preferable that it is 28 or less.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Under the circumstances as described above, the present inventors can reliably obtain a high strength after quenching and high strength after quenching, and further realize a thin steel plate having excellent corrosion resistance and weldability of the quenched portion. As a result of diligent research aiming at reducing the amount of Mn, it has been found that it is particularly effective to combine and define the amount of C and the amount of Cr and / or Mo. As a result of further pursuit of the functional effects, the present invention has been conceived.
[0018]
Hereinafter, the reason why the chemical components are defined in the present invention will be described in detail.
[0019]
C: 0.11 to 0.22%
C is an element necessary to increase the hardenability of the steel and ensure high strength, and if the content is too small, it is difficult to obtain the desired strength even after sufficient quenching, so 0.11% or more, Preferably, 0.12% or more is added. However, if the C content is too large, spot weldability deteriorates, and when welding is performed, the welded portion becomes brittle, so the content is suppressed to 0.22% or less, preferably 0.20% or less.
[0020]
Cr and / or Mo: 0.1 to 0.5% in total
Cr and Mo are elements essential for improving the hardenability. Further, if the amount of C is increased, the strength stability after quenching is improved, but in the present invention, as described above, C is kept at a low concentration of 0.22% or less to ensure spot weldability, and after quenching, In order to ensure strength stability, Cr and Mo are added in a total amount of 0.1% or more, preferably 0.2% or more. However, if both elements of Cr and Mo are too much, they may cause deterioration of chemical conversion treatment properties such as non-plating and phosphate treatment, and may cause poor plating adhesion (non-plating) during production. Therefore, it is necessary to keep the sum to 0.5% or less, preferably 0.45% or less.
[0021]
0.19 ≦ {[C] + ([Cr] + [Mo]) / 5} (1)
FIG. 5 is a graph showing the influence of the relationship between the C content and the (Cr + Mo) content on the strength variation after quenching, using the results of the examples described later. It shows the value of strength variation (difference between the tensile strength after quenching at a quenching temperature of 850 ° C. and the tensile strength after quenching at a quenching temperature of 950 ° C.) as defined in the invention. In FIG. 5, there are also small variations in strength despite being outside the scope of the scope of the present invention. It is inferior to the plating properties after plating treatment or spot weldability, which is a necessary characteristic.
[0022]
As shown in FIG. 5, the strength variation after quenching (difference between the tensile strength after quenching at a quenching temperature of 850 ° C. and the tensile strength after quenching at a quenching temperature of 950 ° C.) is within a desirable range (100 or less). In order to achieve this, within the range satisfying the C amount specified in the present invention and the total amount of Cr and / or Mo, the right side of the above formula (1) is 0.19 or more, preferably 0.20 or more. It is very effective to contain Cr and Mo. On the other hand, even if the value on the right side of the above formula (1) is too large, the hardness of the welded portion after welding rises more than necessary, and there is a concern about the decrease in the joint strength of the welded portion. More preferably, it should be 0.27 or less.
[0023]
Mn: less than 0.1 to 0.5% FIG. 6 is a graph showing the elongation of the steel sheet relative to the Mn content. As experimental conditions, steels containing C and Mn amounts shown in Table 1 below are finish-rolled, respectively. After hot rolling under conditions of a temperature (FDT) of 890 ° C. and a coiling temperature (CT) of 650 ° C. to obtain a thin steel plate with a thickness of 2 mm, a JIS No. 5 test piece was taken from this thin steel plate and subjected to a tensile test. The elongation was measured. It can be seen from FIG. 6 that the elongation, that is, the ductility is dramatically improved by suppressing the Mn content. In the present invention, in order to ensure excellent ductility, the Mn content is suppressed to less than 0.5%, preferably less than 0.45%, more preferably 0.4% or less.
[0024]
[Table 1]
Figure 0003764380
[0025]
On the other hand, Mn, like C, is an element effective for enhancing the hardenability of steel and ensuring high strength, and also effective for stabilizing the strength after quenching as shown in FIG. Therefore, the lower limit of the amount of Mn is 0.1%, preferably 0.2%.
[0026]
B: 0.0005 to 0.005%
B is an element necessary for increasing the hardenability and obtaining a sufficiently hardened structure even at a low temperature, and 0.0005% or more, preferably 0.001% or more is added to effectively exhibit such an effect. There is a need to. However, if the B content is too large, a large amount of iron nitride precipitates and the ductility deteriorates, so the content is limited to 0.005% or less, preferably 0.004% or less.
[0027]
In the present invention, as described above, the Mn content is suppressed and sufficiently excellent ductility is secured, and then the amount of C, B, Cr and / or Mo specified in the present invention is added in combination. Thus, it was possible to improve the hardenability and to suppress the post-quenching variation and to reliably obtain the high strength of the thin steel plate. Also, by defining the components as described above, it was possible to ensure spot weldability and corrosion resistance after quenching.
[0028]
The typical chemical composition in the present invention is as described above, but it is also effective to obtain the following improvement effect by containing appropriate amounts of Ti and Al if necessary. That is, Ti is effective in enhancing the quenching effect of B by leaving B as a solid solution without precipitating as a nitride, so it is preferable to add 0.01% or more, but if the amount added is too large Since ductility deteriorates, it is preferably limited to 0.04% or less. Al is effective as a deoxidizing material, but if the content is too large, surface defects such as “bald / slivers” increase, so 0.06% or less is preferable. 05% or less.
[0029]
The elements contained in the steel sheet of the present invention are as described above, and the remaining component is substantially Fe, but it is a matter of course that a small amount of inevitable impurities are allowed to be contained in the steel sheet. It is also possible to positively contain other elements as long as the effects are not adversely affected. Examples of other elements that are allowed to be positively added include Si, Cu, Ni, and the like, which have an effect of improving hardenability.
[0030]
The present invention does not specify a method for producing a thin steel sheet, and the thin steel sheet of the present invention may be obtained by hot rolling or subsequent cold rolling, and further subjected to a plating treatment after rolling. It may be applied to a plated steel sheet, conditions such as reheating temperature in hot rolling, finish rolling temperature, cooling, coiling, cold rolling rate in cold rolling, conditions such as recrystallization annealing, or plating in plating treatment It does not specify conditions such as bath type, plating bath temperature, plating adhesion amount, and plating alloying treatment.
[0031]
Further, the present invention is not limited to the quenching method, and induction heating-quenching (high-frequency quenching), heating-quenching in a heating furnace, or after heating, quenching in a mold (press quenching) at the same time as molding, etc. Any heat treatment method can be applied.
[0032]
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention. That is, in the following examples, a cold-rolled steel plate or a plated steel plate is used as the final product, and the heat treatment is performed by induction hardening, but as described above, the present invention does not specify the manufacturing conditions of the thin steel plate, It is within the scope of the present invention to apply the present invention to those manufactured under manufacturing conditions.
[0033]
【Example】
After melting a steel satisfying the chemical composition shown in Table 2 to produce a slab having a thickness of 230 mm, hot rolling was performed using the slab under the conditions shown in Table 3 below to obtain a plate thickness of 2.0 mm. Further, cold rolling was performed to obtain a thin steel plate having a thickness of 1.0 mm. No. shown in Tables 2 and 3 No. 10 was obtained by annealing a thin steel plate obtained by cold rolling at a temperature shown in Table 3 for 40 seconds, and finally performing skin pass rolling (elongation rate 1%). No. 1 to 9 are plated as shown below. That is, the thin steel sheet obtained by cold rolling was annealed at the temperature shown in Table 3 for 40 seconds, then subjected to hot dip galvanizing treatment, and further alloying of the plating was performed at the temperature shown in Table 3, and finally the skin pass. Rolling (1% elongation) was performed.
[0034]
From the thin steel plate thus obtained, three 1.0 mm × 30 mm × 300 mm flat plates were cut out at each quenching temperature of 850 ° C., 900 ° C., and 950 ° C. and subjected to induction quenching. For the quenching, the flat plate was fed between high-frequency coils opposed to the steel plate guide, and the entire flat plate was quenched at each quenching temperature of 850 ° C., 900 ° C., or 950 ° C. After reaching the quenching temperature, shower cooling was performed promptly. Thereafter, a JIS No. 5 test piece was prepared from each flat plate, a tensile test was performed, and a tensile strength (TS) was measured. The intensity deviation (ΔTS) shown in Table 3 shows the difference between the lowest TS value of the sample quenched at 850 ° C. and the highest TS value of the sample quenched at 950 ° C.
[0035]
In addition, the mechanical characteristics of the steel plate before quenching shown in Table 3 were obtained by cutting a plate of the same size as the above flat plate from the steel plate before quenching to produce a JIS No. 5 test piece, and performing a tensile test to yield point (YP), Tensile strength (TS) and elongation (El) were measured.
[0036]
In addition, the evaluation of the plating properties was performed by judging that the obtained plated steel sheet had good surface properties as “◯” and that the non-plating occurred as “x”. These results are also shown in Table 3.
[0037]
[Table 2]
Figure 0003764380
[0038]
[Table 3]
Figure 0003764380
[0039]
From the experimental results shown in Table 2 and Table 3, Nos. 2 to 4 and 6 satisfy the provisions of the present invention, and a thin steel sheet having good plating properties with good ductility, small variation in strength after quenching, and no unplating was obtained. In contrast, no. Nos. 1, 5, 7 to 9 do not satisfy the provisions of the present invention. Nos. 1, 5 and 9 resulted in inferior strength stability after quenching, and Nos. 7 and 8 resulted in inferior plating properties, ductility or spot weldability.
[0040]
That is, no. No. 1 resulted in an increase in strength variation after quenching because the amount of C was insufficient and the above formula (1) was not satisfied. No. 9 is that the total amount of Cr and / or Mo and the right side of the formula (1) are both below the range of the present invention, and No. 5 is the range of the present invention with respect to the C amount and the total amount of Cr and / or Mo. Although satisfy | filling, since the right side of the said Formula (1) was less than 0.19, it resulted in the strength variation after hardening. No. In No. 7, since the total amount of Cr and / or Mo exceeded the specified range, an oxide was formed on the surface of the base steel plate before plating, resulting in non-plating. No. In No. 8, since Mn exceeded the specified amount, the strength variation after quenching was small, but the ductility was inferior.
[0041]
No. No. 10 is shown as a reference example. Thus, when a large amount of C is added beyond the specified range of the present invention, the strength variation after quenching can be reduced, but it is difficult to ensure spot weldability. This is not preferable.
[0042]
【The invention's effect】
The present invention is configured as described above, and by appropriately controlling the chemical component composition as described above, it is possible to achieve high strength by quenching and secure excellent ductility at the same time. As a result, good corrosion resistance, plating properties and spot weldability could be secured. And by realizing a thin steel plate with excellent ductility and strength stability after quenching, it is used for automotive steel plates, architectural steel plates, and mechanical structural members that are required to have high strength and complex forming. It was possible to supply steel plates and the like.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between quenching temperature and tensile strength after quenching according to Mn concentration.
FIG. 2 is a graph showing the relationship between the quenching temperature and the iron content in the plating layer.
FIG. 3 is a graph showing the relationship between the iron content in a plating layer and the maximum perforation depth in a corrosion resistance test.
FIG. 4 is a graph showing the relationship between the quenching temperature and the coating film remaining rate.
FIG. 5 is a graph showing the relationship between C content and (Cr + Mo) content, which affects the strength variation after quenching.
FIG. 6 is a graph showing the relationship between the Mn content in a steel plate and the elongation of the steel plate.

Claims (2)

質量%で(以下、同じ)、
C :0.11〜0.22%、
Mn:0.1〜0.5%未満、
Cr及び/又はMo:総和で0.1〜0.5%、
B :0.0005〜0.005%、
Ti:0.01〜0.04%、
Al:0.06%以下、および
0.19≦{[C]+([Cr]+[Mo])/5}
{式中、[C]、[Cr]、[Mo]は、それぞれC、Cr、Mnの含有量(質量%)を示す}を満たし、残部鉄および不可避的不純物からなり、
焼入温度850℃で焼入れ後の引張強度と焼入温度950℃で焼入れ後の引張強度との差が100MPa以下であることを特徴とする延性、めっき性、スポット溶接性および熱処理後の強度安定性に優れた溶融亜鉛めっき鋼板。
% By mass (hereinafter the same),
C: 0.11 to 0.22%,
Mn: 0.1 to less than 0.5%,
Cr and / or Mo: 0.1 to 0.5% in total,
B: 0.0005 to 0.005%,
Ti: 0.01-0.04%,
Al: 0.06% or less, and 0.19 ≦ {[C] + ([Cr] + [Mo]) / 5}
{Wherein, [C], [Cr] , [Mo] , respectively C, Cr, the content of Mn (mass%) shows a} meets, the balance being iron and unavoidable impurities,
The difference between the tensile strength after quenching at a quenching temperature of 850 ° C. and the tensile strength after quenching at a quenching temperature of 950 ° C. is 100 MPa or less, ductility , plating properties, spot weldability, and strength stability after heat treatment Hot-dip galvanized steel sheet with excellent properties.
前記{[C]+([Cr]+[Mo])/5}が0.28以下である請求項1に記載の溶融亜鉛めっき鋼板。The hot-dip galvanized steel sheet according to claim 1, wherein the {[C] + ([Cr] + [Mo]) / 5} is 0.28 or less.
JP2001381666A 2000-12-15 2001-12-14 Hot-dip galvanized steel sheet with excellent ductility, plateability, spot weldability and strength stability after heat treatment Expired - Fee Related JP3764380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001381666A JP3764380B2 (en) 2000-12-15 2001-12-14 Hot-dip galvanized steel sheet with excellent ductility, plateability, spot weldability and strength stability after heat treatment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-382802 2000-12-15
JP2000382802 2000-12-15
JP2001381666A JP3764380B2 (en) 2000-12-15 2001-12-14 Hot-dip galvanized steel sheet with excellent ductility, plateability, spot weldability and strength stability after heat treatment

Publications (2)

Publication Number Publication Date
JP2002241895A JP2002241895A (en) 2002-08-28
JP3764380B2 true JP3764380B2 (en) 2006-04-05

Family

ID=26605966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001381666A Expired - Fee Related JP3764380B2 (en) 2000-12-15 2001-12-14 Hot-dip galvanized steel sheet with excellent ductility, plateability, spot weldability and strength stability after heat treatment

Country Status (1)

Country Link
JP (1) JP3764380B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4325277B2 (en) 2003-05-28 2009-09-02 住友金属工業株式会社 Hot forming method and hot forming parts
DE10333165A1 (en) * 2003-07-22 2005-02-24 Daimlerchrysler Ag Production of press-quenched components, especially chassis parts, made from a semi-finished product made from sheet steel comprises molding a component blank, cutting, heating, press-quenching, and coating with a corrosion-protection layer
JP4781046B2 (en) * 2005-08-25 2011-09-28 日新製鋼株式会社 Welded joint of Zn-based plated steel sheet
JP5182855B2 (en) * 2007-11-28 2013-04-17 日産自動車株式会社 Resistance welded steel sheet
JP5421062B2 (en) * 2008-10-23 2014-02-19 株式会社神戸製鋼所 Hardened steel plate and high strength member

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565597A (en) * 1991-09-09 1993-03-19 Nisshin Steel Co Ltd High strength hardened steel tube for reinforcing material for automobile door
JP3407562B2 (en) * 1996-09-20 2003-05-19 住友金属工業株式会社 Method for manufacturing high carbon thin steel sheet and method for manufacturing parts
JP4377973B2 (en) * 1998-03-12 2009-12-02 日新製鋼株式会社 Steel sheet with excellent local ductility and heat treatment
JP3716629B2 (en) * 1998-08-12 2005-11-16 Jfeスチール株式会社 Manufacturing method of thin two-phase structure hot rolled steel strip
JP2000248338A (en) * 1998-12-28 2000-09-12 Kobe Steel Ltd Steel sheet for induction hardening excellent in toughness in hardened part, induction hardening strengthened member and production thereof

Also Published As

Publication number Publication date
JP2002241895A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
EP3088552B1 (en) Steel sheet for hot press formed product having superior bendability and ultra-high strength and method for manufacturing same
EP2581465B1 (en) Hot-stamp-molded article, process for production of steel sheet for hot stamping, and process for production of hot-stamp-molded article
JP5333298B2 (en) Manufacturing method of high-strength steel sheet
JP4901617B2 (en) Alloyed hot-dip galvanized high-strength steel sheet having a tensile strength of 700 MPa or more and excellent in corrosion resistance, hole expansibility and ductility, and method for producing the same
JP4510488B2 (en) Hot-dip galvanized composite high-strength steel sheet excellent in formability and hole expansibility and method for producing the same
JP3704306B2 (en) Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same
WO2007075006A1 (en) High manganese steel strips with excellent coatability and superior surface property, coated steel strips using steel strips and method for manufacturing the steel strips
JP2005528519A5 (en)
CN108779536B (en) Steel sheet, plated steel sheet, and method for producing same
JP2013044022A (en) Hot-dip galvanized steel sheet and manufacturing method therefor
JP4855442B2 (en) Low yield ratio alloyed hot dip galvanized high strength steel sheet manufacturing method
JP5421062B2 (en) Hardened steel plate and high strength member
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP3764380B2 (en) Hot-dip galvanized steel sheet with excellent ductility, plateability, spot weldability and strength stability after heat treatment
JP4320913B2 (en) High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP4528184B2 (en) Method for producing alloyed hot-dip galvanized high-strength steel sheet with good workability
JP4140962B2 (en) Manufacturing method of low yield ratio type high strength galvannealed steel sheet
JP4351465B2 (en) Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same
JPH06145893A (en) High strength galvanized steel sheet excellent in ductility and delayed fracture resistance and its production
JP2000109965A (en) Production of hot dip galvanized high tensile strength steel sheet excellent in workability
JP3464611B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and corrosion resistance and method for producing the same
JP3347152B2 (en) Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion
JP3048278B2 (en) High-strength hot-rolled original sheet alloyed hot-dip galvanized steel sheet with excellent weld fatigue properties and method for producing the same
JP3577930B2 (en) High-strength, high-ductility hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP2002317245A (en) High strength galvanized steel sheet having excellent press workability and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3764380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees