JP3758542B2 - High-tensile steel plate with excellent elongation and stretch flangeability suitable for automotive materials - Google Patents
High-tensile steel plate with excellent elongation and stretch flangeability suitable for automotive materials Download PDFInfo
- Publication number
- JP3758542B2 JP3758542B2 JP2001282773A JP2001282773A JP3758542B2 JP 3758542 B2 JP3758542 B2 JP 3758542B2 JP 2001282773 A JP2001282773 A JP 2001282773A JP 2001282773 A JP2001282773 A JP 2001282773A JP 3758542 B2 JP3758542 B2 JP 3758542B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- stretch flangeability
- elongation
- precipitates
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、自動車用部材の素材に適した伸びと伸びフランジ性がともに優れた高張力鋼板に関する。
【0002】
【従来技術】
環境保全につながる燃費向上の観点から、自動車用鋼板の高強度薄肉化が強く求められているが、自動車用部材はプレス成形により得られる複雑な形状のものが多く、加工性の指標である伸びと伸びフランジ性がともに優れた材料が必要とされている。
【0003】
従来、この種の鋼板は種々提案されており、例えば、特開平6−172924号公報には、転位密度の高いベイニティック・フェライト組織が生成した伸びフランジ性に優れる鋼板が提案されている。しかし、この鋼板は、転位密度の高いベイニティック・フェライト組織を含むため伸びが乏しいという欠点がある。
【0004】
特開平6−200351号公報には、組織の大部分をポリゴナルフェライトとし、TiCを中心として析出強化および固溶強化した伸びフランジ性に優れる鋼板が提案されている。しかし、この鋼板に用いられている一般的によく知られた析出物では、寸法の大きい析出物が生成しやすく、伸びおよび伸びフランジ性を同一強度で比べると低いという欠点がある。
【0005】
特開平7−11382号公報には、微細なTiCおよび/またはNbCが析出したアシキュラー・フェライト組織を有した伸びフランジ性に優れる鋼板が提案されている。しかし、この鋼板も、先に述べた特開平6−172924号公報に提案された鋼板同様、アシキュラー・フェライトという転位密度の高い組織であるため十分な伸びが得られていない。
【0006】
【発明が解決しようとする課題】
本発明はかかる事情に鑑みてなされたものであって、自動車用部材のようにプレス時の断面形状が複雑な用途に適した、加工性の指標である伸びと伸びフランジ性がともに優れた高張力鋼板を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意検討を行った結果、以下の知見を得た。
(1)転位密度が低い組織とし、微細析出物で強化すると、強度−伸びバランスが向上する。
(2)実質的に単相組織とし、微細析出物で強化すると、強度−伸びフランジ性バランスが向上する。
(3)Moを含む複合析出物とすると、析出物が微細に析出する。
(4)複合析出物中のMoの割合が低くなると、析出物が粗大化するため、伸びと伸びフランジ性がともに低下する。
【0008】
本発明はこれらの知見に基づいて完成されたものであり、以下の(1)〜(3)を提供する。
【0009】
(1) 質量%で、C:0.02〜0.06%、Si:0.3%以下、Mn:0.5〜2.0%、P:0.06%以下、S:0.005%以下、Al:0.06%以下、N:0.006%以下、Mo:0.1〜0.5%、V:0.05〜0.2%を含み、残部がFeおよび不可避不純物からなり、フェライトの面積比率が95%以上である組織であり、原子%でMo/(V+Mo)≧0.25を満たす範囲でVおよびMoを含む平均粒径10nm未満の析出物が分散析出していることを特徴とする、引張強度が590MPa以上の自動車用部材の素材に適した伸びと伸びフランジ性がともに優れた高張力鋼板。
【0010】
(2) 質量%で、C:0.02〜0.06%、Si:0.3%以下、Mn:0.5〜2.0%、P:0.06%以下、S:0.005%以下、Al:0.06%以下、N:0.006%以下、Mo:0.1〜0.5%、V:0.05〜0.2%を含み、Ti≦0.03%、Nb≦0.02%のうち1種以上を含有し、残部がFeおよび不可避不純物からなり、フェライトの面積比率が95%以上である組織であり、原子%でMo/(V+Mo)≧0.25を満たす範囲でVおよびMoを含む平均粒径10nm未満の析出物が分散析出していることを特徴とする、引張強度が590MPa以上の自動車用部材の素材に適した伸びと伸びフランジ性がともに優れた高張力鋼板。
【0011】
(3) 上記(1)または(2)において、質量%で、さらにCr:0.15%以下、Cu:0.15%以下、Ni:0.16%以下の少なくとも1種を含有することを特徴とする、自動車用部材の素材に適した伸びと伸びフランジ性がともに優れた高張力鋼板。
【0012】
【発明の実施の形態】
以下、本発明について具体的に説明する。
本発明に係る自動車用部材の素材に適した伸びと伸びフランジ性がともに優れた高張力鋼板は、質量%で、C:0.02〜0.06%、Si:0.3%以下、Mn:0.5〜2.0%、P:0.06%以下、S:0.005%以下、Al:0.06%以下、N:0.006%以下、Mo:0.1〜0.5%、V:0.05〜0.2%を含み、残部がFeおよび不可避不純物からなり、フェライト面積比率が95%以上であり、原子%でMo/(V+Mo)≧0.25を満たす範囲でVおよびMoを含む平均粒径10nm未満の析出物が分散析出している。また、上記成分に加え、Ti≦0.03%、Nb≦0.02%のうち1種以上を含有してもよい。
【0013】
・フェライト面積比率95%以上:
フェライト面積比率を95%以上としたのは、伸びの向上には転位密度の低いフェライトが有効であり、また、伸びフランジ性の向上には単相組織とすることが有効であり、特に延性に富むフェライト単相組織でその効果が顕著であるためである。
【0014】
・原子%で、Mo/(V+Mo)≧0.25の範囲でVおよびMoを含む平均粒径10nm未満の析出物:
VとMoとを含む析出物は微細となるため、鋼を強化するのに有効である。従来は、析出物としてVCを用いることが主流であったが、Vは析出物形成傾向が強いためMoを含まない場合には粗大化しやすく、強化に対する効果が低くなることから、必要な強化量を得るには加工性を劣化させるまでの析出物が必要となる。これに対し、VとMoとを含む複合析出物は微細に析出して加工性を劣化させずに鋼を強化することができる。これは、Moの析出物形成傾向がVと比べて弱いため、析出物が安定的に微細に存在できることで強化に対する効果が高く、加工性を良好に維持できる析出物量で必要な強化量が得られるためと考えられる。特に、この複合析出物の平均粒径を10nm未満とすることで、析出物周囲の歪みが転位の移動の抵抗にとってより効果的となり、良好な鋼の強化が得られるため、複合析出物を平均粒径10nm未満のものとすることが好ましい。さらに好ましくは、平均粒径5nm以下である。析出物が安定的に微細に存在できるためには、析出物の組成が影響し、析出物の組成が、原子比で、Mo/(V+Mo)≧0.25となると、析出物の粗大化を抑制する効果が高くなり、所望の微細析出物を得ることができる。
【0015】
・化学成分
本発明では、上記析出物を析出させるため、質量%で、C:0.02〜0.06%、Si:0.3%以下、Mn:0.5〜2.0%、P:0.06%以下、S:0.005%以下、Al:0.06%以下、N:0.006%以下、Mo:0.1〜0.5%、V:0.05〜0.2%であり、残部がFeおよび不可避不純物からなる。また、組織をより微細化させて伸びおよび伸びフランジ性をさらに向上させる場合には、上記成分に加えTi≦0.03%、Nb≦0.02%のうち1種以上を含有することが好ましい。以下、これら各成分について説明する。
【0016】
C:0.02〜0.06%
Cは炭化物を形成し、鋼を強化するのに有効である。しかし、0.02%未満では、鋼の強化が不十分であり、0.06%を超えて添加するとパーライトが形成されることと析出物が粗大化することから伸びと伸びフランジ性を損なうおそれがある。このため、C含有量は0.02〜0.06%が好ましい。
【0017】
Si:0.3%以下
Siは固溶強化には有効な元素であるが、0.3%を超えて添加すると、フェライトからのC析出が促進されて粒界に粗大な鉄炭化物が析出しやすくなって伸びフランジ性が低下する傾向となり、また、鋼板表面性状が劣化する。このため、Si含有量は0.3%以下が好ましい。
【0018】
Mn:0.5〜2.0%
Mnは固溶強化により鋼を強化する観点からは0.5%以上が好ましいが、2.0%を超えて添加すると偏析し、かつ硬質相が形成され、伸びフランジ性が低下する。このため、Mn含有量は0.5〜2.0%が好ましい。
【0019】
P:0.06%以下
Pは固溶強化に有効であるが、0.06%を超えて添加すると偏析して伸びフランジ性が低下するおそれがあるため、0.06%以下が好ましい。
【0020】
S:0.005%以下
Sは少ないほど好ましく、0.005%を超えると伸びフランジ性を低下させるおそれがあるため、0.005%以下が好ましい。
【0021】
Al:0.06%以下
Alは脱酸剤として添加される。しかし、0.06%を超えると伸びおよび伸びフランジ性がともに低下する傾向にあるため0.06%以下が好ましい。
【0022】
N:0.006%以下
Nは少ないほど好ましく、0.006%を超えると粗大な窒化物が増え、伸びフランジ性が低下する傾向にあるため0.006%以下が好ましい。
【0023】
Mo:0.1〜0.5%
Moは本発明において重要な元素であり、0.1%以上含有させることで、パーライト変態を抑制しつつ、Vとの微細な複合析出物を形成し、優れた伸びおよび伸びフランジ性を確保しつつ、鋼を強化することができる。しかし、0.5%を超えて添加すると硬質相が形成され伸びフランジ性が低下する。このため、Mo含有量は0.1〜0.5%が好ましい。
【0024】
V:0.05〜0.2%
Vは本発明において重要な元素である。Moと複合析出物を形成することで、優れた伸びおよび伸びフランジ性を確保しつつ、鋼を強化することができる。しかし、0.05%未満では、鋼を強化する効果が不十分であり、0.2%を超えると伸びが劣化する。このため、V含有量は0.05〜0.2%が好ましい。
【0025】
Ti:0.03%以下
Tiは、N固定および組織の細粒化に有効であり、優れた伸びと伸びフランジ性を得ることに寄与するため、必要に応じて添加する。しかし、Ti量が0.03%を超えると伸びが劣化する傾向にあるため、Tiを含有させる場合には0.03%以下が好ましい。なお、TiによりNを固定する観点からは0.005%以上が好ましい。
【0026】
Nb:0.02%以下
Nbは、組織の微細化に有効であり、優れた伸びと伸びフランジ性を得ることに寄与するため、必要に応じて添加する。しかし、Nb量が0.02%を超えると伸びが劣化する傾向にあるため、Nbを含有させる場合には0.02%以下が好ましい。
【0027】
なお、上記成分の他、Cr:0.15%以下、Cu:0.15%以下、Ni:0.16%以下の1種類以上を含んでも特性上問題はない。
【0028】
なお、本発明の鋼板は、一般的な熱間圧延鋼板の製造条件によって製造することができる。
【0029】
【実施例】
表1に示す化学成分を有する鋼片を、1250℃に加熱し、通常の熱間圧延工程によって仕上温度880〜930℃で、板厚3.2mmに仕上げた。この後、600℃を超える巻取温度で、冷却速度と巻取温度を変化させて、種々の組織の鋼板を製造した。
【0030】
得られた鋼板を酸洗後、それら鋼板からJIS5号引張試験片および穴広げ試験片を採取した。引張試験片は圧延垂直方向から採取し、穴広げ試験は、130mm角の鋼板の中央に10mmφのポンチによりクリアランス12.5%で打ち抜いた穴を有する試験片を準備し、60°円錐ポンチにより打抜き穴のバリ側の反対方向から押し上げ、割れが鋼板を貫通した時点での穴径dを測定し、穴広げ率λを次式より算出した。
λ(%)=[(d−10)/10]×100
【0031】
鋼板から作製した薄膜を透過型電子顕微鏡(TEM)によって観察し、析出物寸法を測定した。析出物中のVおよびMoの組成は、TEMに装備されたEDXによる分析から決定した。
【0032】
表2に、引張強度(TS)、伸び(El)、穴広げ率(λ)、組織、析出物平均粒径、析出物組成を示す。
【0033】
表2に示す通り、本発明鋼のNo.1〜9はいずれもフェライト組織からなり、析出物の平均粒径は10nm未満で、原子%で、Mo比率が0.25以上となっているため、引張強度(TS)が590MPa以上で優れた伸びおよび伸びフランジ性を有している。
【0034】
これに対し、比較鋼のNo.10はMo無添加のため析出物が粗大化しており、伸びおよび伸びフランジ性がともに低く、特に伸びフランジ性が低い。また、No.11はC量が多すぎるため、パーライトが生成し、かつ析出物が粗大化しており、伸びおよび伸びフランジ性がともに低く、特に伸びフランジ性が低い。No.12はMn量が多すぎるため偏析が顕著であり、かつ組織内にマルテンサイトが生成し、転位密度も高いため、伸びおよび伸びフランジ性がともに低い。No.13はV量が少ないため、鋼の強化に必要な析出物が不足して引張強度(TS)が590MPa未満となっている。No.14はV量が多すぎるため、伸びおよび伸びフランジ性がともに低く、特に伸びが低い。鋼No.15はSi量が多すぎるため、伸びおよび伸びフランジ性がともに低い。
【0035】
【表1】
【0036】
【表2】
【0037】
【発明の効果】
以上説明したように、本発明によれば、加工性の指標である伸びおよび伸びフランジ性に優れた高張力鋼板を提供することができ、自動車部材の軽量化に寄与する効果が顕著である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-tensile steel sheet having both excellent elongation and stretch flangeability suitable for materials for automobile members.
[0002]
[Prior art]
From the viewpoint of improving fuel efficiency, which leads to environmental conservation, there is a strong demand for thinner steel sheets for automobiles, but many automotive parts have complex shapes that can be obtained by press forming, and elongation that is an index of workability. A material with excellent stretch flangeability is required.
[0003]
Conventionally, various steel sheets of this type have been proposed. For example, Japanese Patent Application Laid-Open No. 6-172924 proposes a steel sheet excellent in stretch flangeability formed by a bainitic ferrite structure having a high dislocation density. However, this steel sheet has a drawback that it has poor elongation because it contains a bainitic ferrite structure with a high dislocation density.
[0004]
Japanese Patent Laid-Open No. 6-200351 proposes a steel plate having excellent stretch flangeability, in which most of the structure is polygonal ferrite and precipitation strengthening and solid solution strengthening are performed centering on TiC. However, generally well-known precipitates used in this steel sheet tend to produce large-size precipitates, and have the disadvantages that elongation and stretch flangeability are low when compared with the same strength.
[0005]
Japanese Laid-Open Patent Publication No. 7-11382 proposes a steel sheet having an acicular ferrite structure in which fine TiC and / or NbC is precipitated and having excellent stretch flangeability. However, since this steel sheet is a structure having a high dislocation density called acicular ferrite as well as the steel sheet proposed in Japanese Patent Laid-Open No. 6-172924, sufficient elongation cannot be obtained.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and is suitable for an application having a complicated cross-sectional shape at the time of pressing, such as an automobile member. It aims at providing a tension steel plate.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have obtained the following knowledge.
(1) When the structure has a low dislocation density and is strengthened with fine precipitates, the strength-elongation balance is improved.
(2) When the structure is substantially single phase and strengthened with fine precipitates, the strength-stretch flangeability balance is improved.
(3) When the composite precipitate contains Mo, the precipitate is finely precipitated.
(4) When the proportion of Mo in the composite precipitate becomes low, the precipitate becomes coarse, so that both elongation and stretch flangeability are lowered.
[0008]
The present invention has been completed based on these findings and provides the following (1) to (3).
[0009]
(1) By mass%, C: 0.02 to 0.06%, Si: 0.3% or less, Mn: 0.5 to 2.0%, P: 0.06% or less, S: 0.005 %: Al: 0.06% or less, N: 0.006% or less, Mo: 0.1-0.5%, V: 0.05-0.2%, the balance being Fe and inevitable impurities Thus, a ferrite having an area ratio of 95% or more and a precipitate having an average particle size of less than 10 nm containing V and Mo in a range satisfying Mo / (V + Mo) ≧ 0.25 in atomic% is dispersed and precipitated. high-tensile steel plate, wherein a tensile strength elongation and stretch flangeability which is suitable for the material of the above automotive parts 590MPa is excellent both that you are.
[0010]
(2) By mass%, C: 0.02 to 0.06%, Si: 0.3% or less, Mn: 0.5 to 2.0%, P: 0.06% or less, S: 0.005 %: Al: 0.06% or less, N: 0.006% or less, Mo: 0.1-0.5%, V: 0.05-0.2%, Ti ≦ 0.03%, It is a structure containing at least one of Nb ≦ 0.02%, the balance being Fe and inevitable impurities, and the ferrite area ratio being 95% or more, and Mo / (V + Mo) ≧ 0.25 in atomic%. Both elongation and stretch flangeability suitable for materials for automotive parts having a tensile strength of 590 MPa or more are characterized in that precipitates having an average particle size of less than 10 nm containing V and Mo are dispersed within a range satisfying Excellent high strength steel plate.
[0011]
(3) In the above (1) or (2), by mass%, it further contains at least one of Cr: 0.15% or less, Cu: 0.15% or less, Ni: 0.16% or less. High-strength steel sheet with excellent elongation and stretch flangeability suitable for automotive materials.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
The high-strength steel sheet excellent in both elongation and stretch flangeability suitable for the material for automobile members according to the present invention is mass%, C: 0.02 to 0.06%, Si: 0.3% or less, Mn : 0.5-2.0%, P: 0.06% or less, S: 0.005% or less, Al: 0.06% or less, N: 0.006% or less, Mo: 0.1-0. 5%, V: 0.05 to 0.2%, the balance is made of Fe and inevitable impurities, the ferrite area ratio is 95% or more, and the range satisfying Mo / (V + Mo) ≧ 0.25 in atomic% The precipitates having an average particle size of less than 10 nm containing V and Mo are dispersed and precipitated. In addition to the above components, one or more of Ti ≦ 0.03% and Nb ≦ 0.02% may be contained .
[0013]
-Ferrite area ratio of 95% or more :
A ferrite area ratio of 95% or more is effective for improving the elongation by using a ferrite having a low dislocation density, and for improving the stretch flangeability, a single-phase structure is effective. This is because the effect is remarkable in a rich ferrite single-phase structure.
[0014]
-Precipitates having an average particle size of less than 10 nm containing V and Mo in the range of Mo / (V + Mo) ≧ 0.25 in atomic%:
Since the precipitate containing V and Mo becomes fine, it is effective for strengthening the steel. Conventionally, it has been the mainstream to use VC as a precipitate. However, since V has a strong tendency to form precipitates, when it does not contain Mo, V tends to be coarsened and the effect on strengthening is reduced. In order to obtain the above, a precipitate is required until the workability is deteriorated. On the other hand, the composite precipitate containing V and Mo can finely precipitate and strengthen steel without degrading workability. This is because the Mo precipitate formation tendency is weaker than V, so that the precipitates can exist stably and finely, so the effect of strengthening is high, and the required amount of strengthening can be obtained with the amount of precipitates that can maintain the workability well. It is thought that it is. In particular, by setting the average particle size of this composite precipitate to less than 10 nm, the strain around the precipitate becomes more effective for the resistance of dislocation movement, and good steel strengthening is obtained. The particle size is preferably less than 10 nm. More preferably, the average particle size is 5 nm or less. In order for the precipitates to exist stably and finely, the composition of the precipitates affects, and when the composition of the precipitates is Mo / (V + Mo) ≧ 0.25 in atomic ratio, the precipitates become coarse. The effect of suppressing becomes high, and a desired fine precipitate can be obtained.
[0015]
-Chemical component In this invention, in order to precipitate the said precipitate, by mass%, C: 0.02-0.06%, Si: 0.3% or less, Mn: 0.5-2.0%, P : 0.06% or less, S: 0.005% or less, Al: 0.06% or less, N: 0.006% or less, Mo: 0.1-0.5%, V: 0.05-0. 2%, with the balance being Fe and inevitable impurities . Further, when the structure is further refined and elongation and stretch flangeability are further improved, it is preferable to contain at least one of Ti ≦ 0.03% and Nb ≦ 0.02% in addition to the above components. . Hereinafter, each of these components will be described.
[0016]
C: 0.02 to 0.06%
C forms carbides and is effective for strengthening steel. However, if less than 0.02%, the steel is not sufficiently strengthened, and if added over 0.06%, pearlite is formed and precipitates are coarsened, which may impair elongation and stretch flangeability. There is. For this reason, the C content is preferably 0.02 to 0.06%.
[0017]
Si: 0.3% or less Si is an effective element for solid solution strengthening, but if added over 0.3%, C precipitation from ferrite is promoted and coarse iron carbide precipitates at grain boundaries. It becomes easy and the stretch flangeability tends to decrease, and the surface properties of the steel sheet deteriorate. For this reason, the Si content is preferably 0.3% or less.
[0018]
Mn: 0.5 to 2.0%
Mn is preferably 0.5% or more from the viewpoint of strengthening the steel by solid solution strengthening, but if added over 2.0%, segregation occurs, a hard phase is formed, and stretch flangeability deteriorates. For this reason, the Mn content is preferably 0.5 to 2.0%.
[0019]
P: 0.06% or less P is effective for solid solution strengthening, but if added over 0.06%, segregation may occur and stretch flangeability may be lowered, so 0.06% or less is preferable.
[0020]
S: 0.005% or less S is preferably as small as possible. If it exceeds 0.005%, stretch flangeability may be deteriorated, so 0.005% or less is preferable.
[0021]
Al: 0.06% or less Al is added as a deoxidizer. However, if it exceeds 0.06%, both elongation and stretch flangeability tend to decrease, so 0.06% or less is preferable.
[0022]
N: 0.006% or less N is preferably as small as possible, and if it exceeds 0.006%, coarse nitrides increase and stretch flangeability tends to deteriorate, so 0.006% or less is preferable.
[0023]
Mo: 0.1 to 0.5%
Mo is an important element in the present invention. By containing 0.1% or more, Mo suppresses pearlite transformation, forms fine composite precipitates with V, and ensures excellent elongation and stretch flangeability. While steel can be strengthened. However, if added over 0.5%, a hard phase is formed and stretch flangeability is lowered. For this reason, the Mo content is preferably 0.1 to 0.5%.
[0024]
V: 0.05-0.2%
V is an important element in the present invention. By forming a composite precipitate with Mo, the steel can be strengthened while ensuring excellent elongation and stretch flangeability. However, if it is less than 0.05%, the effect of strengthening the steel is insufficient, and if it exceeds 0.2%, the elongation deteriorates. For this reason, the V content is preferably 0.05 to 0.2%.
[0025]
Ti: 0.03% or less Ti is effective for N fixation and refinement of the structure, and contributes to obtaining excellent elongation and stretch flangeability. Therefore, Ti is added as necessary. However, when the Ti content exceeds 0.03%, the elongation tends to deteriorate. Therefore, when Ti is contained, 0.03% or less is preferable. From the viewpoint of fixing N with Ti, 0.005% or more is preferable.
[0026]
Nb: 0.02% or less Nb is effective for refining the structure and contributes to obtaining excellent elongation and stretch flangeability, so is added as necessary. However, if the Nb content exceeds 0.02%, the elongation tends to deteriorate. Therefore, when Nb is contained, 0.02% or less is preferable.
[0027]
In addition to the above components, there is no problem in characteristics even if one or more of Cr: 0.15% or less, Cu: 0.15% or less, and Ni: 0.16 % or less are included.
[0028]
In addition, the steel plate of this invention can be manufactured with the manufacturing conditions of a general hot-rolled steel plate.
[0029]
【Example】
A steel slab having the chemical composition shown in Table 1 was heated to 1250 ° C., and finished to a plate thickness of 3.2 mm at a finishing temperature of 880 to 930 ° C. by a normal hot rolling process. Thereafter, steel sheets having various structures were manufactured by changing the cooling rate and the coiling temperature at a coiling temperature exceeding 600 ° C.
[0030]
After pickling the obtained steel plates, JIS No. 5 tensile test pieces and hole expansion test pieces were collected from these steel plates. Tensile test specimens were taken from the vertical direction of rolling. In the hole expansion test, a specimen having a hole punched with a clearance of 12.5% by a 10 mmφ punch at the center of a 130 mm square steel plate was prepared and punched with a 60 ° conical punch. The hole diameter d was measured when the hole was pushed up from the opposite direction on the burr side of the hole and the crack penetrated the steel plate, and the hole expansion ratio λ was calculated from the following equation.
λ (%) = [(d−10) / 10] × 100
[0031]
The thin film produced from the steel plate was observed with a transmission electron microscope (TEM), and the precipitate size was measured. The composition of V and Mo in the precipitate was determined from analysis by EDX equipped with TEM.
[0032]
Table 2 shows the tensile strength (TS), elongation (El), hole expansion rate (λ), structure, precipitate average particle size, and precipitate composition.
[0033]
As shown in Table 2, No. of the steel of the present invention. 1 to 9 are all composed of a ferrite structure, and the average particle size of the precipitate is less than 10 nm, atomic%, and the Mo ratio is 0.25 or more, so that the tensile strength (TS) is excellent at 590 MPa or more. Has stretch and stretch flangeability.
[0034]
In contrast, No. of comparative steel. In No. 10, precipitates are coarsened because Mo is not added, and both elongation and stretch flangeability are low, and particularly stretch flangeability is low. No. No. 11 has too much C content, so that pearlite is generated and precipitates are coarsened, and both elongation and stretch flangeability are low, and particularly stretch flangeability is low. No. No. 12 has a large amount of Mn, so segregation is remarkable, martensite is generated in the structure, and the dislocation density is high, so that both elongation and stretch flangeability are low. No. No. 13 has a small amount of V, so the precipitates necessary for strengthening the steel are insufficient, and the tensile strength (TS) is less than 590 MPa. No. No. 14 has too much V content, so that both elongation and stretch flangeability are low, and the elongation is particularly low. Steel No. Since No. 15 has too much Si, both elongation and stretch flangeability are low.
[0035]
[Table 1]
[0036]
[Table 2]
[0037]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a high-tensile steel sheet having excellent elongation and stretch flangeability, which are indexes of workability, and the effect of contributing to weight reduction of automobile members is remarkable.
Claims (3)
C:0.02〜0.06%、
Si:0.3%以下、
Mn:0.5〜2.0%、
P:0.06%以下、
S:0.005%以下、
Al:0.06%以下、
N:0.006%以下、
Mo:0.1〜0.5%、
V:0.05〜0.2%
を含み、残部がFeおよび不可避不純物からなり、フェライトの面積比率が95%以上である組織であり、原子%でMo/(V+Mo)≧0.25を満たす範囲でVおよびMoを含む平均粒径10nm未満の析出物が分散析出していることを特徴とする、引張強度が590MPa以上の自動車用部材の素材に適した伸びと伸びフランジ性がともに優れた高張力鋼板。% By mass
C: 0.02 to 0.06%,
Si: 0.3% or less,
Mn: 0.5 to 2.0%
P: 0.06% or less,
S: 0.005% or less,
Al: 0.06% or less,
N: 0.006% or less,
Mo: 0.1 to 0.5%,
V: 0.05-0.2%
In which the balance is composed of Fe and inevitable impurities, the area ratio of ferrite is 95% or more, and the average particle size containing V and Mo in a range satisfying Mo / (V + Mo) ≧ 0.25 in atomic percent A high-strength steel sheet excellent in both elongation and stretch flangeability suitable for a material for automobile members having a tensile strength of 590 MPa or more , wherein precipitates of less than 10 nm are dispersed and precipitated .
C:0.02〜0.06%、
Si:0.3%以下、
Mn:0.5〜2.0%、
P:0.06%以下、
S:0.005%以下、
Al:0.06%以下、
N:0.006%以下、
Mo:0.1〜0.5%、
V:0.05〜0.2%
を含み、Ti≦0.03%、Nb≦0.02%のうち1種以上を含有し、残部がFeおよび不可避不純物からなり、フェライトの面積比率が95%以上である組織であり、原子%でMo/(V+Mo)≧0.25を満たす範囲でVおよびMoを含む平均粒径10nm未満の析出物が分散析出していることを特徴とする、引張強度が590MPa以上の自動車用部材の素材に適した伸びと伸びフランジ性がともに優れた高張力鋼板。% By mass
C: 0.02 to 0.06%,
Si: 0.3% or less,
Mn: 0.5 to 2.0%
P: 0.06% or less,
S: 0.005% or less,
Al: 0.06% or less,
N: 0.006% or less,
Mo: 0.1 to 0.5%,
V: 0.05-0.2%
In which Ti ≦ 0.03% and Nb ≦ 0.02% are contained, the balance is Fe and inevitable impurities, and the ferrite has an area ratio of 95% or more, atomic% In the range satisfying Mo / (V + Mo) ≧ 0.25, precipitates having an average particle size of less than 10 nm containing V and Mo are dispersed and precipitated, and a material for an automobile member having a tensile strength of 590 MPa or more High tensile strength steel plate with excellent elongation and stretch flangeability.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001282773A JP3758542B2 (en) | 2001-09-18 | 2001-09-18 | High-tensile steel plate with excellent elongation and stretch flangeability suitable for automotive materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001282773A JP3758542B2 (en) | 2001-09-18 | 2001-09-18 | High-tensile steel plate with excellent elongation and stretch flangeability suitable for automotive materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003089843A JP2003089843A (en) | 2003-03-28 |
JP3758542B2 true JP3758542B2 (en) | 2006-03-22 |
Family
ID=19106377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001282773A Expired - Fee Related JP3758542B2 (en) | 2001-09-18 | 2001-09-18 | High-tensile steel plate with excellent elongation and stretch flangeability suitable for automotive materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3758542B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7591977B2 (en) | 2004-01-28 | 2009-09-22 | Kabuhsiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High strength and low yield ratio cold rolled steel sheet and method of manufacturing the same |
EP2847362B1 (en) * | 2012-05-08 | 2016-11-23 | Tata Steel IJmuiden BV | Automotive chassis part made from high strength formable hot rolled steel sheet |
MX2015009890A (en) * | 2013-02-11 | 2015-09-24 | Tata Steel Ijmuiden Bv | A high-strength hot-rolled steel strip or sheet with excellent formability and fatigue performance and a method of manufacturing said steel strip or sheet. |
-
2001
- 2001-09-18 JP JP2001282773A patent/JP3758542B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003089843A (en) | 2003-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2554706B1 (en) | Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same | |
KR100368529B1 (en) | High Strength Hot Rolled Steel Sheet Excellent in Formability | |
JP5076394B2 (en) | High-tensile steel plate and manufacturing method thereof | |
WO2002036840A1 (en) | High tensile hot rolled steel sheet and method for production thereof | |
EP2554705A1 (en) | Hot-dip galvanized steel sheet with high tensile strength and superior processability and method for producing same | |
KR20130135972A (en) | Hot-rolled steel sheet and associated production method | |
WO2006129827A1 (en) | High tensile steel product excellent in delayed fracture resistance and method for production thereof | |
JP3637885B2 (en) | Ultra-high-strength steel sheet excellent in workability, manufacturing method and processing method thereof | |
JPH05179396A (en) | Low yield ratio high strength hot rolled steel sheet and manufacture thereof | |
JP5304435B2 (en) | Hot-rolled steel sheet with excellent hole-expandability and manufacturing method thereof | |
KR20140098900A (en) | High strength thick steel plate and method for manufacturing the same | |
WO2013088666A1 (en) | High-yield-ratio high-strength cold-rolled steel sheet and method for producing same | |
JP3231204B2 (en) | Composite structure steel sheet excellent in fatigue characteristics and method for producing the same | |
JP4324226B1 (en) | High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability | |
KR101892526B1 (en) | High-carbon hot-rolled steel sheet and method for manufacturing the same | |
JP7442645B2 (en) | High-strength steel plate with excellent workability and its manufacturing method | |
JP2002322543A5 (en) | ||
EP4265771A1 (en) | High strength steel sheet having excellent workability and method for manufacturing same | |
JP2023554449A (en) | High-strength steel plate with excellent workability and its manufacturing method | |
JP4525299B2 (en) | High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof | |
US8128763B2 (en) | Bake-hardenable cold rolled steel sheet with superior strength, galvannealed steel sheet using the cold rolled steel sheet and method for manufacturing the cold rolled steel sheet | |
EP2192205B1 (en) | High-strength steel sheets excellent in hole-expandability and ductility and a method for producing the same | |
JP3758542B2 (en) | High-tensile steel plate with excellent elongation and stretch flangeability suitable for automotive materials | |
JP4317417B2 (en) | High strength thin steel sheet with excellent hole expandability and ductility | |
JP4710558B2 (en) | High-tensile steel plate with excellent workability and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040514 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040629 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040830 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20050830 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051226 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3758542 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090113 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100113 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110113 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120113 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130113 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130113 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140113 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |