[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3760345B2 - Magnet generator - Google Patents

Magnet generator Download PDF

Info

Publication number
JP3760345B2
JP3760345B2 JP2002124720A JP2002124720A JP3760345B2 JP 3760345 B2 JP3760345 B2 JP 3760345B2 JP 2002124720 A JP2002124720 A JP 2002124720A JP 2002124720 A JP2002124720 A JP 2002124720A JP 3760345 B2 JP3760345 B2 JP 3760345B2
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
magnet
cylindrical portion
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002124720A
Other languages
Japanese (ja)
Other versions
JP2003324921A (en
Inventor
則和 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
DensoTrim Co Ltd
Original Assignee
Denso Corp
DensoTrim Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, DensoTrim Co Ltd filed Critical Denso Corp
Priority to JP2002124720A priority Critical patent/JP3760345B2/en
Publication of JP2003324921A publication Critical patent/JP2003324921A/en
Application granted granted Critical
Publication of JP3760345B2 publication Critical patent/JP3760345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動二輪車、バギー車、雪上車等のエンジンに装着され、搭載バッテリの充電や電気機器への電力供給に使用される磁石式発電機に関する。
【0002】
【従来の技術】
この種の磁石式発電機のロータは、一般に、図4の断面図に示すように、カップ状に形成されたロータ本体21の中央にボス部24が設けられ、ロータ本体21の外周壁にロータ円筒部23が形成され、ロータ円筒部23の内周に沿って、複数に分割形成された環状の永久磁石22が接着され、その永久磁石22の内側に円筒状の磁石保護カバー25が接着されて構成される。また、この種の磁石式発電機は、エンジンのケーシング内の限られたスペースに装着されるため、小型化の要求が強く、特にステータの外側に位置するロータの先端部の形状には小径化が必要となる。
【0003】
【発明が解決しようとする課題】
ところで、従来では、永久磁石22として、フェライト磁石が使用されていたが、近年、フェライト磁石より性能の優れた希土類磁石が使用される傾向にある。希土類磁石は、フェライト磁石に比べ単位体積当りの磁力が高いため、フェライト磁石の場合と同じ起電力を得るように希土類磁石を用いてロータを設計すると、図4に示す如くフェライトの永久磁石22の厚さはt1と厚く、軸方向の長さはL1と長いが、希土類磁石を使用すると、図5に示すように、永久磁石32の厚さはt2と薄く、軸方向の長さはL2と短くなる。
【0004】
また、希土類磁石の永久磁石32を使用した磁石式発電機であっても、フェライト磁石を使用した発電機と同じ性能の発電機の場合、上記と同様に、図5に示す如く、カップ状に形成されたロータ本体31の中央にボス部34が設けられ、ロータ本体31の外周壁にロータ円筒33が形成され、ロータ円筒部33の内周に沿って、複数に分割形成された環状の永久磁石32が固定され、その永久磁石32の内側に円筒状の磁石保護カバー35を圧入して構成することができる。
【0005】
しかし、同じ性能のフェライト磁石を用いたロータに比べ、希土類磁石を使用した永久磁石32は小型となる。つまり、図4,5に示すように、ステータ側のステータコア26とステータコア36の軸方向の長さTは同じで、そこに巻装された発電コイル27と発電コイル37のターン数及び巻き径は同じであっても、希土類の永久磁石32のみが形状的に小形になり、永久磁石32の厚さt2がフェライトの永久磁石22より薄くなり、その軸方向の長さL2もフェライトの永久磁石22より短くなる。
【0006】
したがって、図5に示すように、ステータコア36の一方のエンドプレート36aの先端部分Aが、永久磁石32の対向位置から外側にはみ出してしまい、永久磁石32の底部側に配設された非磁性体製のスペーサ35に対向してステータコア36の先端部分Aが位置することになる。
【0007】
このために、ステータコア36の先端部分Aとロータ円筒部33との間隙G2がフェライトの永久磁石22を用いた場合の間隙G1(図4)より短くなることもあって、永久磁石32の対向位置より外れたステータコア36のエンドプレート36aの先端部分Aから発生する磁束が漏洩磁束としてスペーサ35を通過してロータ円筒部33に流れ、磁力の優れた希土類磁石を永久磁石32に使用した場合であっても、発電機の起電力が設計時の起電力より低下する問題があった。このため、漏洩磁束分を補うために希土類磁石の大きさを大型化する必要が生じ、高価な希土類磁石の大型化により製造コストが増大する問題があった。
【0008】
本発明は、上記の点に鑑みてなされたもので、永久磁石の高性能化に伴う磁束漏洩を低減すると共に製造コストの低減を図ることができる磁石式発電機を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の磁石式発電機は、中央にボス部を設けてカップ状に形成されたロータ本体の外周壁にロータ円筒部が形成され、ロータ円筒部の内側に永久磁石が取り付けられてなるロータと、ステータコアの突設された複数の突極部に発電コイルが巻装され、突極部の先端部がロータの永久磁石に対向してロータの内側に配置されてなるステータと、を備えた磁石式発電機において、ステータコアの突極部先端の軸方向の長さが、ロータの永久磁石の軸方向の長さより長く形成され、ステータコアの突極部先端が永久磁石の対向面から外に突出する部分に対向したロータ円筒部の内周壁部に、永久磁石が取着される内周面の半径より大きい半径を持つ凹状の内周面が形成されることにより、円環状の空間が形成されていることを特徴とする。
【0010】
ここで、上記構成の磁石式発電機においては、請求項2の発明のように、ロータ円筒部の空間の内周側に、永久磁石を保持するためのスペーサを配設することができる。
【0011】
また、請求項3の発明のように、ロータ円筒部の空間の外周側には、環状に突出する突出部を設けて、ロータ円筒部の必要な強度を確保することができる。さらに、請求項4のように、永久磁石として希土類磁石を使用することができる。
【0012】
【作用】
このような構成の磁石式発電機は、ロータがエンジンにより回転駆動され、ロータの回転に伴いその内側に装着された永久磁石とステータコア間で磁束が流れ、相対的に回転するステータの発電コイルが、その磁束を切ることにより、発電コイルに誘導起電力が生じ、発電が行われる。このとき、ステータコアの各突極部先端とそれに対向するロータの永久磁石間で磁束が流れ、永久磁石の対向面から外れて位置するステータコアの各突極部先端のエンドプレートの先端部からも磁束がロータ側のロータ円筒部に漏洩する可能性が生じる。
【0013】
しかし、ステータコアの突極部先端が永久磁石の対向面から外に突出する部分に対向したロータ円筒部の内周壁部に、永久磁石が取着される内周面の半径より大きい半径を持つ凹状の内周面が形成されることにより、円環状の空間が形成されるから、この永久磁石の対向面から外側に外れた突極部先端部分とロータ円筒部間生じる漏洩磁束は、空間によって大きく抑制され、磁束漏洩に起因した起電力の低下を防止することができる。したがって、漏洩磁束分を補うために希土類磁石の形状を大きくする必要はなく、製造コストの増大する防ぐことができる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1は磁石式発電機のロータ1とステータ10の正面図を示し、図2はその断面図を示している。ロータ1の本体は、磁性体金属を材料にして、熱間鍛造及び切削加工等により略カップ状に成形される。
【0015】
ロータ1の本体の中央部にはボス部4が形成され、ボス部4には、エンジンのクランクシャフトに嵌着されるテーパ孔4aが形成され、ボス部4の先端には平坦な締付座面4bが設けられ、ボス部4の外周部に、ロータ1を抜く際に螺合するための抜きねじ4cが設けられる。ロータ1の本体の外周壁にはロータ円筒部3が形成され、ロータ円筒部3とボス部4との間に、ロータ底部5が一体に形成されている。また、ロータ円筒部3の底部側には円環状の突出部3aが外周部に突き出して形成される。
【0016】
この円環状の突出部3aはその内側に形成した円環状の空間9のために、ロータ円筒部3の必要な厚さを確保するように設けられている。つまり、ロータ円筒部3の内周面に複数に分割され全体で円環状とされる永久磁石2が取着されるが、その永久磁石2が取着される内周面の半径より大きい半径を持つ凹状の内周面がロータ円筒部3の底部寄りに形成され、それによってロータ円筒部3の内側の底部寄りに、環状の空間9が内周面に沿って形成される。
【0017】
そのロータ円筒部3の内周面に希土類磁石製の永久磁石2が取着される。希土類の永久磁石2は複数に分割形成され、全体で円環状となってロータ円筒部3の内側に取着されるが、各永久磁石2は、相互に一定の間隙を持って配置され、後述の磁石保護カバー6によって内側から保持され、ロータ円筒部3内に嵌め込まれる。また、永久磁石2の位置を位置決めするために、ロータ円筒部3内側の底部側に円環状の非磁性体(合成樹脂製)のスペーサ7が永久磁石2と底部との間に配設され、ロータ円筒部3の先端側にも永久磁石2とかしめ部3bとの間に同様のスペーサ8が配設される。底部側のスペーサ7は円環状の空間9をロータの内側から閉鎖するように配設される。
【0018】
磁石保護カバー6は、ステンレス等の非磁性体金属の薄板を環状に打ち出して円筒状に形成され、永久磁石2の先端側の端面を覆うように、その先端部にはフランジ状端部が形成されている。一方、ロータ円筒部3の先端部には、磁石保護カバー6のフランジ状端部をかしめて固定するためのかしめ部3bが肉厚を薄くして形成される。永久磁石2と磁石保護カバー6をスペーサ7、8と共に本体のロータ円筒部2内に組付ける際には、複数の永久磁石2をスペーサ7、8と共に外周部に装着した磁石保護カバー5を、ロータ円筒部3内の定位置に圧入して組み付け、最後にロータ円筒部3の先端のかしめ部3bを内側にかしめて固定される。
【0019】
一方、ステータ10は、ステータコア11の外周部に突設された複数の突極部12に発電コイル13を巻装して構成される。鋼板を所定の形状に打ち抜き形成したコアプレート11aを多数枚積層して形成されたステータコア11は、リング状の継鉄部の外周部に複数の突極部12が所定の角度間隔(ここでは18個の突極部を20度の角度間隔)で放射状に突設されて形成され、積層された多数のコアプレート11aの両側の最外側には、エンドプレート11bが重ねて配設される。
【0020】
エンドプレート11bは、基本的にはコアプレート11aと略同じ形状を有しているが、その先端部は、巻装した発電コイル13を保持するために、外側に曲折されてフランジ状に形成されている。これらの積層されたコアプレート11aとエンドプレート11bは、そのリング状の継鉄部に穿設した孔にリベット14を挿入して一体にかしめ固定される。そして、各突極部12にはその表面をエポキシ樹脂でコーティングした後、発電コイル13が所定のターン数だけ巻装される。
【0021】
このように構成されたステータ10は、図示しないエンジンのケーシングの内側所定位置に、固定ボルトをステータコア11のリング状継鉄部の取付孔に挿通して締付固定される。一方、ロータ1は、図示しないエンジンのクランクシャフトの先端部に、ステータ10の外周部を覆うと共に、ロータ円筒部3の内周部の磁石保護カバー6の内周面とステータコアの突極部12の先端部との間に所定の僅かな隙間を形成した状態で、締付固定される。
【0022】
このように、ステータ10とロータ1をエンジンの所定位置に装着した状態で、ステータ10とロータ1の位置関係は、図2に示すように、ステータコア11の突極部先端の軸方向の長さTが、ロータ1の永久磁石2の軸方向の長さL2より長く形成され、このために、ステータコア11の突極部先端が永久磁石2の対向面から外れて突出した先端部分Aが生じる。この突出した先端部分Aつまり突極部12の一方のエンドプレート11bの先端部は、ロータ円筒部3の内周壁部の内側に設けたスペーサ7に対向して位置し、スペーサ7の外側には空間9が環状に形成されている。したがって、この突極部12のエンドプレート11bの先端部分Aが対向するロータ円筒部3側の間隔G3は、空間9の厚さを含むものとなり、図5示す従来の場合より充分に厚くなる。
【0023】
このような構成の磁石式発電機は、ロータ1がエンジンにより回転駆動され、ロータ1の回転に伴いその内側に装着された永久磁石2とステータ10のステータコア11の突極部先端間で磁束が流れ、相対的に回転するステータ10の発電コイル13が、その磁束を切ることにより、発電コイル13に誘導起電力が生じ、発電が行われる。
【0024】
このとき、ステータコア11の各突極部先端とそれに対向するロータ1の永久磁石2間で磁束が流れ、永久磁石2の対向面から外れて位置するステータコア11の各突極部先端のエンドプレート11bの先端部からも磁束がロータ1側のロータ円筒部3に漏洩する可能性が生じる。しかし、ステータコア11の突極部先端が永久磁石2の対向面から外に突出する部分Aに対向したロータ円筒部3の内周壁部に、空間9が周方向に沿って環状に形成されているから、この永久磁石2の対向面から外側に外れた突極部の先端部分Aとロータ円筒部3間生じる漏洩磁束は、空間9によって大きく抑制され、磁束漏洩に起因した起電力の低下を防止することができる。したがって、漏洩磁束分を補うために希土類磁石の形状を大きくする必要はなく、製造コストの増大する防ぐことができる。
【0025】
なお、上記実施形態では、ロータ円筒部3の底部側外周に突出部3aを設けたが、図3に示すように、ロータ円筒部3cの厚さをより厚くしてロータ円筒部3cに必要な強度を確保すれば、上記のような突出部3aは設ける必要がなく、突出部のないロータ円筒部3cの内周部の底部寄りに空間9aを設けるようにしても良い。また、空間9aの内壁には傾斜部9bを設けることもできる。
【0026】
【発明の効果】
以上説明したように、本発明の磁石式発電機によれば、ステータコアの突極部先端が永久磁石の対向面から外に突出する部分に対向したロータ円筒部の内周壁部に、永久磁石が取着される内周面の半径より大きい半径を持つ凹状の内周面が形成されることにより、円環状の空間が形成されるから、永久磁石の対向面から外側に外れた突極部の先端部分とロータ円筒部間生じる漏洩磁束は、空間によって大きく抑制され、磁束漏洩に起因した起電力の低下を防止することができ、これによって、漏洩磁束分を補うために希土類磁石の形状を大きくする必要はなく、製造コストの増大する防ぐことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す磁石式発電機のロータとステータの正面図である。
【図2】同発電機のロータとステータの断面図である。
【図3】他の実施例の断面図である。
【図4】従来のフェライト磁石を用いた磁石式発電機の断面図である。
【図5】従来の希土類磁石を用いた磁石式発電機の断面図である。
【符号の説明】
1−本体
2−永久磁石
3−ロータ円筒部
3a―突出部
4−ボス部
5−ロータ底部
6−磁石保護カバー
7−スペーサ
9−空間
10−ステータ
11−ステータコア
11b−エンドプレート
12−突極部
13−発電コイル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnet generator that is mounted on an engine such as a motorcycle, a buggy, or a snow vehicle, and is used for charging an on-board battery or supplying electric power to an electric device.
[0002]
[Prior art]
As shown in the sectional view of FIG. 4, the rotor of this type of magnet generator is generally provided with a boss portion 24 at the center of a rotor body 21 formed in a cup shape, and a rotor on the outer peripheral wall of the rotor body 21. A cylindrical portion 23 is formed, and a plurality of annular permanent magnets 22 are bonded along the inner periphery of the rotor cylindrical portion 23, and a cylindrical magnet protective cover 25 is bonded to the inside of the permanent magnet 22. Configured. In addition, since this type of magnet generator is mounted in a limited space inside the casing of the engine, there is a strong demand for downsizing, and the shape of the tip of the rotor located outside the stator is particularly small. Is required.
[0003]
[Problems to be solved by the invention]
Conventionally, ferrite magnets have been used as the permanent magnets 22, but in recent years, rare earth magnets having better performance than ferrite magnets have been used. A rare earth magnet has a higher magnetic force per unit volume than a ferrite magnet. Therefore, when a rotor is designed using a rare earth magnet so as to obtain the same electromotive force as that of a ferrite magnet, the permanent magnet 22 of a ferrite as shown in FIG. Although the thickness is as thick as t1 and the axial length is as long as L1, as shown in FIG. 5, when the rare earth magnet is used, the permanent magnet 32 is as thin as t2 and the axial length is as L2. Shorter.
[0004]
Further, even in the case of a magnetic generator using a permanent magnet 32 of a rare earth magnet, in the case of a generator having the same performance as a generator using a ferrite magnet, as shown in FIG. A boss 34 is provided at the center of the formed rotor body 31, a rotor cylinder 33 is formed on the outer peripheral wall of the rotor body 31, and a ring-shaped permanent permanent divided into a plurality along the inner periphery of the rotor cylinder 33. A magnet 32 is fixed, and a cylindrical magnet protective cover 35 can be press-fitted inside the permanent magnet 32.
[0005]
However, the permanent magnet 32 using the rare earth magnet is smaller than the rotor using the ferrite magnet having the same performance. That is, as shown in FIGS. 4 and 5, the axial length T of the stator core 26 and the stator core 36 on the stator side is the same, and the number of turns and the winding diameter of the power generation coil 27 and the power generation coil 37 wound there are Even if the same, only the rare earth permanent magnet 32 is small in shape, the thickness t2 of the permanent magnet 32 is thinner than the ferrite permanent magnet 22, and the axial length L2 thereof is also the ferrite permanent magnet 22. Shorter.
[0006]
Therefore, as shown in FIG. 5, the end portion A of one end plate 36a of the stator core 36 protrudes outward from the position opposed to the permanent magnet 32, and is a non-magnetic material disposed on the bottom side of the permanent magnet 32. The leading end portion A of the stator core 36 is positioned so as to face the made spacer 35.
[0007]
For this reason, the gap G2 between the tip portion A of the stator core 36 and the rotor cylindrical portion 33 may be shorter than the gap G1 (FIG. 4) when the ferrite permanent magnet 22 is used. In this case, the magnetic flux generated from the tip portion A of the end plate 36a of the stator core 36 that is further separated passes through the spacer 35 as the leakage magnetic flux and flows into the rotor cylindrical portion 33, and a rare earth magnet having excellent magnetic force is used for the permanent magnet 32. However, there is a problem that the electromotive force of the generator is lower than the electromotive force at the time of design. For this reason, it is necessary to increase the size of the rare earth magnet in order to compensate for the leakage magnetic flux, and there is a problem that the manufacturing cost increases due to the increase in size of the expensive rare earth magnet.
[0008]
The present invention has been made in view of the above points, and it is an object of the present invention to provide a magnet generator that can reduce magnetic flux leakage associated with higher performance of permanent magnets and can reduce manufacturing costs. .
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a magnet generator according to claim 1 of the present invention is configured such that a rotor cylindrical portion is formed on an outer peripheral wall of a rotor body formed in a cup shape by providing a boss portion at the center. A rotor in which a permanent magnet is attached to the inner side of the rotor, and a power generation coil is wound around the plurality of salient pole portions projecting from the stator core, and the tip of the salient pole portion faces the permanent magnet of the rotor so that the inner side of the rotor The axial length of the stator core salient pole tip is longer than the axial length of the rotor permanent magnet, and the stator core salient pole portion. A concave inner peripheral surface having a radius larger than the radius of the inner peripheral surface to which the permanent magnet is attached is formed on the inner peripheral wall portion of the rotor cylindrical portion facing the portion protruding from the opposing surface of the permanent magnet. by Rukoto, annular space is form Characterized in that it is.
[0010]
Here, in the magnet generator configured as described above, a spacer for holding the permanent magnet can be disposed on the inner peripheral side of the space of the rotor cylindrical portion, as in the invention of claim 2.
[0011]
Further, as in the third aspect of the present invention, a projecting portion projecting in an annular shape can be provided on the outer peripheral side of the space of the rotor cylindrical portion to ensure the required strength of the rotor cylindrical portion. Further, as in claim 4, a rare earth magnet can be used as the permanent magnet.
[0012]
[Action]
In the magnet generator having such a configuration, the rotor is driven to rotate by the engine, and as the rotor rotates, a magnetic flux flows between the permanent magnet mounted on the inner side of the rotor and the stator core. By cutting the magnetic flux, an induced electromotive force is generated in the power generation coil, and power generation is performed. At this time, magnetic flux flows between the tip of each salient pole portion of the stator core and the permanent magnet of the rotor facing the stator core, and the magnetic flux is also generated from the tip portion of the end plate at the tip of each salient pole portion of the stator core positioned away from the facing surface of the permanent magnet. May leak into the rotor cylinder on the rotor side.
[0013]
However, a concave shape having a radius larger than the radius of the inner peripheral surface on which the permanent magnet is attached to the inner peripheral wall portion of the rotor cylindrical portion facing the portion where the tip of the salient pole portion of the stator core protrudes outward from the opposing surface of the permanent magnet Since an annular space is formed by forming the inner peripheral surface, the leakage magnetic flux generated between the tip end portion of the salient pole part and the rotor cylindrical part that deviates outward from the opposing surface of the permanent magnet is increased depending on the space. It is suppressed and the fall of the electromotive force resulting from magnetic flux leakage can be prevented. Therefore, it is not necessary to increase the shape of the rare earth magnet in order to compensate for the leakage magnetic flux, and the manufacturing cost can be prevented from increasing.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a front view of a rotor 1 and a stator 10 of a magnet generator, and FIG. 2 shows a cross-sectional view thereof. The main body of the rotor 1 is formed into a substantially cup shape by hot forging, cutting or the like using a magnetic metal material.
[0015]
A boss portion 4 is formed at the center of the main body of the rotor 1, and a tapered hole 4 a is formed in the boss portion 4 so as to be fitted to the crankshaft of the engine. A surface 4b is provided, and a screw 4c for screwing when the rotor 1 is pulled out is provided on the outer peripheral portion of the boss portion 4. A rotor cylindrical portion 3 is formed on the outer peripheral wall of the main body of the rotor 1, and a rotor bottom portion 5 is integrally formed between the rotor cylindrical portion 3 and the boss portion 4. An annular projecting portion 3 a is formed on the bottom side of the rotor cylindrical portion 3 so as to protrude from the outer peripheral portion.
[0016]
The annular projecting portion 3a is provided so as to ensure the necessary thickness of the rotor cylindrical portion 3 because of the annular space 9 formed inside thereof. In other words, the permanent magnet 2 that is divided into a plurality of rings and is formed into a ring shape as a whole is attached to the inner peripheral surface of the rotor cylindrical portion 3, but has a radius larger than the radius of the inner peripheral surface to which the permanent magnet 2 is attached. A concave inner peripheral surface is formed near the bottom of the rotor cylindrical portion 3, whereby an annular space 9 is formed along the inner peripheral surface near the inner bottom of the rotor cylindrical portion 3.
[0017]
A permanent magnet 2 made of a rare earth magnet is attached to the inner peripheral surface of the rotor cylindrical portion 3. The rare earth permanent magnet 2 is divided into a plurality of parts and is formed into a ring shape as a whole and is attached to the inside of the rotor cylindrical portion 3. The permanent magnets 2 are arranged with a certain gap from each other, and will be described later. The magnet protective cover 6 is held from the inside and fitted into the rotor cylindrical portion 3. In order to position the permanent magnet 2, an annular non-magnetic (synthetic resin) spacer 7 is disposed between the permanent magnet 2 and the bottom portion on the bottom side inside the rotor cylindrical portion 3. A similar spacer 8 is also disposed between the permanent magnet 2 and the caulking portion 3b on the front end side of the rotor cylindrical portion 3. The spacer 7 on the bottom side is disposed so as to close the annular space 9 from the inside of the rotor.
[0018]
The magnet protective cover 6 is formed into a cylindrical shape by punching a thin plate of a non-magnetic metal such as stainless steel in an annular shape, and a flange-like end is formed at the tip so as to cover the end face on the tip side of the permanent magnet 2. Has been. On the other hand, a caulking portion 3b for caulking and fixing the flange-like end portion of the magnet protective cover 6 is formed at the tip of the rotor cylindrical portion 3 with a reduced thickness. When assembling the permanent magnet 2 and the magnet protective cover 6 together with the spacers 7 and 8 into the rotor cylindrical portion 2 of the main body, the magnet protective cover 5 having a plurality of permanent magnets 2 mounted on the outer peripheral portion together with the spacers 7 and 8 The rotor cylindrical portion 3 is press-fitted into a fixed position and assembled, and finally the caulking portion 3b at the tip of the rotor cylindrical portion 3 is caulked inward and fixed.
[0019]
On the other hand, the stator 10 is configured by winding a power generation coil 13 around a plurality of salient pole portions 12 projecting from an outer peripheral portion of a stator core 11. In the stator core 11 formed by laminating a large number of core plates 11a formed by punching steel plates into a predetermined shape, a plurality of salient pole portions 12 are arranged at predetermined angular intervals (here, 18) on the outer periphery of the ring-shaped yoke portion. A plurality of salient pole portions are projected radially at an angular interval of 20 degrees), and end plates 11b are arranged on the outermost sides on both sides of a large number of stacked core plates 11a.
[0020]
The end plate 11b basically has substantially the same shape as the core plate 11a, but its tip is bent outward to form a flange shape in order to hold the wound power generation coil 13. ing. The laminated core plate 11a and end plate 11b are caulked and fixed integrally by inserting a rivet 14 into a hole formed in the ring-shaped yoke portion. Then, after the surface of each salient pole portion 12 is coated with an epoxy resin, the power generation coil 13 is wound by a predetermined number of turns.
[0021]
The stator 10 thus configured is fastened and fixed at a predetermined position inside an engine casing (not shown) by inserting a fixing bolt into an attachment hole of the ring-shaped yoke portion of the stator core 11. On the other hand, the rotor 1 covers the outer peripheral portion of the stator 10 at the tip of the crankshaft of the engine (not shown), and the inner peripheral surface of the magnet protective cover 6 on the inner peripheral portion of the rotor cylindrical portion 3 and the salient pole portion 12 of the stator core. It is clamped and fixed in a state in which a predetermined slight gap is formed between the tip end of each of the two.
[0022]
In this way, with the stator 10 and the rotor 1 mounted at predetermined positions of the engine, the positional relationship between the stator 10 and the rotor 1 is the length in the axial direction of the tip of the salient pole portion of the stator core 11 as shown in FIG. T is formed to be longer than the axial length L2 of the permanent magnet 2 of the rotor 1, and for this reason, a tip portion A is produced in which the tip of the salient pole portion of the stator core 11 protrudes away from the facing surface of the permanent magnet 2. The protruding tip end portion A, that is, the tip end portion of one end plate 11b of the salient pole portion 12, is located opposite to the spacer 7 provided on the inner side of the inner peripheral wall portion of the rotor cylindrical portion 3. The space 9 is formed in an annular shape. Therefore, the gap G3 of the salient pole portion 12 on the side of the rotor cylindrical portion 3 facing the tip portion A of the end plate 11b includes the thickness of the space 9, and is sufficiently thicker than the conventional case shown in FIG.
[0023]
In the magnet generator having such a configuration, the rotor 1 is driven to rotate by the engine, and a magnetic flux is generated between the permanent magnet 2 mounted inside the rotor 1 and the tip of the salient pole portion of the stator core 11 of the stator 10 as the rotor 1 rotates. When the power generation coil 13 of the stator 10 that flows and relatively rotates cuts the magnetic flux, an induced electromotive force is generated in the power generation coil 13 to generate power.
[0024]
At this time, a magnetic flux flows between the tip of each salient pole part of the stator core 11 and the permanent magnet 2 of the rotor 1 facing it, and the end plate 11b at the tip of each salient pole part of the stator core 11 positioned away from the opposing surface of the permanent magnet 2. There is a possibility that the magnetic flux leaks to the rotor cylindrical portion 3 on the rotor 1 side from the tip portion of the rotor. However, the space 9 is formed in an annular shape along the circumferential direction in the inner peripheral wall portion of the rotor cylindrical portion 3 where the tip of the salient pole portion of the stator core 11 faces the portion A protruding outward from the facing surface of the permanent magnet 2. Therefore, the leakage magnetic flux generated between the tip end portion A of the salient pole part outside the facing surface of the permanent magnet 2 and the rotor cylindrical part 3 is greatly suppressed by the space 9 to prevent the electromotive force from being lowered due to the magnetic flux leakage. can do. Therefore, it is not necessary to increase the shape of the rare earth magnet in order to compensate for the leakage magnetic flux, and the manufacturing cost can be prevented from increasing.
[0025]
In the above-described embodiment, the protrusion 3a is provided on the outer periphery on the bottom side of the rotor cylindrical portion 3. However, as shown in FIG. 3, the rotor cylindrical portion 3c is made thicker and necessary for the rotor cylindrical portion 3c. If the strength is ensured, it is not necessary to provide the protruding portion 3a as described above, and the space 9a may be provided near the bottom of the inner peripheral portion of the rotor cylindrical portion 3c having no protruding portion. Moreover, the inclined part 9b can also be provided in the inner wall of the space 9a.
[0026]
【The invention's effect】
As described above, according to the magnet generator of the present invention, the permanent magnet is formed on the inner peripheral wall portion of the rotor cylindrical portion facing the portion where the tip of the salient pole portion of the stator core protrudes outward from the facing surface of the permanent magnet. By forming a concave inner peripheral surface having a radius larger than the radius of the inner peripheral surface to be attached, an annular space is formed. Leakage magnetic flux generated between the tip portion and the rotor cylindrical portion is largely suppressed by the space, and can prevent a decrease in electromotive force due to magnetic flux leakage, thereby increasing the shape of the rare earth magnet in order to compensate for the leakage magnetic flux. It is not necessary to increase the manufacturing cost.
[Brief description of the drawings]
FIG. 1 is a front view of a rotor and a stator of a magnet generator showing an embodiment of the present invention.
FIG. 2 is a sectional view of a rotor and a stator of the generator.
FIG. 3 is a cross-sectional view of another embodiment.
FIG. 4 is a cross-sectional view of a magnet generator using a conventional ferrite magnet.
FIG. 5 is a cross-sectional view of a magnet generator using a conventional rare earth magnet.
[Explanation of symbols]
1-main body 2-permanent magnet 3-rotor cylindrical portion 3a-protruding portion 4-boss portion 5-rotor bottom portion 6-magnet protective cover 7-spacer 9-space 10-stator 11-stator core 11b-end plate 12-saliency pole portion 13-Power generation coil

Claims (4)

中央にボス部を設けてカップ状に形成されたロータ本体の外周壁にロータ円筒部が形成され、該ロータ円筒部の内側に永久磁石が取り付けられてなるロータと、
ステータコアの突設された複数の該突極部に発電コイルが巻装され、該突極部の先端部が該ロータの永久磁石に対向して該ロータの内側に配置されてなるステータと、
を備えた磁石式発電機において、
該ステータコアの該突極部先端の軸方向の長さが、該ロータの永久磁石の軸方向の長さより長く形成され、該ステータコアの突極部先端が該永久磁石の対向面から外に突出する部分に対向した該ロータ円筒部の内周壁部に、該永久磁石が取着される内周面の半径より大きい半径を持つ凹状の内周面が形成されることにより、円環状の空間が形成されていることを特徴とする磁石式発電機。
A rotor cylindrical portion is formed on the outer peripheral wall of the rotor body formed in a cup shape by providing a boss portion at the center, and a rotor in which a permanent magnet is attached inside the rotor cylindrical portion;
A stator in which a power generation coil is wound around the plurality of salient pole portions projecting from the stator core, and a tip portion of the salient pole portion is disposed inside the rotor so as to face the permanent magnet of the rotor;
In the magnet generator with
The axial length of the tip of the salient pole portion of the stator core is formed longer than the axial length of the permanent magnet of the rotor, and the tip of the salient pole portion of the stator core protrudes outward from the facing surface of the permanent magnet. An annular space is formed by forming a concave inner peripheral surface having a radius larger than the radius of the inner peripheral surface to which the permanent magnet is attached on the inner peripheral wall portion of the rotor cylindrical portion facing the portion. Magnet generator characterized by being made.
前記ロータ円筒部の空間の内周側には、前記永久磁石を保持するためのスペーサが配設されている請求項1記載の磁石式発電機。  The magnet generator according to claim 1, wherein a spacer for holding the permanent magnet is disposed on an inner peripheral side of the space of the rotor cylindrical portion. 前記ロータ円筒部の空間の外周側には環状に突出する突出部が設けられた請求項1記載の磁石式発電機。  The magnet generator according to claim 1, wherein a projecting portion projecting in an annular shape is provided on an outer peripheral side of the space of the rotor cylindrical portion. 前記永久磁石として希土類磁石が使用されている請求項1記載の磁石式発電機。The magnet generator according to claim 1, wherein a rare earth magnet is used as the permanent magnet.
JP2002124720A 2002-04-25 2002-04-25 Magnet generator Expired - Fee Related JP3760345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002124720A JP3760345B2 (en) 2002-04-25 2002-04-25 Magnet generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002124720A JP3760345B2 (en) 2002-04-25 2002-04-25 Magnet generator

Publications (2)

Publication Number Publication Date
JP2003324921A JP2003324921A (en) 2003-11-14
JP3760345B2 true JP3760345B2 (en) 2006-03-29

Family

ID=29539699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002124720A Expired - Fee Related JP3760345B2 (en) 2002-04-25 2002-04-25 Magnet generator

Country Status (1)

Country Link
JP (1) JP3760345B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3816492B2 (en) * 2004-01-06 2006-08-30 三菱電機株式会社 Magnet generator
JP2009038944A (en) * 2007-08-03 2009-02-19 Denso Trim Kk Permanent-magnet generator
JP5876764B2 (en) * 2012-03-30 2016-03-02 日立オートモティブシステムズ株式会社 Electromagnetic suspension
JP7043824B2 (en) * 2017-12-15 2022-03-30 日本電産株式会社 Spindle motor and disk drive equipped with it

Also Published As

Publication number Publication date
JP2003324921A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
US7629721B2 (en) Stator of motor
US6891295B2 (en) Flywheel magneto generator
US9976557B2 (en) Pump having an integrated electronically commutated direct current motor
US7709987B2 (en) Magneto rotor
US4146806A (en) Flywheel magneto generator
JP4312778B2 (en) Magnet generator manufacturing method
EP1455435B1 (en) Single phase induction motor further comprising a permanent magnetic unit
US20070252465A1 (en) Outer-rotor-type magneto generator
JP3819386B2 (en) Magnet generator
JP2008199697A (en) Magnet generator
JP3089470B2 (en) Permanent magnet motor
JP2002101587A (en) Permanent-magnet generator
JP3760345B2 (en) Magnet generator
JP4436652B2 (en) Magnet generator
JP3397119B2 (en) Magnet rotor for rotating electric machines
JP2020010539A (en) Rotor and brushless motor
JP4235431B2 (en) Single-phase magnet generator
JP2865091B2 (en) Alternator and method of manufacturing the same
JP2013013243A (en) Motor
JP2008099446A (en) Outer rotor type rotary electric machine
JP2006314196A (en) Electric motor with embedded permanent magnet
JP3991770B2 (en) Flywheel magneto
EP1133046A2 (en) Multipolar magnet type generator for internal combustion engines
JPS622947Y2 (en)
JP2008017672A (en) Permanent magnet embedded motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3760345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees