[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3760649B2 - Physical quantity measurement system - Google Patents

Physical quantity measurement system Download PDF

Info

Publication number
JP3760649B2
JP3760649B2 JP35224998A JP35224998A JP3760649B2 JP 3760649 B2 JP3760649 B2 JP 3760649B2 JP 35224998 A JP35224998 A JP 35224998A JP 35224998 A JP35224998 A JP 35224998A JP 3760649 B2 JP3760649 B2 JP 3760649B2
Authority
JP
Japan
Prior art keywords
wavelength
bragg diffraction
diffraction grating
reflected light
physical quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35224998A
Other languages
Japanese (ja)
Other versions
JP2000180270A (en
Inventor
安一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP35224998A priority Critical patent/JP3760649B2/en
Publication of JP2000180270A publication Critical patent/JP2000180270A/en
Application granted granted Critical
Publication of JP3760649B2 publication Critical patent/JP3760649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Optical Transform (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、温度や歪み(圧力)等の物理量を、光ファイバのブラッグ回折格子(Fiber Bragg Grating、以下FBGと略す)からの反射光の波長によって測定するようにした物理量測定システムに関するものである。
【0002】
【従来の技術】
図5は、従来技術としての、光ファイバ上の温度分布を測定する温度分布測定システムの全体構成図である。
図において、1は後述する波長検出部及び演算部を有する温度分布測定部、11,12,13,14は測定光及び反射光が通過する光ファイバ、15,16,17は測定点に対応する位置に形成されたブラッグ回折格子、2は光分岐器、3は接続用光ファイバ、4は広帯域光源である。
【0003】
光ファイバのブラッグ回折格子は、周知のようにコアの屈折率が光軸に沿って周期的に変化しており、屈折率に応じて特定波長を中心とした狭帯域の光を反射する。
例えば、測定対象である物理量が温度である場合、図5のあるブラッグ回折格子の位置(測定点)で温度変化が生じると、ブラッグ回折格子のコアの平均屈折率が変化するため反射光の波長も変化する。従って、広帯域光源4から照射された光の各ブラッグ回折格子からの反射波長の変化と温度変化との関係を予め測定しておけば、温度分布測定部1により検出される反射光の波長から各測定点の温度を測定することができ、光ファイバの長手方向の温度分布を得ることができる。
ここで、図5におけるブラッグ回折格子15,16,17には、所定の温度範囲に対応する固有の反射波長範囲が、互いに重複しないように予め割り当てられている。
【0004】
図6は、温度分布測定部1に使用される波長検出部の一例を示す図である。
図において、21は各ブラッグ回折格子からの反射光が入射する入力光ファイバ、22は出力光ファイバ、23,24はコリメータレンズ、25,26はハーフミラー、27,28はハーフミラー25,26の間に密接して配置された圧電素子、29は圧電素子駆動回路である。
【0005】
この波長検出部は、ハーフミラー25,26間のギャップ長gが入射光の波長に対して一定の関係にある場合に入射光が強められ、または弱められて出射することを利用したもので、圧電素子駆動回路29から圧電素子27,28に電圧を印加してギャップ長gを調節しながら出射光強度を観察し、そのときのギャップ長gから入射光の波長を検出するものである。
【0006】
【発明が解決しようとする課題】
この種の測定システムでは、温度等の物理量を高精度に測定するために、ブラッグ回折格子からの反射光の波長高分解能測定が要求される。また、波長多重通信でも同様に波長の高分解能が要求される。しかしながら、図6に示したような波長検出部はメカニカルな構成であり、高分解能な波長検出特性を得るには非常に高精度な機構・組立てが必要となるため、必然的に量産には不向きで高価なものとなっていた。更に、メカニカルな構成であるため、耐振性にも課題があった。つまり、外部から振動を受けても高い機械精度を保たなければならないからである。
また、ハーフミラー25,26同士の平行性や、ハーフミラー25,26に対するコリメータレンズ23,24の光軸の直交性を維持することも構造上、難しく、これらが製造コストの上昇や歩留まり低下の原因となっていた。
【0007】
そこで本発明は、従来のように可動部分を有する波長検出部を使用せずに高分解能で反射光の波長を検出し、温度や歪み等の物理量を高精度に測定可能とした物理量測定システムを提供しようとするものである。
【0008】
【課題を解決するための手段】
上記課題を解決するため、請求項1に記載した発明は、広帯域光源からの測定光が入射される光ファイバに複数のブラッグ回折格子が形成され、各ブラッグ回折格子からの反射光の波長を検出して各ブラッグ回折格子の位置における物理量を測定する物理量測定システムにおいて、
複数の前記ブラッグ回折格子に対し、それぞれ重複しないように微小な反射光波長範囲を割り当てると共に、各ブラッグ回折格子からの反射光を、中心波長が微小な間隔の複数波長に分離可能なアレイ導波路回折格子に入射させ、このアレイ導波路回折格子の複数の出力チャンネルにそれぞれ設けられた一対の受光素子による光電流の比の対数に基づいて前記反射光の波長を測定する物理量測定システムであって、
複数の前記ブラッグ回折格子の前記反射光波長範囲を、前記アレイ導波路回折格子の隣接する2つの出力チャンネルの中心波長の間にそれぞれ割り当てるものである。
【0009】
【発明の実施の形態】
以下、図に沿って本発明の実施形態を説明する。
まず、本発明においては、論文「Wavelength detemination of semiconductor lasers: precise but inexpensive」(Jan Christian Braasch et.al, Optical Engineering 1995)に記載された波長の決定原理を利用する。
以下、この原理について説明する。
【0010】
上述した文献によれば、図1のグラフに示したような波長感度の異なる一対のフォトダイオード(電極A1−C間に形成されるダイオードをダイオードA1C、電極A2−C間に形成されるダイオードをダイオードA2Cとする)と高精度ログアンプからなるセンサに単色光を照射した場合、センサの出力Wは数式1によって表される。
【0011】
【数1】

Figure 0003760649
【0012】
ここで、I1,I2は各ダイオードA1C,A2Cによる光電流、S1(λ),S2(λ)は各ダイオードA1C,A2Cの波長依存感度、φ(λ)は照射光の波長依存強度分布、Δλは照射光波長のバンド幅である。
すなわち、φ(λ)の波長依存強度分布を持つ照射光がS1(λ),S2(λ)の波長依存感度を持つフォトダイオードA1C,A2Cに入射した場合、光センサの出力Wは、各ダイオードA1C,A2Cについての積φ(λ)S1(λ),φ(λ)S2(λ)をバンド幅Δλにわたって積分した値(つまり光電流I1,I2)の比のlogを取ることで求められる。
そして、照射光の出力が所定の範囲内では、照射光の波長ごとに、log(I1/I2)がほぼ一定になり、そのときの照射光波長は数式2で表されることが記載されている。
【0013】
【数2】
λ=a0log(I1/I2)+a1 (a0,a1は定数〔nm〕)
【0014】
なお、図2は上記原理に基づく波長測定システムの構成図であり、31はレーザ光源、32は回転式偏光プリズム、33はビームスプリッタ、34は前述の一対のフォトダイオードA1C,A2Cからなるダイオード装置、35は光出力測定器、36は上記数式1、数式2を演算する演算器である。
【0015】
更に、上記文献によれば、各ダイオードの波長感度がほぼ直線的であるような波長範囲(例えば、図1における約600〜約900nm間の300nmの範囲)では、0.1nm以下の間隔で波長測定が可能である。つまり、分解能としては1/3000となる。
【0016】
従って、本発明では、前述した数式1、数式2による波長測定原理を基本としたうえ、この測定原理を微小な波長範囲(例えば3nm以下の範囲)について適用するために、以下に述べるアレイ導波路回折格子(AWG)を使用することとした。
このAWGは、論文「Wavelength Multiplexer Based on SiO2-Ta2O5 Arrayed-Waveguide Grating (Takahashi, et.al, Journal of Lightwave Technology Vol.12, No.6, 1994)等に記載されているように、所定の曲率半径のアレイ導波路と、その入力側、出力側にそれぞれ形成されたスラブ導波路と、これらのスラブ導波路にそれぞれ連続する複数チャンネルの入力導波路及び出力導波路とを有する構造であり、入力光を1nm以下の分解能で弁別可能な素子である。
【0017】
本発明では、以下に述べる図3に示すごとく、光ファイバの長さ方向に形成された複数のブラッグ回折格子に対し、それぞれ重複しないように微小な反射光波長範囲を割り当てておき(一例として、第1のブラッグ回折格子には1500〜1503nm、第2のブラッグ回折格子には1503〜1506nm、第3のブラッグ回折格子には1506〜1509nm、……等)、これらのブラッグ回折格子からの反射光をAWGに入力することにより、中心波長が例えば1nm以下の間隔の複数の波長に分離する。そして、AWGの隣接する二つの出力導波路(出力チャンネル)から一対のフォトダイオードに光を入射させることにより、微小な波長範囲について前述した数式1、数式2を適用し、高分解能で波長を検出するようにした。
【0018】
図3は、本発明の実施形態を示すシステム構成図である。
この例では、光ファイバ20の長手方向に4つのブラッグ回折格子FBG1〜FBG4が形成されているものとし、広帯域光源4から照射した光の各ブラッグ回折格子FBG1〜FBG4からの反射光(便宜的に中心波長をλ1〜λ4としてある)を、温度分布測定部1A内のAWGに入力する。そして、AWGの隣接する二つの出力チャンネルのフォトダイオードPDの光電流(前述のI1,I2に相当)を各々除算器DIV1〜DIV4に入力し、その出力をCPUに入力して数式2の演算を行うことにより、各ブラッグ回折格子FBG1〜FBG4の位置における温度等の物理量に対応する波長を高分解能で検出可能としている。
なお、図3において、2は光分岐器である。
【0019】
一例として、半値幅0.2nm、反射率60%、反射特性はガウス分布(これらの特性は数式1におけるφ(λ)に相当する)のブラッグ回折格子による反射光の中心波長を横軸にとり、出力チャンネルの波長間隔が0.8nmで最大透過率が−4dB、中心波長が1555nm、半値幅が0.4nm(これらの特性は数式1におけるS1(λ),S2(λ)に相当する)であるAWG2の隣接チャンネルAWG1(中心波長1554.2nm、半値幅,透過率はAWG2に同じ),及びAWG3(中心波長1555.8nm、半値幅,透過率はAWG2に同じ)の受光パワー比(フォトダイオードの受光感度に応じて変換された光電流の比に相当すると考えてよい)を求め、そのlogを縦軸にとると、図4のような関係が得られた。なお、光源及びフォトダイオードの波長に対する特性はフラットであるとする。
【0020】
図4から明らかなように、反射光の波長変化とLOGの値との関係は全体としては直線ではない。しかし、二つの特性の何れにも、ある波長範囲にわたって直線部分があるので、これを複数のブラッグ回折格子の波長変化範囲に割り当てれば、各ブラッグ回折格子からの反射波長を直線性よく高分解能で測定することが可能になる。
【0021】
【発明の効果】
以上のように本発明によれば、従来のようにギャップ長の微小変位を得るために機械的可動部分を有する波長検出部を用いるのではなく、半導体製造ブロセスにより量産可能なAWG等を用いて反射光波長を高分解能で測定することができ、機械的可動部分がないため耐振性にも優れるとともに製造コストの大幅な低減や歩留まりの向上が可能である。また、FBGを用いた物理量測定システムの他に、本発明に記載の波長検出方法は光ファイバを用いた波長多重通信へも適用できることは明らかである。
【図面の簡単な説明】
【図1】本発明に適用される波長測定原理の説明図である。
【図2】公知の波長測定システムの構成図である。
【図3】本発明の実施形態を示すシステム構成図である。
【図4】本発明の実施形態における反射光波長と隣接チャンネルの受光パワー比のlog値との関係を示すグラフである。
【図5】従来技術としての温度分布測定システムの全体構成図である。
【図6】従来技術における温度検出部の構成図である。
【符号の説明】
FBG1〜FBG4 光ファイバブラッグ回折格子
AWG アレイ導波路回折格子
PD フォトダイオード
DIV1〜DIV4 除算器
1A 温度分布測定部
2 光分岐器
4 広帯域光源
20 光ファイバ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a physical quantity measurement system in which physical quantities such as temperature and strain (pressure) are measured by the wavelength of reflected light from an optical fiber Bragg grating (hereinafter referred to as FBG). .
[0002]
[Prior art]
FIG. 5 is an overall configuration diagram of a temperature distribution measuring system for measuring a temperature distribution on an optical fiber as a conventional technique.
In the figure, 1 is a temperature distribution measurement unit having a wavelength detection unit and a calculation unit to be described later, 11, 12, 13, and 14 are optical fibers through which measurement light and reflected light pass, and 15, 16, and 17 correspond to measurement points. A Bragg diffraction grating formed at a position, 2 is an optical splitter, 3 is an optical fiber for connection, and 4 is a broadband light source.
[0003]
As is well known, the Bragg diffraction grating of an optical fiber has a refractive index of the core that periodically changes along the optical axis, and reflects light in a narrow band centered on a specific wavelength according to the refractive index.
For example, when the physical quantity to be measured is temperature and the temperature changes at the position (measurement point) of a certain Bragg diffraction grating in FIG. 5, the average refractive index of the core of the Bragg diffraction grating changes, so the wavelength of the reflected light Also changes. Accordingly, if the relationship between the change in the reflection wavelength of the light emitted from the broadband light source 4 from each Bragg diffraction grating and the change in temperature is measured in advance, the wavelength of the reflected light detected by the temperature distribution measuring unit 1 is measured. The temperature at the measurement point can be measured, and the temperature distribution in the longitudinal direction of the optical fiber can be obtained.
Here, specific reflection wavelength ranges corresponding to a predetermined temperature range are assigned in advance to the Bragg diffraction gratings 15, 16, and 17 in FIG. 5 so as not to overlap each other.
[0004]
FIG. 6 is a diagram illustrating an example of a wavelength detection unit used in the temperature distribution measurement unit 1.
In the figure, 21 is an input optical fiber into which reflected light from each Bragg diffraction grating is incident, 22 is an output optical fiber, 23 and 24 are collimator lenses, 25 and 26 are half mirrors, and 27 and 28 are half mirrors 25 and 26. A piezoelectric element 29 and a piezoelectric element driving circuit arranged in close contact with each other.
[0005]
This wavelength detection unit utilizes the fact that the incident light is strengthened or weakened and emitted when the gap length g between the half mirrors 25 and 26 has a certain relationship with the wavelength of the incident light. A voltage is applied from the piezoelectric element driving circuit 29 to the piezoelectric elements 27 and 28 to observe the emitted light intensity while adjusting the gap length g, and the wavelength of the incident light is detected from the gap length g at that time.
[0006]
[Problems to be solved by the invention]
This type of measurement system requires high-resolution measurement of the reflected light from the Bragg diffraction grating in order to measure a physical quantity such as temperature with high accuracy. Similarly, wavelength multiplex communication requires high wavelength resolution. However, the wavelength detector as shown in FIG. 6 has a mechanical configuration, and a very high-precision mechanism / assembly is required to obtain a high-resolution wavelength detection characteristic. It was expensive. Furthermore, since it has a mechanical configuration, there is a problem in vibration resistance. That is, high mechanical accuracy must be maintained even when subjected to vibration from the outside.
In addition, it is structurally difficult to maintain the parallelism between the half mirrors 25 and 26 and the orthogonality of the optical axes of the collimator lenses 23 and 24 with respect to the half mirrors 25 and 26, which increases the manufacturing cost and decreases the yield. It was the cause.
[0007]
Therefore, the present invention provides a physical quantity measurement system that can detect the wavelength of reflected light with high resolution without using a wavelength detector having a movable part as in the prior art, and can measure physical quantities such as temperature and strain with high accuracy. It is something to be offered.
[0008]
[Means for Solving the Problems]
In order to solve the above problem, the invention described in claim 1 is configured such that a plurality of Bragg diffraction gratings are formed in an optical fiber to which measurement light from a broadband light source is incident, and the wavelength of reflected light from each Bragg diffraction grating is detected. In the physical quantity measurement system that measures the physical quantity at the position of each Bragg diffraction grating,
An arrayed waveguide capable of assigning a small reflected light wavelength range to the plurality of Bragg diffraction gratings so as not to overlap each other and separating the reflected light from each Bragg diffraction grating into a plurality of wavelengths with a central wavelength being a minute interval. A physical quantity measurement system that measures the wavelength of the reflected light based on the logarithm of the ratio of the photocurrent by a pair of light receiving elements respectively provided on a plurality of output channels of the arrayed waveguide diffraction grating. ,
The reflected light wavelength ranges of the plurality of Bragg diffraction gratings are respectively assigned between the center wavelengths of two adjacent output channels of the arrayed waveguide diffraction grating .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, in the present invention, the principle of wavelength determination described in the paper “Wavelength detemination of semiconductor lasers: precise but inexpensive” (Jan Christian Braasch et al., Optical Engineering 1995) is used.
Hereinafter, this principle will be described.
[0010]
According to the above-mentioned literature, a pair of photodiodes having different wavelength sensitivities as shown in the graph of FIG. 1 (a diode formed between electrodes A 1 -C is formed between diode A 1 C and electrodes A 2 -C). When a monochromatic light is irradiated to a sensor composed of a diode A 2 C) and a high-precision log amplifier, the output W of the sensor is expressed by Equation 1.
[0011]
[Expression 1]
Figure 0003760649
[0012]
Here, I 1 and I 2 are photocurrents generated by the diodes A 1 C and A 2 C, S 1 (λ) and S 2 (λ) are wavelength-dependent sensitivities of the diodes A 1 C and A 2 C, and φ ( λ) is the wavelength-dependent intensity distribution of the irradiation light, and Δλ is the bandwidth of the irradiation light wavelength.
That is, when irradiation light having a wavelength-dependent intensity distribution of φ (λ) is incident on photodiodes A 1 C and A 2 C having wavelength-dependent sensitivities of S 1 (λ) and S 2 (λ), The output W is a value obtained by integrating the products φ (λ) S 1 (λ) and φ (λ) S 2 (λ) for the diodes A 1 C and A 2 C over the bandwidth Δλ (that is, photocurrents I 1 , It is obtained by taking a log of the ratio of I 2 ).
Then, when the output of the irradiation light is within a predetermined range, log (I 1 / I 2 ) is substantially constant for each wavelength of the irradiation light, and the irradiation light wavelength at that time is expressed by Equation 2. Has been.
[0013]
[Expression 2]
λ = a 0 log (I 1 / I 2 ) + a 1 (a 0 and a 1 are constants [nm])
[0014]
2 is a block diagram of a wavelength measurement system based on the above principle, in which 31 is a laser light source, 32 is a rotating polarizing prism, 33 is a beam splitter, and 34 is a pair of the photodiodes A 1 C and A 2 C described above. A diode device 35, a light output measuring device 35, and a computing unit 36 for calculating the above-described equations 1 and 2.
[0015]
Further, according to the above document, in the wavelength range where the wavelength sensitivity of each diode is almost linear (for example, the range of 300 nm between about 600 to about 900 nm in FIG. 1), the wavelength is 0.1 nm or less. Measurement is possible. That is, the resolution is 1/3000.
[0016]
Therefore, in the present invention, in order to apply the principle of wavelength measurement according to the above-described formulas 1 and 2 to a very small wavelength range (for example, a range of 3 nm or less), the array waveguide described below is used. A diffraction grating (AWG) was used.
As described in the paper “Wavelength Multiplexer Based on SiO 2 -Ta 2 O 5 Arrayed-Waveguide Grating (Takahashi, et.al, Journal of Lightwave Technology Vol.12, No.6, 1994), etc. A structure having an arrayed waveguide with a predetermined radius of curvature, slab waveguides formed on the input side and the output side thereof, and a plurality of channel input waveguides and output waveguides respectively continuous with the slab waveguides It is an element that can discriminate input light with a resolution of 1 nm or less.
[0017]
In the present invention, as shown in FIG. 3 to be described below, a minute reflected light wavelength range is allocated to a plurality of Bragg diffraction gratings formed in the length direction of the optical fiber so as not to overlap each other (as an example, The first Bragg diffraction grating is 1500 to 1503 nm, the second Bragg diffraction grating is 1503 to 1506 nm, the third Bragg diffraction grating is 1506 to 1509 nm, etc.), and the reflected light from these Bragg diffraction gratings Is input to the AWG to separate the central wavelength into a plurality of wavelengths with an interval of, for example, 1 nm or less. Then, by applying light from two adjacent output waveguides (output channels) of the AWG to a pair of photodiodes, the above-described Equations 1 and 2 are applied to a minute wavelength range, and the wavelength is detected with high resolution. I tried to do it.
[0018]
FIG. 3 is a system configuration diagram showing an embodiment of the present invention.
In this example, it is assumed that four Bragg diffraction gratings FBG1 to FBG4 are formed in the longitudinal direction of the optical fiber 20, and the reflected light from the Bragg diffraction gratings FBG1 to FBG4 of the light emitted from the broadband light source 4 (for convenience) Is input to the AWG in the temperature distribution measuring unit 1A. Then, the photocurrents of the photodiodes PD of the two adjacent output channels of the AWG (corresponding to the above-mentioned I 1 and I 2 ) are respectively input to the dividers DIV1 to DIV4, and the outputs are input to the CPU. By performing the calculation, the wavelength corresponding to the physical quantity such as temperature at the position of each Bragg diffraction grating FBG1 to FBG4 can be detected with high resolution.
In FIG. 3, 2 is an optical branching device.
[0019]
As an example, the horizontal axis represents the center wavelength of reflected light by a Bragg diffraction grating having a half-width of 0.2 nm, a reflectance of 60%, and a reflection characteristic of a Gaussian distribution (these characteristics correspond to φ (λ) in Equation 1). The wavelength interval of the output channel is 0.8 nm, the maximum transmittance is −4 dB, the center wavelength is 1555 nm, and the half width is 0.4 nm (these characteristics correspond to S 1 (λ) and S 2 (λ) in Equation 1). ) Of adjacent channels AWG1 (center wavelength 1554.2 nm, half width, transmittance is the same as AWG2) and AWG3 (center wavelength 1555.8 nm, half width, transmittance is the same as AWG2). When the log is taken on the vertical axis, the relationship as shown in FIG. 4 is obtained. It is assumed that the characteristics of the light source and the photodiode with respect to the wavelength are flat.
[0020]
As is clear from FIG. 4, the relationship between the wavelength change of the reflected light and the LOG value is not a straight line as a whole. However, since both of the two characteristics have a linear portion over a certain wavelength range, if this is assigned to the wavelength change range of multiple Bragg diffraction gratings, the reflected wavelength from each Bragg diffraction grating has high linearity and high resolution. It becomes possible to measure with.
[0021]
【The invention's effect】
As described above, according to the present invention, instead of using a wavelength detector having a mechanically movable part to obtain a minute displacement of the gap length as in the prior art, an AWG or the like that can be mass-produced by a semiconductor manufacturing process is used. The reflected light wavelength can be measured with high resolution, and since there is no mechanically movable part, the vibration resistance is excellent and the manufacturing cost can be greatly reduced and the yield can be improved. In addition to the physical quantity measurement system using FBG, it is obvious that the wavelength detection method according to the present invention can be applied to wavelength multiplexing communication using an optical fiber.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a wavelength measurement principle applied to the present invention.
FIG. 2 is a configuration diagram of a known wavelength measurement system.
FIG. 3 is a system configuration diagram showing an embodiment of the present invention.
FIG. 4 is a graph showing the relationship between the reflected light wavelength and the log value of the light reception power ratio of the adjacent channel in the embodiment of the present invention.
FIG. 5 is an overall configuration diagram of a temperature distribution measuring system as a prior art.
FIG. 6 is a configuration diagram of a temperature detection unit in the prior art.
[Explanation of symbols]
FBG1 to FBG4 Optical fiber Bragg diffraction grating AWG Array waveguide diffraction grating PD Photodiode DIV1 to DIV4 Divider 1A Temperature distribution measuring unit 2 Optical branching device 4 Broadband light source 20 Optical fiber

Claims (1)

広帯域光源からの測定光が入射される光ファイバに複数のブラッグ回折格子が形成され、各ブラッグ回折格子からの反射光の波長を検出して各ブラッグ回折格子の位置における物理量を測定する物理量測定システムにおいて、
複数の前記ブラッグ回折格子に対し、それぞれ重複しないように微小な反射光波長範囲を割り当てると共に、各ブラッグ回折格子からの反射光を、中心波長が微小な間隔の複数波長に分離可能なアレイ導波路回折格子に入射させ、このアレイ導波路回折格子の複数の出力チャンネルにそれぞれ設けられた一対の受光素子による光電流の比の対数に基づいて前記反射光の波長を測定する物理量測定システムであって、
複数の前記ブラッグ回折格子の前記反射光波長範囲を、前記アレイ導波路回折格子の隣接する2つの出力チャンネルの中心波長の間にそれぞれ割り当てることを特徴とする物理量測定システム。
A physical quantity measurement system in which a plurality of Bragg diffraction gratings are formed on an optical fiber to which measurement light from a broadband light source is incident, and the physical quantity at the position of each Bragg diffraction grating is measured by detecting the wavelength of reflected light from each Bragg diffraction grating In
An arrayed waveguide capable of assigning a small reflected light wavelength range to the plurality of Bragg diffraction gratings so as not to overlap each other and separating the reflected light from each Bragg diffraction grating into a plurality of wavelengths with a central wavelength being a minute interval. A physical quantity measurement system that measures the wavelength of the reflected light based on the logarithm of the ratio of the photocurrent by a pair of light receiving elements respectively provided on a plurality of output channels of the arrayed waveguide diffraction grating. ,
A physical quantity measurement system , wherein the reflected light wavelength ranges of a plurality of the Bragg diffraction gratings are respectively assigned between center wavelengths of two adjacent output channels of the arrayed waveguide diffraction grating .
JP35224998A 1998-12-11 1998-12-11 Physical quantity measurement system Expired - Fee Related JP3760649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35224998A JP3760649B2 (en) 1998-12-11 1998-12-11 Physical quantity measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35224998A JP3760649B2 (en) 1998-12-11 1998-12-11 Physical quantity measurement system

Publications (2)

Publication Number Publication Date
JP2000180270A JP2000180270A (en) 2000-06-30
JP3760649B2 true JP3760649B2 (en) 2006-03-29

Family

ID=18422783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35224998A Expired - Fee Related JP3760649B2 (en) 1998-12-11 1998-12-11 Physical quantity measurement system

Country Status (1)

Country Link
JP (1) JP3760649B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151574A (en) * 2006-12-15 2008-07-03 Hitachi Cable Ltd Physical quantity measurement system
JP2008232726A (en) * 2007-03-19 2008-10-02 Hitachi Cable Ltd Physical quantity measurement system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267961A (en) * 2005-03-25 2006-10-05 Fujitsu Ltd Optical demultiplexing device and optical monitoring device
JP4688755B2 (en) * 2006-08-17 2011-05-25 新日本製鐵株式会社 Steel continuous casting method
JP4742274B2 (en) * 2007-03-22 2011-08-10 独立行政法人国立高等専門学校機構 Measuring system
JP4586167B2 (en) * 2007-03-22 2010-11-24 独立行政法人国立高等専門学校機構 Ultra-narrow band sensor in distributed measurement system using optical wavelength detection method and method for increasing the number of sensors that can be connected to the system
WO2013024525A1 (en) * 2011-08-15 2013-02-21 富士通株式会社 Temperature distribution measurement device and temperature distribution measurement method
KR101356986B1 (en) * 2012-05-11 2014-02-05 주식회사 피피아이 A raman sensor system for fiber distributed temperature measurment
JP2015031593A (en) 2013-08-02 2015-02-16 アンリツ株式会社 Physical quantity measurement system and physical quantity measurement method
CN105222884B (en) * 2015-10-26 2018-07-27 浙江师范大学 A kind of distributed vibration sensing method based on low light reflectivity fibre grating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151574A (en) * 2006-12-15 2008-07-03 Hitachi Cable Ltd Physical quantity measurement system
US7589312B2 (en) 2006-12-15 2009-09-15 Hitachi Cable, Ltd. Physical quantity measuring system with fiber Bragg grating sensor and arrayed waveguide grating
JP2008232726A (en) * 2007-03-19 2008-10-02 Hitachi Cable Ltd Physical quantity measurement system
US7812934B2 (en) 2007-03-19 2010-10-12 Hitachi Cable, Ltd. Physical quantity measuring apparatus

Also Published As

Publication number Publication date
JP2000180270A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
US6137565A (en) Bragg grating temperature/strain fiber sensor having combination interferometer/spectrometer output arrangement
US5682237A (en) Fiber strain sensor and system including one intrinsic and one extrinsic fabry-perot interferometer
JP4930034B2 (en) Physical quantity measurement system
US7324714B1 (en) Multicore fiber curvature sensor
JPH10339668A (en) Light wavemeter and light wavelength regulator
JP2002500387A (en) Optical device for multi-wavelength signal monitoring
JP3760649B2 (en) Physical quantity measurement system
US6940601B2 (en) Method and apparatus for estimating chromatic dispersion in fibre bragg gratings
JP2004530899A (en) Difference measurement system based on the use of paired Bragg gratings
US7272276B2 (en) Optical performance monitor
US6563969B2 (en) Multiplexed fiber laser sensor system
JP3669473B2 (en) Wavelength measuring device
US7280216B2 (en) Method and apparatus for determining the wavelength of an input light beam
JP2001201407A (en) Wavelength measuring device
JP4274007B2 (en) Wavelength analyzer
JP2000283843A (en) Wavelength measuring instrument
JP2002116087A (en) Wavelength-measuring apparatus
JP4039217B2 (en) Wavelength measuring device
JP3663966B2 (en) Wavelength measuring device
JP3632825B2 (en) Wavelength measuring device
CN115003988A (en) System for measuring multiple physical parameters at a measurement point using multimode optical fiber
US7333210B2 (en) Method and apparatus for feedback control of tunable laser wavelength
JP2004163154A (en) Wavelength-measuring apparatus
JPH0953999A (en) Optical external force detector
JP2004163155A (en) Wavelength-measuring apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051110

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees