[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3763298B2 - ガス濃度検出装置の故障診断装置 - Google Patents

ガス濃度検出装置の故障診断装置 Download PDF

Info

Publication number
JP3763298B2
JP3763298B2 JP2003003690A JP2003003690A JP3763298B2 JP 3763298 B2 JP3763298 B2 JP 3763298B2 JP 2003003690 A JP2003003690 A JP 2003003690A JP 2003003690 A JP2003003690 A JP 2003003690A JP 3763298 B2 JP3763298 B2 JP 3763298B2
Authority
JP
Japan
Prior art keywords
cell
sensor
gas
detection
disconnection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003003690A
Other languages
English (en)
Other versions
JP2004219116A (ja
Inventor
裕介 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003003690A priority Critical patent/JP3763298B2/ja
Priority to US10/734,144 priority patent/US6882927B2/en
Priority to FR0400126A priority patent/FR2849923B1/fr
Priority to DE102004001364A priority patent/DE102004001364B4/de
Publication of JP2004219116A publication Critical patent/JP2004219116A/ja
Application granted granted Critical
Publication of JP3763298B2 publication Critical patent/JP3763298B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/4175Calibrating or checking the analyser

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガス濃度検出装置の故障診断装置に係り、特に、内燃機関の排気ガス中に含まれるNOx濃度を検出するためのガス濃度検出装置の断線検出に適した故障診断装置に関する。
【0002】
【従来の技術】
従来、例えば特開2002−202285号公報に開示されるように、内燃機関の排気ガス中に含まれるNOx濃度を検出するためのガス濃度検出装置が知られている。この装置は、被検出ガス室に流入してくる排気ガス中から酸素を排出するためのポンプセル、およびポンプセルの下流に配置されたモニタセル並びにセンサセルを備えている。
【0003】
モニタセルは、ポンプセルにより処理された後に、被検出ガス室内になお残存している酸素を排出することで、その酸素濃度に応じたセンサ電流を発生するためのセルである。一方、センサセルは、ポンプセルにより処理された後の排気ガスに含まれているNOxを窒素と酸素に分解し、かつ、その結果生じた酸素と、排気ガス中にもともと残存していた酸素とを排出することでセンサ電流を生成するセルである。
【0004】
上記の構成によれば、モニタセルには、ポンプセルにより除去しきれなかった酸素の濃度に応じたセンサ電流が流通する。そして、センサセルには、ポンプセルにより除去しきれなかった酸素の濃度と、NOxの分解により生じた酸素の濃度との和に対応するセンサ電流が流通する。このため、センサセルに流通するセンサ電流から、モニタセルに流通するセンサ電流を減ずると、NOxの分解により生じた酸素の濃度を検知することができる。このようにして検知される酸素濃度は、排気ガス中に存在していたNOxの濃度に対応している。従って、上記従来のガス濃度検出装置によれば、排気ガス中のNOx濃度を制度良く検出することができる。
【0005】
【特許文献1】
特開2002−202285号公報
【特許文献2】
実開昭58−154459号公報
【特許文献3】
特開平1−272956号公報
【0006】
【発明が解決しようとする課題】
上述した従来のガス濃度検出装置は、内燃機関のエミッション制御等に利用される。ガス濃度検出装置の出力がエミッション制御に利用されている場合などは、所望のエミッション特性を維持するために、ガス濃度検出装置の異常が速やかに検出できることが望ましい。しかしながら、従来、この種のガス濃度検出装置の断線を早期に検出するための手法は確立されていなかった。
【0007】
本発明は、上記のような課題を解決するためになされたもので、上記従来のガス濃度検出装置に含まれるセルの断線を速やかに検出し得る故障診断装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
第1の発明は、上記の目的を達成するため、被検出ガス中の酸素をポンピングして、前記被検出ガス中の酸素濃度に応じたセンサ電流を生成するセルを備えるガス濃度検出装置の故障診断装置であって、
前記セルを活性温度に加熱するためのヒータと、
前記ヒータによる加熱が開始された後、前記セルに初期電流が流通すべき時期を検知する初期電流流通時期検知手段と、
前記初期電流が流通すべき時期に、前記セルを流通するセンサ電流が当該初期電流に比して少量である場合に、前記セルの断線を判断するセル断線判断手段と、
を備えることを特徴とする。
【0009】
また、第2の発明は、第1の発明において、
前記ガス濃度検出装置は、
被検出空間に流入してくる被検出ガスに含まれる酸素を、当該被検出空間からポンピングするためのポンプセルと、
前記ポンプセルにより処理された後の被検出ガスを対象として、その中に含まれているNOxを窒素と酸素に分解し、更に、その中に含まれている酸素をポンピングするためのセンサセルとを備え、
前記セルは前記センサセルであり、
前記初期電流は、前記センサセルの暖機に伴って発生する初期電流であることを特徴とする。
【0010】
また、第3の発明は、第1の発明において、
前記ガス濃度検出装置は、
被検出空間に流入してくる被検出ガスに含まれる酸素を、当該被検出空間からポンピングするためのポンプセルと、
前記ポンプセルにより処理された後の被検出ガスを対象として、その中に含まれているNOxを窒素と酸素に分解し、更に、その中に含まれている酸素をポンピングするためのセンサセルと、
前記ポンプセルにより処理された後の被検出ガスを対象として、その中に含まれている酸素をポンピングするためのモニタセルとを備え、
前記セルは前記モニタセルであり、
前記初期電流は、前記モニタセルの暖機に伴って発生する初期電流であることを特徴とする。
【0011】
また、第4の発明は、第2または第3の発明において、前記初期電流流通時期検知手段は、前記ヒータによる加熱が開始された後、前記初期電流が流通すべき時期が到達するまでの所定時間を計数するカウンタ手段を含むことを特徴とする。
【0012】
また、第5の発明は、第2または第3の発明において、
前記初期電流流通時期検知手段は、
何れかのセルの交流抵抗を検出する交流抵抗検出手段と、
前記交流抵抗が、前記初期電流が流通すべき値に低下したことを検知する交流抵抗低下検出手段と、を含むことを特徴とする。
【0013】
また、第6の発明は、第2乃至第5の発明の何れかにおいて、前記ヒータによる加熱が開始された時点で、前記セルが既に前記初期電流が流通しないほどの高温であると予測される場合には、前記セルの断線判断を禁止する断線判断禁止手段を備えることを特徴とする。
【0014】
また、第7の発明は、第1乃至第6の発明の何れかにおいて、前記セルは、前記被検出ガスに接するガス側電極と、大気に接する大気側電極とを備え、
前記セル断線判断手段は、前記ガス側電極および前記大気側電極が、電源或いはグランドに短絡していないかを検出する短絡検出手段を備え、それらの短絡が生じていない場合にのみ前記セルの断線を判断することを特徴とする。
【0015】
【発明の実施の形態】
以下、図面を参照してこの発明の実施の形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。
【0016】
実施の形態1.
図1は、本発明の実施の形態1の構成を説明するための図である。図1に示すように、本発明の実施の形態1は、ガス濃度検出装置10を備えている。ガス濃度検出装置10は、内燃機関の排気通路に、特に、NOx吸蔵触媒を備える排気通路に配置され、排気ガス中のNOx濃度に応じたセンサ出力を発生するセンサである。
【0017】
図2は、ガス濃度検出装置10の構成を説明するための斜視断面図である。図2に示すように、ガス濃度検出装置10は、ジルコニア層12,14および絶縁層16を備えている。2つのジルコニア層12および14の間には、被検出ガス室18が設けられている。また、ジルコニア層12および14に隣接する位置には、それらの層により被検出ガス室18から隔絶された大気室20,22が形成されている。
【0018】
ガス濃度検出装置10は、被検出ガス室18に通じる拡散孔24を備えている。拡散孔24は、内燃機関の排気通路から被検出ガス室18に排気ガスを導くための通路であり、拡散抵抗層26を介して排気通路に連通している。拡散抵抗層26は、排気ガスの拡散速度を律するための多孔質物質である。上記の構成によれば、排気通路内を流通する排気ガスは、拡散抵抗層26により律せられた速度で拡散抵抗層26とジルコニア層14との境界まで拡散し、その後更に、拡散孔24の絞り効果により律せられた速度で、被検出ガス室18の内部に向かって拡散する。
【0019】
拡散孔24から流入した排気ガスは、所定の流通経路に沿って被検出ガス室18の内部を進行する。この流通経路には、ポンプセル28が設けられている。ポンプセル28は、ジルコニア層12と、その両側に配置されたガス側電極30および大気側電極32とで構成されている。ガス側電極30は、NOxに対する活性の低い電極(例えば、Pt-Au合金電極)であり、被検出ガス室18に露出するように設けられている。また、大気側電極32は、Ptで構成された電極であり、大気室20に露出するように設けられている。
【0020】
ガス側電極30と大気側電極32との間には、大気側電極32からガス側電極30へ向かう電圧を印加するための可変電源34が接続されている。また、これらの電極30,32には、ポンプセル28を流通するセンサ電流A1を検知するための電流検出器36が接続されている。尚、可変電源34や、電流検出器36は、後述するセンサ制御回路に内蔵されている。
【0021】
ポンプセル28の下流には、モニタセル38とセンサセル40が並んで配置されている。図2においては、便宜上、モニタセル38がセンサセル40の上流に位置するように表されているが、現実には、それらは、排気ガスの流れ方向に対して垂直な方向に2つ並んで設けられている。
【0022】
モニタセル38およびセンサセル40は、それぞれ、ジルコニア層14と、被検出ガス室18に露出したガス側電極42,44と、大気室22に露出した大気側電極46,48とで構成されている。モニタセル38のガス側電極42は、NOxに対する活性の低い電極であり、例えば、Pt-Au合金により構成されている。一方、センサセルのガス側電極44は、NOxに対する活性の高い電極であり、例えば、Pt-Rh合金で構成されている。大気側電極46,48は、ポンプセル28の場合と同様にPtで構成されている。
【0023】
モニタセル38およびセンサセル40には、それぞれ、大気側電極46,48からガス側電極42,44へ向かう電圧を印加するための定電圧電源50,52と、それらを流通するセンサ電流A2,A3を検知するための電流検出器54,56が接続されている。尚、定電圧電源50,52や、電流検出器54,56は、後述するセンサ制御回路に内蔵されている。
【0024】
絶縁層16の内部には、ヒータ58が配置されている。ポンプセル28、モニタセル38およびセンサセル40は、ヒータ58で加熱することにより、それぞれ適正な活性温度に昇温させることができる。
【0025】
ポンプセル28は、活性温度に達した状態で適当な電圧印加を受けると、排気ガス中のNOxに含まれるNOをNOと酸素に分解することでNOxをNOに単ガス化すると共に、排気ガス中に存在するほぼ全ての酸素を排出することができる。この場合、ポンプセル28を流通するセンサ電流A1は、ほぼ被検出ガス室18に流入してくる排気ガス中の酸素濃度に応じた値、つまり、その排気ガス中の空燃比A/Fにほぼ応じた値となる。従って、本実施形態のシステムによれば、電流検出器36の出力に基づいて、排気ガス中の空燃比A/Fを検知することができる。
【0026】
ガス濃度検出装置10の内部において、ポンプセル28の下流には、酸素を殆ど含まず、かつ、NOxがNOに単ガス化された排気ガスが流通することになる。モニタセル38は、活性温度に達した状態では、その排気ガス中に残存している酸素をポンピングすることにより、ポンプセル28の下流における酸素濃度に応じたセンサ電流A2を生成する。従って、本実施形態のシステムによれば、電流検出器54の出力に基づいて、ポンプセル28の下流において排気ガス中に残存している酸素の濃度を検知することができる。
【0027】
センサセル40は、活性温度に達した状態では、排気ガス中のNOを窒素と酸素に分解すると共に、被検出ガス室18に残存している全ての酸素をポンピングすることによりセンサ電流A3を生成する。従って、センサ電流A3は、ポンプセル28の下流にもともと残存していた酸素の濃度と、NOが分解されることにより生じた酸素の濃度との和に対応した値となる。このため、電流検出器56の出力によれば、ポンプセル28の下流に残存している酸素の濃度と、NOの分解に伴って生じた酸素の濃度との和を検知することができる。
【0028】
更に、電流検出器56によって検出されるセンサ電流A3から、電流検出器54によって検出されるセンサ電流A2を減じた値は、ポンプセル28の下流において排気ガス中に存在しているNOの濃度に対応した値、つまり、被検出ガス室18に流入してきた排気ガス中のNOx濃度に対応した値となる。このため、本実施形態のシステムによれば、それら2つの電流検出器54、56の出力を検出することにより、排気ガス中のNOx濃度を検知することができる。
【0029】
再び図1を参照して、本実施形態の全体構成を説明する。図1に示すように、ガス濃度検出装置10には、センサ制御回路60が接続されている。また、センサ制御回路60には、エンジン制御ECU(Electronic Control Unit)70が接続されている。
【0030】
センサ制御回路60とECU70との間では、所定のプロトコルによる通信がなされている。例えば、ECU70は、内燃機関が始動した後、所定の暖機開始条件が成立した時点で、センサ制御回路60に向けてセンサ暖機開始要求を出力する。一方、センサ制御回路60は、NOx濃度、空燃比A/F、酸素濃度を表す出力等をECU70に供給する。尚、図1においては、センサ制御回路60を、ECU70と別に設けることとしているが、これらは、必ずしも別体とする必要はなく、センサ制御回路60をECU70に内蔵させることとしてもよい。
【0031】
センサ制御回路60は、モニタセル38やセンサセル40を流れるセンサ電流A2,A3を検出するための低電流出力検出部を備えている。上述した定電圧電源50,52および電流検出器54,56は、この低電流出力検出部に含まれている。すなわち、センサ制御回路60は、ガス濃度検出装置10の作動が求められる状況下では、定電圧電源50,52によりモニタセル38およびセンサセル40に対してそれぞれ適当な電圧を印加すると共に、それらのセルに発生する微小な電流(センサ電流A2,A3)を電流検出器54,56により検出する。
【0032】
センサ制御回路60は、また、センサ内酸素濃度制御部を備えている。上述した可変電源34および電流検出器36は、このセンサ内酸素濃度制御部に含まれている。既述した通り、ガス濃度検出装置10のポンプセル28は、被検出ガス室18に流入してくる排気ガス中の酸素をポンピングする機能を有している。ここで、ガス濃度検出装置10により、排気ガス中のNOx濃度を精度良く検出するためには、ポンプセル28により、排気ガス中のNOを分解することなく、可能な限り多量の酸素を排出し得ることが望ましい。
【0033】
ポンプセル28により排出される酸素の量は、被検出ガス室18に酸素が残存している間は、ポンプセル28に対する印加電圧と相関を有する。従って、全ての酸素をポンプセル28により排出するためには、少なくとも排出すべき酸素量に見合った電圧をポンプセル28に印加する必要がある。一方、その印加電圧が過剰になると、排気ガス中のNOが分解されてしまうため、その値は不必要に高圧とすることはできない。このため、ポンプセル28に対する印加電圧は、結局のところ排気ガス中の酸素濃度に応じた適切な値に決定することが必要である。
【0034】
センサ内酸素濃度制御部は、ポンプセル28に対する印加電圧を、上記の適切な値に制御するための部分である。ここでは、具体的には、センサ電流A1と印加電圧との関係が適正な関係になるように可変電源34が制御される。つまり、印加電圧に対してセンサ電流A1が過大であると判断できる場合は、印加電圧を高めるように可変電源34が制御され、一方、印加電圧に対してセンサ電流A1が過小であると判断できる場合は、印加電圧を下げるように可変電源34が制御される。このような制御によれば、ポンプセル28に対する印加電圧は適正な値に収束し、その結果、排気ガス中のNOが分解されることなく、その中に含まれるほぼ全ての酸素が被検出ガス室18から排出されることになる。そして、この場合、電流検出器36により検出されるセンサ電流A1は、排気ガス中の酸素濃度、つまり、排気ガスの空燃比A/Fに対応した値となる。
【0035】
センサ制御回路60は、また、ヒータ制御部を備えている。既述した通り、ECU70は、内燃機関が始動した後、所定の暖機開始条件が成立した時点で、センサ制御回路60に対してセンサ暖機開始要求を発する。ヒータ制御部は、その要求を受けて、ガス濃度検出装置10に内蔵されるヒータ58に対する電力供給を開始する。その結果、ヒータ58が発熱し、ポンプセル28、モニタセル38およびセンサセル40が活性温度に昇温される。
【0036】
また、センサ制御回路60には、センサダイアグ部が内蔵されている。センサダイアグ部は、本実施形態のシステムの特徴部であり、モニタセル38、或いはセンサセル40に断線が生じているか否かを診断する部分である。
モニタセル38やセンサセル40に断線が生ずると、残存酸素濃度やNOx濃度に関わりなく、それらのセルに対応するセンサ電流A2、A3はゼロとなる。しかしながら、センサ電流A2、A3は、それらのセルが断線していなくてもゼロとなることがあると共に、それらのセルが断線していたとしてもノイズの影響で瞬間的にはゼロでない値となることがある。このため、単純にセンサ電流A2、A3を監視するだけでは、それらの断線を検出することはできない。
【0037】
図3は、本実施形態において、センサセル38およびポンプセル40の断線を検出するための原理を説明するためのタイミングチャートである。具体的には、図3(A)は、ヒータ58による加熱が開始された後のガス濃度検出装置10の素子温度、つまり、ポンプセル28、モニタセル38、センサセル40等の温度変化を示す。また、図3(B)、図3(C)および図3(D)は、それぞれ、ポンプセル28、モニタセル38、およびセンサセル40を流れるセンサ電流A1、A2、A3の変化を示す。
【0038】
ポンプセル28、モニタセル38、およびセンサセル40は、何れも、素子温度が活性温度まで上昇することにより、既述した通常の機能を発揮する状態となる。図3(B)に示すセンサ電流A1の波形は、ヒータ58により加熱が開始された時点で、排気ガスがリーンであった場合に得られたものである。この図に示すように、ポンプセル28を流れるセンサ電流A1は、排気ガスがリーンである場合は、素子温度の上昇に伴って増加する傾向を示す。但し、センサ電流A1がこのような波形を示すのは、排気ガスがリーンである場合に限られ、排気ガスがストイキである場合には、センサ電流A1は、素子温度の上昇に関わらずほぼゼロ近傍の値を維持する。また、排気ガスがリッチである場合は、センサ電流A1は、素子温度の上昇に伴って負の値に変化する。
【0039】
図3(C)および図3(D)に示すように、モニタセル38およびセンサセル40には、排気ガスが如何なる空燃比であるかを問わず、素子温度の上昇過程において、ある期間だけ3〜4μA程度の初期電流が流通する。この初期電流は、モニタセル38やセンサセル40の周辺に残留していた酸素、或いは、それらのセルのガス側電極42,44に吸着されていた酸素が、素子温度の上昇に伴いそれらのセル38,40にポンピングされることにより発生するものと考えられる。
【0040】
ポンプセル28においても、同様の現象は生じていると考えられる。しかしながら、ポンプセル28には、常用域において十分に大きなセンサ電流A1が流通する。このため、ポンプセル28については、素子温度の上昇に伴って初期電流が流通したか否かを判断することは必ずしも容易ではない。これに対して、モニタセル38やセンサセル40を流通するセンサ電流A2、A3は、常用域では数十nAと十分に小さな値である。このため、これらのセル38,40においては、上記の初期電流(3〜4μA)は十分に大きな値であり、素子温度の上昇過程でその初期電流が流通したか否かは容易に判断することができる。
【0041】
モニタセル38やポンプセル40に断線が生じている場合は、素子温度が上昇する過程で上記の初期電流は生じない。また、それらのセル38,40に断線が生じていない場合は、ノイズの影響による場合とは明らかに異なり、素子温度の上昇過程においてある程度の期間継続して初期電流が流通する。従って、本実施形態のシステムにおいては、ヒータ58による加熱が開始された後、ある程度の期間継続して初期電流と評価できるセンサ電流A2、A3がモニタセル38やセンサセル40に流通するか否かにより、それらのセル38,40に断線が生じているか否かを判断することが可能である。
【0042】
図4は、上記の原理に従ってモニタセル38(センサセル40)の断線を検出すべくセンサ制御回路60が実行する処理ルーチンのフローチャートである。
図4に示すルーチンでは、先ず、ECU70からセンサ暖機開始要求が発せられたか否かが判別される。より具体的には、その要求の有無を表すセンサ暖機指示フラグがONであるか否かが判別される(ステップ100)。
【0043】
ECU70は、既述した通り、内燃機関が始動された後、所定の暖機開始条件が成立することによりセンサ暖機開始要求を発生する。ここで、暖機開始条件は、具体的には、内燃機関の排気通路内の結露が解消される条件が整うことでその成立が認められる。内燃機関の冷間始動時など、排気通路内部で結露が生ずる状況下では、結露により生じた水滴がガス濃度検出装置10に付着することがある。本実施形態のシステムでは、そのような水滴の付着可能性のある状況下ではヒータ58による加熱を行わないこととするため、上記暖機開始条件の成立を待ってその加熱を開始することとしている。
【0044】
図4に示すルーチン中、上記ステップ100において、センサ暖機指示フラグがONでないと判別された場合は、ヒータ58によるガス濃度検出装置10の暖機が禁止される(ステップ102)。
次に、ガス濃度検出装置10の暖機が開始された後の経過時間を計数するためのカウンタがリセットされる(ステップ104)。
次いで、内燃機関が始動された後、つまり、センサ制御回路60の電源が投入された後、ヒータ58による暖機が行われた履歴が存在しないか、また、その履歴が存在する場合には、一旦開始された暖機が中止された後の経過時間が既定の一定時間に達しているかが判断される(ステップ106)。
【0045】
その結果、センサ制御回路60の電源が投入された後、ヒータ58による暖機が一度も行われていないと判断された場合、或いは、暖機が中止された後、十分な時間が経過していると判別された場合は、現時点でモニタセル38およびセンサセル40が十分に冷却されていると判断することができる。この場合、以後、断線検出の実行を許可すべく、断検実施フラグがOFFとされる(ステップ108)。
【0046】
一方、それらの条件が何れも成立しない場合、つまり、センサ制御回路60の電源が投入された後、ヒータ58による暖機が実行された履歴があり、かつ、その暖機が中止された後一定時間が経過していないと判別された場合は、何ら処理が行われることなく今回の処理が終了される。この場合、断検実施フラグは、前回の処理サイクル時における状態のまま維持されることになる。断検実施フラグは、後述の如く、モニタセル38(またはセンサセル40)の断線検出が終了することでONとされるフラグである。上記の処理によれば、前回の処理サイクル以前に断線検出が終了していない場合は、ステップ106の条件が成立する場合と同様に、今回の処理サイクルは断検フラグがOFFとされたまま終了される。一方、前回の処理サイクル以前に断線検出が終了している場合は、断検フラグがONとされたままで今回の処理サイクルが終了される。
【0047】
図4に示すルーチン中、上記ステップ100において、センサ暖機指示フラグがONであると判断された場合は、次に、モニタセル38(またはセンサセル40)の断線フラグがOFFであるか、および、断検実施フラグがOFFであるかが判別される(ステップ110)。
【0048】
断線フラグは、後述の如く、モニタセル38(またはセンサセル40)の断線が検出された場合にONとされるフラグである。従って、断線フラグがONである場合は、モニタセル38(またはセンサセル40)に断線が生じていると判断することができる。ここでは、断線フラグがONであると判別されるか、或いは、断検実施フラグがONであると判別されると、断線検出を実行する必要がない、或いは実行すべきでないとの判断のもと、以後速やかに今回の処理サイクルが終了される。
【0049】
一方、上記ステップ110において、断線フラグがOFFであり、かつ、断検実施フラグもOFFであると判別された場合は、以後、断線検出の処理を進めるべく、モニタセル38(またはセンサセル40)の2つの電極42,46(または44,48)が、電源にもグランドにも短絡していないかが判別される(ステップ112)。
【0050】
センサ制御回路60のセンサダイアグ部には、モニタセル38およびセンサセル40のガス側電極42,44および大気側電極46,48の電位を検知する電位センサが設けられている。上記ステップ112では、その電位センサにより、個々の電極の電位が計測され、その計測値により、それらの電極に短絡が生じているか否かが判別される。そして、2つの電極のうち何れか一方にでも短絡が認められた場合は、以後、断線検出を実行する必要がないと判断され、速やかに今回の処理サイクルが終了される。
【0051】
これに対して、上記ステップ112において、ガス側電極42(または44)にも、大気側電極46(または48)にも短絡が生じていないと判断された場合は、次に、ヒータ58によるガス濃度検出装置10の暖機が開始されると共に、その暖機後の時間を計数するためのカウンタのインクリメントが開始される(ステップ114)。
【0052】
次いで、そのカウンタの計数値が、所定の判定値以上に達しているか否かが判別される(ステップ116)。
ここで、上記の判定値は、ヒータ58による暖機が開始された後、モニタセル38およびセンサセル40に、図3(C)または図3(D)に示すような初期電流が流通し始めるまでの時間に対応するものとして予め定められた値である。従って、カウンタの計数値がその判定値に達していないと判別された場合は、モニタセル38やセンサセル40に、未だ初期電流が流通していないと判断することができる。一方、その計数値が判定値に達していると判別された場合は、モニタセル38およびセンサセル40に、それぞれ初期電流が流通し始めていると判断できる。
【0053】
図4に示すルーチンでは、上記ステップ116において、カウンタの計数値が判定値に達していないと判別された場合は、未だ断線検出の実行時期が到来していないと判断され、以後速やかに今回の処理サイクルが終了される。一方、カウンタの計数値が判定値に達していると判断された場合は、次に、断線検出の処理が実行される(ステップ118)。
【0054】
図5は、上記ステップ118において実行される断線検出の具体的な内容を説明するためのフローチャートである。
ここでは、先ず、モニタセル38(またはセンサセル40)の出力が、所定範囲内に収まっているか否かが判別される。具体的には、モニタセル38を流通するセンサ電流A2(またはセンサセル40を流通するセンサ電流A3)が、初期電流として流れるべき電流に比して十分に小さな判定値XnAより少ないか否かが判別される(ステップ130)。
【0055】
センサ電流A2(またはセンサ電流A3)が、判定値XnAより大きな値である場合は、モニタセル38(またはセンサセル40)に適正に初期電流が流れている可能性が高いと判断できる。図5に示すルーチンでは、この場合、モニタセル38(またはセンサセル40)の正常カウンタがインクリメントされると共に、そのセルの異常カウンタがリセットされる(ステップ132)。
【0056】
次に、モニタセル38(またはセンサセル40)の正常カウンタの計数値が、所定値以上であるかが判別される(ステップ134)。
正常カウンタの計数値が所定値以上でない場合は、センサ電流A2(またはセンサ電流A3)が、ノイズ等の影響で一時的に大きな値になった可能性を否定することができない。このため、このような場合には、断線検出に関する判断が保留されたまま、今回の処理サイクルが終了される。
【0057】
一方、上記ステップ134において、正常カウンタの計数値が所定値以上であると判断された場合は、所定回数に渡り、センサ電流A2(またはセンサ電流A3)が、初期電流と評価できる大きな値を維持したと判断できる。図5に示すルーチンでは、この場合、モニタセル38(またはセンサセル40)に初期電流が流通したと判断され、モニタセル38(またはセンサセル40)に断線が生じていないことを表すべく、断線フラグがOFFとされる(ステップ136)。
【0058】
図5に示すルーチン中、上記ステップ130において、モニタセル38(またはセンサセル40)の出力が所定範囲内にあると判断された場合、つまり、センサ電流A2(またはセンサ電流A3)が、判定値XnA以下であると判断された場合は、モニタセル38(またはセンサセル40)に初期電流が流れていないと判断することができる。この場合、次に、モニタセル38(またはセンサセル40)の異常カウンタがインクリメントされると共に、そのセルの正常カウンタがリセットされる(ステップ138)。
【0059】
次に、モニタセル38(またはセンサセル40)の異常カウンタの計数値が、所定値以上であるかが判別される(ステップ140)。
異常カウンタの計数値が所定値以上でない場合は、センサ電流A2(またはセンサ電流A3)が、ノイズ等の影響で一時的に小さな値になった可能性を否定することができない。このため、このような場合には、断線検出に関する判断が保留されたまま、今回の処理サイクルが終了される。
【0060】
一方、上記ステップ140において、異常カウンタの計数値が所定値以上であると判断された場合は、所定回数に渡り、センサ電流A2(またはセンサ電流A3)が、初期電流に満たない小さな値を維持したと判断できる。図5に示すルーチンでは、この場合、モニタセル38(またはセンサセル40)に初期電流が流通していないと判断され、モニタセル38(またはセンサセル40)に断線が生じていることを表すべく、モニタセル(またはセンサセル)断線フラグがONとされる(ステップ142)。
【0061】
図4に示す上記ステップ118では、以上の手順に従ってモニタセル38(またはセンサセル40)の断線検出が実行される。図4に示すルーチンによれば、その処理が終了すると、次に、断線検出の判定が完了したか否かが判別される(ステップ120)。
【0062】
そして、断線検出の判定が完了していないと判別される間は、繰り返し上記ステップ118の処理が実行される。一方、断線検出の判定が完了したと判別されると、断検実施フラグがONとされた後、今回の処理サイクルが終了される(ステップ122)。
【0063】
以上説明した通り、図4および図5に示すルーチンによれば、モニタセル38またはセンサセル40に、それぞれ初期電流が流通すべき時期に、適正に初期電流と評価できる電流が流通しているか否かに基づき、それらのセルに断線が生じているか否かを正確に判断することができる。従って、本実施形態のシステムによれば、ガス濃度検出装置10が備えるモニタセル38およびセンサセル40の断線を、精度良く速やかに検出することができる。
【0064】
ところで、上述した実施の形態1においては、断線検出の実行時期を、ヒータ58による暖機が開始された後の経過時間に基づいて判断することとしているが、その実行時期の判断手法はこれに限定されるものではない。すなわち、断線検出は、モニタセル38およびセンサセル40にそれぞれ初期電流が流れる時期に於いて実行できればよく、例えば、素子温度が、その初期電流の発生する温度にまで上昇した時点を検出して、断線検出を実行することとしてもよい。そして、素子温度がその温度に上昇したか否かは、例えば、ポンプセル28、モニタセル38、或いはセンサセル40の交流抵抗を検出し、その交流抵抗に基づいて判断することとしてもよい。
【0065】
また、上述した実施の形態1では、初期電流が流通すべき時期に、モニタセル38およびセンサセル40に適正な電流が流通しているか否かを見ることでそれらのセルの断線検出を行うこととしているが、断線の有無は、個々のセルに所定の電流が流通すべき時期に適正な電流が流通しているか否かを見ることで判断すれば足り、その手法は上記の手法に限定されるものではない。
【0066】
すなわち、モニタセル38およびセンサセル40の断線は、それらのセルに所定電流が流通すべき状況を形成したうえで(例えば、排気空燃比をリーンにしてポンプセル28の作動を停止する)、適正なセンサ電流A2、A3が発生するか否かに基づいて判断することとしてもよい。また、断線検出の対象は、ポンプセル28であってもよい。つまり、ポンプセル28に所定電流が流通すべき状況を形成したうえで(例えば、排気空燃比をリーンに固定する)、適正なセンサ電流A1が生ずるか否かに基づいてポンプセル28の断線有無を判断することとしても良い。
【0067】
尚、上述した実施の形態1においては、センサ制御回路60が、上記ステップ116の処理を実行することにより前記第1の発明における「初期電流流通時期検知手段」が、上記ステップ138〜142の処理を実行することにより前記第1の発明における「セル断線判断手段」が、それぞれ実現されている。
また、上述した実施の形態1においては、センサ制御回路60が、上記ステップ114の後、ヒータ58による暖機開始後の時間を計数することにより前記第4の発明における「カウンタ手段」が実現されている。
また、上述した実施の形態1においては、センサ制御回路に、ポンプセル28、モニタセル38およびセンサセル40の何れか1つの交流抵抗を検出させることにより、前記第5の発明における「交流抵抗検出手段」を、また、その交流抵抗に基づいて上記ステップ116と同等の処理を実行させることにより前記第5の発明における「交流抵抗低下検出手段」を、それぞれ実現することができる。
また、上述した実施の形態1においては、センサ制御回路60が、上記ステップ106および109の処理を実行することにより、前記第6の発明における「断線判断禁止手段」が実現されている。
また、上述した実施の形態1においては、センサ制御回路60が、上記ステップ112の処理を実行することにより、前記第7の発明における「短絡検出手段」が実現されている。
【0068】
【発明の効果】
この発明は以上説明したように構成されているので、以下に示すような効果を奏する。
第1の発明によれば、ヒータによるセルの加熱が開始された後、そのセルに適正に初期電流が流通するか否かにより、セルの断線の有無を判断することができる。
【0069】
第2の発明によれば、ポンプセルとセンサセルとを備えるガス濃度検出装置を対象として、センサセルに初期電流が流れるか否かに応じて断線の有無を判断することができる。
【0070】
第3の発明によれば、ポンプセルとセンサセルとモニタセルとを備えるガス濃度検出装置を対象として、モニタセルに初期電流が流れるか否かに応じて断線の有無を判断することができる。
モニタセルに断線が生じているか否かを正確に判断することができる。
【0071】
第4の発明によれば、ヒータによる加熱が開始された後、カウンタ手段によって所定時間が計数された時点で、初期電流の流通すべき時期の到達を検知することができる。
【0072】
第5の発明によれば、ヒータによる加熱が開始された後、何れかのセルの交流抵抗が所定値まで低下した時点で、断線検出の対象であるセルが、初期電流の流通すべき温度に達したことを検知することができる。
【0073】
第6の発明によれば、ヒータによる加熱が開始された時点で、セルが既に高温であると予測される場合には、断線判断を禁止することができる。このため、本発明によれば、セルが既に高温となっていることに起因して初期電流が流通しないような場合に、セルの断線を誤診するのを避けることができる。
【0074】
第7の発明によれば、セルが備えるガス側電極および大気側電極が、何れも電源或いはグランドに短絡していない場合にのみ、そのセルの断線を判断することができる。このため、本発明によれば、セルの断線を、その短絡と区別して検知することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1の構成を説明するための概念図である。
【図2】 図1に示すガス濃度検出装置の構成を説明するための斜視断面図である。
【図3】 図1に示すガス濃度検出装置のモニタセルおよびセンサセルに初期電流が流通する様子を説明するためのタイミングチャートである。
【図4】 図1に示すシステムにおいて実行される制御ルーチンのフローチャートである。
【図5】 図4に示すステップ118において実行される断線検出処理の内容を説明するためのフローチャートである。
【符号の説明】
10 ガス濃度検出装置
28 ポンプセル
30,42,44 ガス側電極
32,46,46 大気側電極
34 可変電源
36,54,56 電流検出器
38 モニタセル
40 センサセル
50,52 定電圧電源
60 センサ制御回路
70 エンジン制御ECU(Electronic Control Unit)

Claims (7)

  1. 被検出ガス中の酸素をポンピングして、前記被検出ガス中の酸素濃度に応じたセンサ電流を生成するセルを備えるガス濃度検出装置の故障診断装置であって、
    前記セルを活性温度に加熱するためのヒータと、
    前記ヒータによる加熱が開始された後、前記セルに初期電流が流通すべき時期を検知する初期電流流通時期検知手段と、
    前記初期電流が流通すべき時期に、前記セルを流通するセンサ電流が当該初期電流に比して少量である場合に、前記セルの断線を判断するセル断線判断手段と、
    を備えることを特徴とするガス濃度検出装置の故障診断装置。
  2. 前記ガス濃度検出装置は、
    被検出空間に流入してくる被検出ガスに含まれる酸素を、当該被検出空間からポンピングするためのポンプセルと、
    前記ポンプセルにより処理された後の被検出ガスを対象として、その中に含まれているNOxを窒素と酸素に分解し、更に、その中に含まれている酸素をポンピングするためのセンサセルとを備え、
    前記セルは前記センサセルであり、
    前記初期電流は、前記センサセルの暖機に伴って発生する初期電流であることを特徴とする請求項1記載のガス濃度検出装置の故障診断装置。
  3. 前記ガス濃度検出装置は、
    被検出空間に流入してくる被検出ガスに含まれる酸素を、当該被検出空間からポンピングするためのポンプセルと、
    前記ポンプセルにより処理された後の被検出ガスを対象として、その中に含まれているNOxを窒素と酸素に分解し、更に、その中に含まれている酸素をポンピングするためのセンサセルと、
    前記ポンプセルにより処理された後の被検出ガスを対象として、その中に含まれている酸素をポンピングするためのモニタセルとを備え、
    前記セルは前記モニタセルであり、
    前記初期電流は、前記モニタセルの暖機に伴って発生する初期電流であることを特徴とする請求項1記載のガス濃度検出装置の故障診断装置。
  4. 前記初期電流流通時期検知手段は、前記ヒータによる加熱が開始された後、前記初期電流が流通すべき時期が到達するまでの所定時間を計数するカウンタ手段を含むことを特徴とする請求項2または3記載のガス濃度検出装置の故障診断装置。
  5. 前記初期電流流通時期検知手段は、
    何れかのセルの交流抵抗を検出する交流抵抗検出手段と、
    前記交流抵抗が、前記初期電流が流通すべき値に低下したことを検知する交流抵抗低下検出手段と、を含むことを特徴とする請求項2または3記載のガス濃度検出装置の故障診断装置。
  6. 前記ヒータによる加熱が開始された時点で、前記セルが既に前記初期電流が流通しないほどの高温であると予測される場合には、前記セルの断線判断を禁止する断線判断禁止手段を備えることを特徴とする請求項2乃至5の何れか1項記載のガス濃度検出装置の故障診断装置。
  7. 前記セルは、前記被検出ガスに接するガス側電極と、大気に接する大気側電極とを備え、
    前記セル断線判断手段は、前記ガス側電極および前記大気側電極が、電源或いはグランドに短絡していないかを検出する短絡検出手段を備え、それらの短絡が生じていない場合にのみ前記セルの断線を判断することを特徴とする請求項1乃至6の何れか1項記載のガス濃度検出装置の故障診断装置。
JP2003003690A 2003-01-09 2003-01-09 ガス濃度検出装置の故障診断装置 Expired - Fee Related JP3763298B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003003690A JP3763298B2 (ja) 2003-01-09 2003-01-09 ガス濃度検出装置の故障診断装置
US10/734,144 US6882927B2 (en) 2003-01-09 2003-12-15 Failure diagnostic apparatus and failure diagnostic method for gas concentration detecting apparatus
FR0400126A FR2849923B1 (fr) 2003-01-09 2004-01-08 Dispositif de diagnostic de panne destine a un dispositif de detection de concentration de gaz
DE102004001364A DE102004001364B4 (de) 2003-01-09 2004-01-08 Fehlerdiagnosevorrichtung für eine Gaskonzentrationserfassungsvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003690A JP3763298B2 (ja) 2003-01-09 2003-01-09 ガス濃度検出装置の故障診断装置

Publications (2)

Publication Number Publication Date
JP2004219116A JP2004219116A (ja) 2004-08-05
JP3763298B2 true JP3763298B2 (ja) 2006-04-05

Family

ID=32588485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003690A Expired - Fee Related JP3763298B2 (ja) 2003-01-09 2003-01-09 ガス濃度検出装置の故障診断装置

Country Status (4)

Country Link
US (1) US6882927B2 (ja)
JP (1) JP3763298B2 (ja)
DE (1) DE102004001364B4 (ja)
FR (1) FR2849923B1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074462A2 (en) * 2005-12-29 2007-07-05 Given Imaging Ltd. System device and method for estimating the size of an object in a body lumen
DE102008004359A1 (de) * 2008-01-15 2009-07-16 Robert Bosch Gmbh Verfahren zum Betreiben eines Sensorelements zur Bestimmung der Konzentration von Gaskomponenten
JP5067663B2 (ja) * 2008-01-16 2012-11-07 トヨタ自動車株式会社 NOxセンサの異常診断装置
DE102009046749A1 (de) * 2009-11-17 2011-05-19 Robert Bosch Gmbh Vorrichtung zum Betrieb eines Partikelsensors
US20130062200A1 (en) * 2010-06-23 2013-03-14 Toyota Jidosha Kabushiki Kaisha Abnormality diagnostic apparatus for gas sensor
US9528462B2 (en) * 2012-06-15 2016-12-27 GM Global Technology Operations LLC NOx sensor plausibility monitor
JP6097654B2 (ja) * 2013-03-29 2017-03-15 日本特殊陶業株式会社 センサ制御装置及びセンサ制御方法
US20160215927A1 (en) * 2013-11-18 2016-07-28 Richard Nelson Dual pump oil level system and method
JP6393141B2 (ja) * 2014-10-01 2018-09-19 日本特殊陶業株式会社 ガスセンサシステム
JP6344262B2 (ja) * 2015-02-24 2018-06-20 株式会社デンソー 排気センサ
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827838A (ja) 1981-08-12 1983-02-18 Toyota Motor Corp 空燃比センサの信号線の断線検出方法
JPS58154459U (ja) 1982-04-12 1983-10-15 株式会社日立製作所 空燃比制御装置
US4951632A (en) 1988-04-25 1990-08-28 Honda Giken Kogyo K.K. Exhaust gas component concentration sensing device and method of detecting failure thereof
DE19536577C2 (de) * 1995-09-29 1997-09-18 Siemens Ag Verfahren zum Überprüfen der Funktionsfähigkeit einer Abgassonden-Heizeinrichtung
JPH1114589A (ja) 1997-06-23 1999-01-22 Ngk Insulators Ltd ガスセンサ
DE19838466A1 (de) * 1998-08-25 2000-03-02 Bosch Gmbh Robert Verfahren zum Ansteuern eines Meßfühlers zum Bestimmen einer Sauerstoffkonzentration in einem Gasgemisch
JP4153113B2 (ja) * 1998-12-04 2008-09-17 株式会社デンソー ガス濃度検出装置
JP4682465B2 (ja) 2000-10-31 2011-05-11 株式会社デンソー ガス濃度検出装置

Also Published As

Publication number Publication date
DE102004001364B4 (de) 2008-01-31
US20040134777A1 (en) 2004-07-15
FR2849923A1 (fr) 2004-07-16
FR2849923B1 (fr) 2005-08-19
DE102004001364A1 (de) 2004-07-22
JP2004219116A (ja) 2004-08-05
US6882927B2 (en) 2005-04-19

Similar Documents

Publication Publication Date Title
JP3763298B2 (ja) ガス濃度検出装置の故障診断装置
KR102220801B1 (ko) 배기가스 프로브의 오일 가스 측정 능력 모니터링 방법 및 장치
US7614392B2 (en) Diagnostic method and control apparatus for gas sensor
JP5212574B2 (ja) ガスセンサの異常診断装置
JP4592570B2 (ja) センサ素子劣化判定装置およびセンサ素子劣化判定方法
JP6034204B2 (ja) 排気ガス成分検出装置
JP2008014670A (ja) 排気ガスセンサの異常診断装置
BR112017006029B1 (pt) Dispositivo de controle e método de controle para motor de combustão interna
US8418439B2 (en) NOx sensor ambient temperature compensation
CN105388197B (zh) 气体浓度检测设备
US20200141892A1 (en) Failure detection apparatus for gas sensor and failure detection method for gas sensor
JP2009128237A (ja) NOxセンサの診断システム
JP2004163273A (ja) 異常判定装置
JP2020122741A (ja) ガスセンサの制御装置
JP4811131B2 (ja) 排気ガスセンサの制御装置
JP2000283948A (ja) 酸素濃度検出装置
JP2012068150A (ja) 酸素センサの異常診断装置
JP5201069B2 (ja) ガス濃度検出装置
JP2004251627A (ja) 内燃機関のガス濃度検出装置
JP2019174154A (ja) アンモニア濃度検出装置
JP2018200229A (ja) ガスセンサ制御装置
JP5195616B2 (ja) ガス濃度検出装置
JP3314567B2 (ja) 空燃比検出装置の異常診断装置
JP2001330580A (ja) 酸素濃度検出装置のヒータ診断装置
JP6805072B2 (ja) ガス濃度検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3763298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees