JP3756266B2 - Method for producing optically active α-ionone - Google Patents
Method for producing optically active α-ionone Download PDFInfo
- Publication number
- JP3756266B2 JP3756266B2 JP26803096A JP26803096A JP3756266B2 JP 3756266 B2 JP3756266 B2 JP 3756266B2 JP 26803096 A JP26803096 A JP 26803096A JP 26803096 A JP26803096 A JP 26803096A JP 3756266 B2 JP3756266 B2 JP 3756266B2
- Authority
- JP
- Japan
- Prior art keywords
- formula
- compound
- trimethyl
- cyclohexen
- optically active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- OJMYKYZPIKFDHE-UHFFFAOYSA-N CC1(C)C(CC(C#N)O)C(C)=CCC1 Chemical compound CC1(C)C(CC(C#N)O)C(C)=CCC1 OJMYKYZPIKFDHE-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Fats And Perfumes (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、調合香料の素材として有用な上記式(1)で表される光学活性のα−イオノンの新規製法に関し、更に詳しくは、上記式(1)に包含される
下記式[(1)−1]及び[(1)−2]
【0002】
【化14】
【0003】
で表される(R)−(+)−α−イオノン及び(S)−(−)−α−イオノンの新規な製法に関する。
【0004】
【従来の技術】
ラセミ体のα−イオノンはスミレ様の香気を有し、調合香料の素材として古くから使用されている。
一方、光学活性である(R)−(+)−α−イオノン及び(S)−(−)−α−イオノンは、例えば、Black tea(Solvent extract)、Boronia megastigma Nees(absolute)、Raspberry fruit juice concentrate、Tobacco extractなどから見出され、(R)−(+)−α−イオノンはスミレ様、果物様、ラズベリー様、花様の強い香気香味を有し、また、(S)−(−)−α−イオノンは、木様、シダーウッド様、ラズベリー様、β−イオノン様の香気香味を有していることが知られている[Lebensmittel-Untersuchung und-Forshung(1991)192:111■115]。
そして、その合成法については、例えば、α−シクロゲラン酸を光学分割して(R)−(+)−α−シクロゲラン酸及び(S)−(−)−α−シクロゲラン酸を得(Agric.Biol.Chem.,1987,51,1271■1275)、これを原料として、(R)−(+)−α−イオノン及び(S)−(−)−α−イオノンを合成する、下記工程図で示す方法が知られている(Helv.Chim.Acta.,1969,52,1729■1731)。
【0005】
【化15】
【0006】
式中、波線は、(R)−(+)−体又は(S)−(−)−体を示す。
一方、α−イオノンと構造類似の、例えば、下記式(A)
【0007】
【化16】
【0008】
で表されるラセミ体のγ−イロンの製造方法について、本願と同一出願人による方法が知られている(特開平60−209562号公報、特公平2−9013号公報)。
この提案による方法を工程図で示すと以下の如くである。
【0009】
【化17】
【0010】
【発明が解決しようとする課題】
上述のように、光学活性のα−イオノンの製造法において、原料の(R)−(+)−α−シクロゲラン酸及び(S)−(−)−α−シクロゲラン酸を得るには、α−シクロゲラン酸の光学分割が必要であり、この方法による光学分割は工業的ではなく、さらに改善された光学活性α−イオノンの工業的方法の開発が強く望まれているのが現状である。
【0011】
【課題を解決するための手段】
そこで、本発明者らは、上記事情に鑑み、光学活性のα−イオノンの合成法について鋭意研究を行って来た。その結果、従来文献未記載の
下記式(2)
【0012】
【化18】
【0013】
[式中、波線は(R)−体または(S)−体を表す]
で示される光学活性3−(2,6,6−トリメチル−2−シクロヘキセン−1−イル)−アクリロニトリルを、メチルリチウムと接触させることにより、本発明の下記式(1)
【0014】
【化19】
【0015】
[式中、波線は前記と同義]
で表される光学活性α−イオノンを好純度、好収率で容易に工業的に合成できることを見出した。
本発明は、本出願人により同一出願日に特許出願(発明の名称、光学活性2,4,4−トリメチル−2−シクロヘキセン−1−オール及びそのエステル類の製造方法)した下記式(6)
【0016】
【化20】
【0017】
[式中、Rは水素原子または−COR′基を示し、R′はハロゲン原子で置換されていてもよい炭素数が1〜10個の直鎖または分岐アルキル基、アルケニル基を示す]
で表されるラセミ体の2,4,4−トリメチル−2−シクロヘキセン−1−オール類をペニシリウム・クリソゲヌムの生産するリパーゼを用いて不斉加水分解もしくは不斉エステル化させることにより得られる、
下記式(5)
【0018】
【化21】
【0019】
[式中、波線は前記と同義]
で表される光学活性2,4,4−トリメチル−2−シクロヘキセン−1−オールを原料として、4工程を経て本発明の上記式(1)で表される光学活性α−イオノンを工業的に有利に合成できることを見出し、本発明を完成した。
本発明において、上記式(5)の化合物を出発物質として上記式(1)の光学活性α−イオノンを合成してもよい。
従って、本発明の目的は、従来公知のラセミ体α−イオノンより香気的に優れ、且つ持続性にも優れ、各種飲食品、香粧品などの広い利用分野において、調合香料の素材として有用な、従来調合香料素材として使用されたことのない、上記式(1)の光学活性α−イオノンの製造法を提供するにある。
以下、本発明について、さらに詳細に説明する。
【0020】
【発明の実施の形態】
本発明の態様を工程図で示すと以下のように表すことができる。
【0021】
【化22】
【0022】
[式中、波線及びRは前記と同義]
本発明を上記工程図に従って、順次以下に説明する。
本発明の上記式(5)で示される光学活性2,4,4−トリメチル−2−シクロヘキセン−1−オールは、従来文献未記載の新規化合物として本発明の同一出願人によりすでに特許出願(特開平4−278097号公報)した化合物である。
【0023】
上記式(5)化合物を合成するには、該特許明細書中に記載された方法又は、本出願人により本発明と同一出願日で特許出願(発明の名称、光学活性2,4,4−トリメチル−2−シクロヘキセン−1−オール及びそのエステル類の製造方法)した方法により容易に合成することができる。
【0024】
後者の方法によれば、上記式(6)で表されるラセミ体の2,4,4−トリメチル−2−シクロヘキセン−1−オール類をペニシリウム・クリソゲヌムの生産するリパーゼを用いて不斉加水分解もしくは不斉エステル化することにより、容易に製造することができる。
具体的には、上記式(5)化合物に包含される下記式(5)−1
【0025】
【化23】
【0026】
で表される(R)−(+)−2,4,4−トリメチル−2−シクロヘキセン−1−オールを合成するには、上記式(6)化合物に包含される
下記式(6)−1
【0027】
【化24】
【0028】
[式中、Rは−COR′基を示し、R′はハロゲン原子で置換されていてもよい炭素数が1〜10個の直鎖または分岐アルキル基、アルケニル基を示す]
で表されるラセミ体の2,4,4−トリメチル−2−シクロヘキセン−1−イルエステルをペニシリウム・クリソゲヌムの生産するリパーゼを用いて不斉加水分解することにより容易に製造することができる。これを工程図で示すと以下のように表すことができる。
【0029】
【化25】
【0030】
[式中、R′は前記と同義]
上記式[(6)−1]化合物のエステル類の例としては、例えば、酢酸エステル、プロピオン酸エステル、イソプロピオン酸エステル、酪酸エステル、イソ酪酸エステル、吉草酸エステル、イソ吉草酸エステル、カプロン酸エステル、カプリル酸エステル、カプリン酸エステル、モノクロロ酢酸エステル、トリクロロ酢酸エステル、メタクリル酸エステル等を好ましく例示することができる。
【0031】
反応は、例えば、上記式[(6)−1]の化合物1重量部を0.1モル燐酸バッファー水溶液(pH約7)約5〜約50重量部に分散させ、そこへリパーゼを約500〜約10,000unit添加し、室温で約5〜約250時間激しく撹拌して行われる。
【0032】
反応後は、反応液をセライトで濾過し、固形物をエーテル等で数回抽出する。抽出液を常法により洗浄し、硫酸ナトリウム、硫酸マグネシウム、塩化カルシウム等の脱水剤を加えて乾燥後、溶媒を回収除去し、例えば、シリカゲルクロマトグラフィーなどの手段により精製し、上記式(5)−1の化合物を容易に得ることができる。
【0033】
この反応に使用されるリパーゼは、本発明と同一出願人が既に特許出願(特開平6−141858号公報)した新規リパーゼであり、ペニシリウム・クリソゲヌム(Penicillium chrysogenum)の生産する酵素である。
次に、上記式(5)化合物に包含される下記式(5)−2
【0034】
【化26】
【0035】
で表される(S)−(−)−2,4,4−トリメチル−2−シクロヘキセン−1−オールを合成するには、上記式(6)化合物に包含される
下記式(6)−2
【0036】
【化27】
【0037】
で表されるラセミ体2,4,4−トリメチル−2−シクロヘキセン−1−オールを、ペニシリウム・クリソゲヌムの生産するリパーゼを用いて不斉エステル化し、未反応物の下記式(5)−2化合物を単離することにより容易に製造することができる。この反応を工程図で示すと以下のように表すことができる。
【0038】
【化28】
【0039】
[式中、Rは前記したと同義であり、R′はアルケニル基を示す]
この反応に使用されるRCOOR′の具体例としては、例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、クロロ酢酸ビニル、メタクリル酸ビニル、安息香酸ビニルなどを好ましく例示することができる。
【0040】
反応は、例えば、式(6)−2の化合物1重量部を、上記RCOOR′約10〜20重量部に溶解し、これに上述のリパーゼを500〜10,000unit分散させて室温で約10〜約200時間激しく撹拌して行われる。
【0041】
反応後は、上述の式(5)−1の化合物と同様の手段により処理、精製することにより、式(5)−2の化合物を容易に製造することができる。
【0042】
また、上記不斉加水分解反応において、未反応物の上記式(6)−3で表される(S)−(−)−2,4,4−トリメチル−2−シクロヘキセン−1−オールのエステル類及び上記不斉エステル化反応で得られる上記式(6)−4で表される(R)−(+)−2,4,4−トリメチル−2−シクロヘキセン−1−オールのエステル類も通常の化学的加水分解反応を行うことにより、それぞれ上記式(5)−2化合物及び上記式(5)−1化合物に変換し、本発明の光学活性α−イオノンの原料にすることもできる。
【0043】
上述のようにして得られた上記式(5)−1化合物及び上記式(5)−2化合物は、3,5−ジニトロベンゾエート体とし、例えば、イソプロピルエーテルの如き有機溶媒を用いて再結晶することにより、さらに光学純度を上げることもできる。
【0044】
上述のようにして得られた本発明の式(5)に包含される(R)−体又は(S)−体の2,4,4,−トリメチル−2−シクロヘキセン−1−オールから、式(4)で表される光学活性2,6,6−トリメチル−2−シクロヘキセン−1−イルアセトアルデヒドを合成するには、例えば、有機溶媒中で若しくは溶媒不存在下に、ピバリン酸の存在下で式(5)化合物とアルキルビニルエーテルとを反応させ、好ましくは加熱反応せしめることにより行われる。反応は、例えば、密閉容器中で、例えば、約50℃〜約300℃程度の温度、より好ましくは、約150℃〜約250℃程度の温度範囲で行うことができる。反応時間も適当に選択でき、例えば、約0.5時間〜約10時間、より好ましくは、約1時間〜約5時間程度の範囲で接触反応して容易に式(5)を合成することができる。上記反応は、例えば、窒素ガスの如き不活性ガス中で行うことが好ましい。
【0045】
上記反応において、アルキルビニルエーテルの使用量は、適宜に選択でき、例えば、式(5)化合物に対して約1〜約10モル倍程度、より好ましくは約1.2〜約2モル倍程度の範囲の使用量を例示することができる。アルキルビニルエーテルの具体例としては、例えば、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、イソプロピルビニルエーテル、イソブチルビニルエーテルなどを例示することができる。
【0046】
また、ピバリン酸は市場で容易に入手できる化合物であって、該化合物の使用量としては、式(5)化合物に対して、例えば、約0.1〜約50重量%程度、より好ましくは約10〜約30重量%程度の使用量を例示することができる。
【0047】
また、上記反応を有機溶媒の存在下に実施する場合は、式(5)化合物に対して、例えば、約10〜約500重量%、より好ましくは約50〜約200重量%程度の範囲の使用量を例示することができる。かかる有機溶媒の具体例としては、例えば、トルエン、キシレン、ベンゼン、石油エーテル、ペンタン、ヘキサン、エーテル、テトラヒドロフラン、ジオキサン、ジグライムなどの如き有機溶媒が例示できる。
【0048】
反応終了後は、反応生成物を、例えば、炭酸水素ナトリウム水溶液で洗浄し、溶媒を留去し、減圧下に蒸留して、式(4)で表される光学活性2,6,6−トリメチル−2−シクロヘキセン−1−イルアセトアルデヒドを容易に高純度で得ることができる。
【0049】
上述のようにして得られる式(4)化合物から、上記式(3)で表される光学活性3−(2,6,6−トリメチル−2−シクロヘキセン−1−イル)−2−ヒドロキシプロピオニトリルの合成は、上記式(4)化合物を、好ましくは有機溶媒中、酢酸の存在下でシアン化カリウムと接触反応させることにより容易に行うことができる。
【0050】
反応は、例えば、約−30℃〜約100℃、より好ましくは約−10℃〜約50℃程度の温度条件下に、例えば、、約1〜約5時間程度の反応時間でより好ましく行うことができる。反応に使用する有機溶媒の具体例としては、例えば、メタノール、エタノール、プロパノールなどの如きアルコール類を例示することができる。これらの有機溶媒の使用量には、格別の制約はなく適宜に選択すればよいが、式(4)化合物に対し、例えば、約1〜約30モル倍程度の使用量を例示することができる。更に、酢酸の使用量としては、シアン化カリウムに対して、例えば、約1〜約10モル倍程度の使用量を例示することができる。
【0051】
反応終了後は、例えば、エーテルの如き有機溶媒で抽出し、適当なアルカリで中和し、水洗して溶媒を留去し、例えば、蒸留、カラムクロマトの如き手段を用いて精製し、式(3)化合物を容易に製造することができる。
【0052】
また、例えば、上述のようにして得ることができる上記式(3)化合物から上記式(2)で表される光学活性3−(2,6,6−トリメチル−2−シクロヘキセン1−イル)−アクリロニトリルを合成するには、例えば、上記式(3)化合物を塩基の存在下にメシルクロライド(MsC1)と接触せしめ、式(3)化合物のメシレートを形成させ、ついで、このメシレート化合物を炭酸カルシウムの存在下に臭化リチウムと接触せしめて容易に合成することができる。
【0053】
上記反応に際して使用する塩基触媒としては、例えば、ピリジン、ピペリジン、トリエチルアミン、ピロリジンなどの如き有機塩基を好ましく例示することができる。これら塩基触媒の使用量としては、メシルクロライドに対して、例えば、約1〜約5モル倍程度の使用量を好ましく例示することができる。
【0054】
反応は例えば、約−5℃〜約50℃程度の温度条件下に、例えば、約1〜約5時間程度の反応時間でより好ましく行うことができる。このようにして形成された上記式(3)化合物のメシレートは、ジメチルホルムアミド中、炭酸カルシウムの存在下に臭化リチウム(LiBr)と接触反応させることにより、上記式(2)の化合物を形成させることができる。
【0055】
この反応に使用されるジメチルホルムアミドの使用量は、格別の制約はないが、例えば、メシレート化合物に対して約10〜100重量部程度の範囲が例示される。また、炭酸カルシウムはメシレート化合物1モルに対し、例えば約10〜約50モル程度の範囲で通常使用される。また、臭化リチウムの使用量は、メシレート化合物1モルに対し、例えば約5〜約20モル程度の範囲を好ましく挙げることができる。反応は、約50〜150℃程度の温度で約2〜20時間程度の条件下で行われる。
【0056】
反応終了後は、常法に従って、適当な有機溶媒で目的物を抽出し、抽出液を洗浄し乾燥後、例えば、シリカゲルクロマトグラフィーのごとき手段により精製し、上記式(2)化合物を容易に得ることができる。
【0057】
上記のようにして得られた式(2)化合物の光学活性3−(2,6,6−トリメチル−2−シクロヘキセン−1−イル)−アクリロニトリルは、従来文献未記載の新規化合物であり、本発明の光学活性α−イオノン式(1)の重要な合成中間体である。
【0058】
上記式(2)化合物から、本発明の上記式(1)の光学活性α−イオノンを合成するには、例えば、式(2)化合物をメチルリチウムと接触せしめることにより、容易に行うことができる。
【0059】
反応は好ましくは有機溶媒中で行われ、例えば、エーテル、テトラヒドロフランなどの如き有機溶媒が好ましく利用できる。反応温度及び反応時間は、使用する溶媒によつて適宜に選択できるが、例えば、約−60℃〜約50℃程度の反応温度及び、例えば、約1〜約5時間程度を例示することができる。
【0060】
上記反応に用いるメチルリチウムの使用量としては、式(2)化合物に対して、例えば、約1〜約10モル倍程度の範囲を好ましく例示できる。
【0061】
反応終了後、例えば、生成物を塩化アンモニウムで処理し、例えば、エーテルの如き有機溶媒で抽出し、水洗、溶媒を留去して、例えば、蒸留、カラムクロマトの如き精製手段により、本発明の式(1)化合物を容易に合成できる。
【0062】
上述のようにして合成することができる上記式(1)光学活性α−イオノンは、従来公知のラセミ体α−イオノンに比べ優れた天然様のスミレ様香気を有し、且つ優れた持続性を有し、マイルドでこくのある天然らしさがあり、特に各種の飲食品、香粧品類、保健・衛生・医薬品などの香気乃至香味成分として優れた持続性及びユニークな香気香味を付与することができる。
【0063】
以下に実施例をあげて、本発明の式(1)化合物の製造例の数態様について、さらに詳細に説明する。
【0064】
実施例1
(R)−(+)−2,4,4−トリメチル−2−シクロヘキセン−1−オール [ 式(5)−1]の合成
2,4,4−トリメチル−2−シクロヘキセニルアセテート式[(6)−1]14.6g(80.2モル)を0.1モル燐酸バッファー(pH7.0)300ml中に分散させ、ペニシリウム・クリソゲヌムの生産するリパーゼ14.6g(8,000units)を加えて室温下で114時間撹拌して酵素分解を行った。反応終了後、反応液に酢酸エチルとセライトを加えてしばらく撹拌した後、濾過し、固形物を酢酸エチルで洗浄して先の濾液と合わせ、これを濃縮して、式[(5)−1]化合物及び式[(6)−2]化合物からなる粗製物14.0gを得た。ついで、この粗製物をシリカゲルクロマトグラフィーにより精製した。その結果、式[(5)−1]化合物(R)−(+)−2,4,4−トリメチル−2−シクロヘキセン−1−オール3.44g(b.p.63〜64℃/3Torr;86.9%e.e.)及び式[(6)−2]化合物の(S)−(−)−2,4,4−トリメチル−2−シクロヘキセン−1−イルアセテート7.88g(b.p.57〜57.5℃/2Torr;73.3%e.e.)を得た。
なお、光学純度は、シクロデキストリン誘導体をキラルフェーズとしたGLCで測定した。
【0065】
上述のようにして得られた式[(5)−1]の化合物50.8g(0.36モル、89.4%e.e.)にピリジン86g(1.1モル)、塩化メチレン400ml及びDMAP1.0gを加え、かき混ぜながら3,5−ジニトロベンゾイルクロライド100g(0.44モル)を少しづつ加えた。室温で3時間かき混ぜ反応を行った後、反応液を氷水中に注ぎ、エーテルで数回抽出した。抽出液を稀塩酸水溶液、炭酸水素ナトリウム水溶液、食塩水で洗浄後硫酸マグネシウムで乾燥し、エーテルを回収して粗結晶98gを得た。これをイソプロピルエーテルから再結晶し、得られた結晶90gを常法に従い加水分解し、蒸留精製することにより、純粋な式[(5)−1]の化合物31g[b.p.98〜99℃/28Torr、[α]D=+95.0°(20℃)、(C=1.04;MeOH);97%e.e.]を得た。
【0066】
実施例2
(S)−(−)−2,4,4−トリメチル−2−シクロヘキセン−1−オール[式(5)−2]の合成
2,4,4−トリメチル−2−シクロヘキセン−1−オール式[(6)−2]10gを酢酸ビニル100mlに室温で溶解し、これに実施例1で用いたと同一のリパーゼ10g(6,400units)を加え、室温下で137時間撹拌してエステル化反応を行った。反応終了後、反応液をクロロホルムで抽出した後、クロロホルムを留去し、式[(5)−2]化合物及び式[(6)−4]化合物の混合物からなる粗製物11gを得た。ついで、この粗製物をシリカゲルクロマトグラフィーにより精製し、式[(5)−2]化合物(S)−(−)−2,4,4−トリメチル−2−シクロヘキセン−1−オール6.5g[b.p.62〜64℃/3Torr;39%e.e.]及び式[(6)−4]化合物(R)−(+)−2,4,4−トリメチル−2−シクロヘキセニルアセテート3.5g[b.p.61〜63℃/3Torr;87.2%e.e.]が得られた。
【0067】
ここで得られた式[(5)−2]化合物を実施例1と同様の手段で再結晶することにより、純粋な式[(5)−2]化合物3g[b.p.93〜94℃/22Torr、[α]D=−95.2°(20℃)、(C=1.10;MeOH);98%e.e.]を得た。
【0068】
実施例3
(R)−(+)−2,4,4−トリメチル−2−シクロヘキセン−1−イルアセトアルデヒド式(4)の合成
100mlの耐圧容器に(R)−(+)−2,4,4−トリメチル−2−シクロヘキセン−1−オール20g(0.14モル)、エチルビニルエーテル21g(0.29モル)、ピバリン酸3g(29ミリモル)、トルエン21mlを仕込み、200℃で8時間撹拌を行う(この間、圧力は6kg/cm2まで上昇する)。
【0069】
反応終了後、反応液にトルエン500mlを加え、重曹水で洗浄、食塩水で洗浄後、無水硫酸マグネシウムで乾燥する。その後トルエンを留去し、得られた粗製物をシリカゲルクロマトグラフィー(SiO2500g、n−ヘキサン:酢酸エチル=20:1)により精製し、(R)−体の式(4)化合物15gを得た。収率60%。
【0070】
実施例4
(S)−(−)−2,6,6−トリメチル−2−シクロヘキセン−1−イルアセトアルデヒド式(4)の合成
原料に(S)−(−)−2,4,4−トリメチル−2−シクロヘキセン−1−オールを用いた他は、実施例1に準じて行い、(S)−体の式(4)化合物を 13g得た。収率52%。
【0071】
実施例5
(R)−(+)−3−(2,6,6−トリメチル−2−シクロヘキセン−1−イル)−2−ヒドロキシプロピオニトリル式(3)の合成
1lのフラスコに実施例3で得られた(R)−体式(4)化合物12g(72ミリモル)、KCN24g(0.36モル)及びエタノール220mlを仕込み、氷浴で0℃に冷却する。酢酸35g(0.58モル)を10分かけて滴下し、0℃1時間撹拌後室温まで昇温し、さらに2時間撹拌する。
【0072】
反応終了後、反応液を水中に注ぎエーテル抽出する。有機層を重曹水溶液、食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥する。濃縮後得られた粗製物をシリカゲルクロマトグラフィー(SiO2200g、n−ヘキサン:酢酸エチル=20:1)により精製し、(R)−体の式(3)化合物12gを得た。収率85.6%。
【0073】
実施例6
(S)−(−)−3−(2,6,6−トリメチル−2−シクロヘキセン−1−イル)−2−ヒドロキシプロピオニトリル式(3)の合成
原料に実施例4で得られた(S)−体式(4)化合物を用いた他は、実施例5に準じて行い、(S)−体の式(3)化合物を11.2g得た。収率80%。
【0074】
実施例7
(R)−(+)−3−(2,6,6−トリメチル−2−シクロヘキセン−1−イル)−アクリロニトリル式(2)の合成
500mlフラスコに実施例5で得られた(R)−体の式(3)化合物10g(52ミリモル)とピリジン230mlを仕込み、氷浴で0℃に冷却後、メタンスルホニルクロリド17.8g(0.16モル)を加える。0℃で3時間撹拌後反応液を水中に注ぎエーテル抽出する。エーテル層を硫酸銅水溶液で3回洗浄後、水、重曹水溶液、食塩水で順次洗浄する。、無水硫酸マグネシウムで乾燥後濃縮し、粗製物12gを得た。この粗製物にジメチルホルムアミド800ml、CaCO3100g、LiBr45gを加え100℃で9時間撹拌する。冷却後反応液を濾過し、濾液を水で希釈しエーテルで抽出する。エーテル層を2N塩酸水溶液、重曹水溶液、食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、濃縮して得られた粗製物をシリカゲルクロマトグラフィー(SiO2200g、n−ヘキサン:酢酸エチル=20:1)により精製し、(R)−体の式(2)化合物3.4gを得た。収率37.4%。
【0075】
実施例8
(S)−(−)−3−(2,6,6−トリメチル−2−シクロヘキセン−1−イル)−アクリロニトリル式(2)の合成
原料に実施例6で得られた(S)−体式(3)化合物を用いた他は、実施例7に準じて行い、(S)−体の式(2)化合物を6.4g得た。収率70%。
【0076】
実施例9
(R)−(+)−α−イオノン式(1)の合成
500mlフラスコに実施例7で得られた(R)−体の式(2)化合物3g(17ミリモル)とエーテル100mlを仕込み、−60℃に冷却する。この溶液中に1.4M MeLi/エーテル溶液31ml(43ミリモル)を加え、同温下に2時間撹拌後0℃で1時間撹拌する。
【0077】
反応液を冷却した塩化アンモニウム水溶液中に注ぎ、12時間撹拌を続行する溶液を分液し、有機層を重曹水溶液、含塩水で順次洗浄し、無水酢酸硫酸マグネシウムで乾燥する。濃縮して得られた粗製物をシリカゲルクロマトグラフィー(SiO260g、n−ヘキサン:酢酸エチル=20:1)により精製し、(R)−(+)−α−イオノン1.1gを得た。収率33.7%。
光学純度はシクロデキストリンをキラルフェーズにしたGLCで測定し、98.5%e.e.であった。
[α]D=+423.9°(20℃)、(C=0.97;CHCl3)
【0078】
実施例10
(S)−(−)−α−イオノン式(1)の合成
原料に実施例8で得られた(S)−体式(2)化合物を用いた他は、実施例9に準じて行い、(S)−(−)−α−イオノンを1.2g得た。収率36.8%。
光学純度はシクロデキストリンをキラルフェーズにしたGLCで測定し、98.2%e.e.であった。
[α]D=−412.6°(20℃)、(C=0.94;CHCl3)
【0079】
【発明の効果】
本発明によれば、公知のラセミ体α−イオノンより香気的に優れ、且つ持続性に優れ、従来、調合香料として使用されたことのない光学活性α−イオノンを、工業的に有利に合成できる新規製法が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel process for producing an optically active α-ionone represented by the above formula (1), which is useful as a raw material for blended fragrances, and more specifically, is included in the above formula (1).
The following formulas [(1) -1] and [(1) -2]
[0002]
Embedded image
[0003]
(R)-(+)-α-ionone and (S)-(−)-α-ionone represented by
[0004]
[Prior art]
Racemic α-ionone has a violet-like aroma and has long been used as a raw material for blended fragrances.
On the other hand, (R)-(+)-α-ionone and (S)-(−)-α-ionone which are optically active are, for example, Black tea (Solvent extract), Boronia megastigma Nees (absolute), Raspberry fruit juice (R)-(+)-α-ionone has a violet-like, fruit-like, raspberry-like, and flower-like fragrant flavor, and is also found in (S)-(-) -Α-ionone is known to have a woody, cedarwood-like, raspberry-like, and β-ionone-like flavor [Lebensmittel-Untersuchung und-Forshung (1991) 192: 111 ■ 115].
As for the synthesis method, for example, (R)-(+)-α-cyclogeranic acid and (S)-(−)-α-cyclogeranic acid are obtained by optical resolution of α-cyclogeranic acid (Agric. Biol Chem., 1987, 51, 1271 ■ 1275), and using this as a raw material, (R)-(+)-α-ionone and (S)-(−)-α-ionone are synthesized. The method is known (Helv. Chim. Acta., 1969, 52, 1729 1731).
[0005]
Embedded image
[0006]
In the formula, the wavy line indicates the (R)-(+)-form or the (S)-(-)-form.
On the other hand, structurally similar to α-ionone, for example, the following formula (A)
[0007]
Embedded image
[0008]
As a method for producing a racemic γ-iron represented by formula (1), a method by the same applicant as the present application is known (Japanese Patent Laid-Open No. 60-209562, Japanese Patent Publication No. 2-9013).
The method according to this proposal is shown as a process diagram as follows.
[0009]
Embedded image
[0010]
[Problems to be solved by the invention]
As described above, in the process for producing optically active α-ionone, in order to obtain the raw materials (R)-(+)-α-cyclogeranoic acid and (S)-(−)-α-cyclogeranoic acid, α- The optical resolution of cyclogelanoic acid is necessary, and the optical resolution by this method is not industrial, and the development of an improved industrial method for optically active α-ionone is strongly desired at present.
[0011]
[Means for Solving the Problems]
Therefore, in view of the above circumstances, the present inventors have conducted intensive research on a method for synthesizing optically active α-ionone. As a result, the conventional literature is not described.
Following formula (2)
[0012]
Embedded image
[0013]
[Wherein the wavy line represents (R) -form or (S) -form]
By contacting the optically active 3- (2,6,6-trimethyl-2-cyclohexen-1-yl) -acrylonitrile represented by the following formula (1) of the present invention with methyllithium:
[0014]
Embedded image
[0015]
[Where, wavy lines are as defined above]
It was found that the optically active α-ionone represented by can be easily industrially synthesized with good purity and good yield.did.
BookThe invention has the following formula (6), which was filed on the same filing date by the present applicant on the same filing date (name of the invention, optically active 2,4,4-trimethyl-2-cyclohexen-1-ol and a method for producing esters thereof):
[0016]
Embedded image
[0017]
[Wherein, R represents a hydrogen atom or —COR ′ group, and R ′ represents a linear or branched alkyl group having 1 to 10 carbon atoms which may be substituted with a halogen atom, or an alkenyl group]
Obtained by subjecting the racemic 2,4,4-trimethyl-2-cyclohexen-1-ol represented by the following formula to asymmetric hydrolysis or asymmetric esterification using a lipase produced by Penicillium chrysogenum:
Following formula (5)
[0018]
Embedded image
[0019]
[Where, wavy lines are as defined above]
The optically active α-ionone represented by the above formula (1) of the present invention is industrially produced through 4 steps using the optically active 2,4,4-trimethyl-2-cyclohexen-1-ol represented by The present invention has been completed by finding that it can be synthesized advantageously.
In the present invention, the optically active α-ionone of the above formula (1) may be synthesized using the compound of the above formula (5) as a starting material.
Therefore, the object of the present invention is fragrantly superior to conventionally known racemic α-ionone and excellent in sustainability, and is useful as a raw material for blended fragrances in a wide range of applications such as various foods and beverages, cosmetics, It is providing the manufacturing method of the optically active (alpha) -ionone of the said Formula (1) which has not been used as a conventional fragrance | flavor raw material conventionally.
Hereinafter, the present invention will be described in more detail.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The aspect of the present invention can be expressed as follows in the process diagram.
[0021]
Embedded image
[0022]
[Where, wavy line and R are as defined above]
The present invention will be sequentially described below in accordance with the above process chart.
The optically active 2,4,4-trimethyl-2-cyclohexen-1-ol represented by the above formula (5) of the present invention has already been filed by the same applicant of the present invention as a novel compound that has not been described in the prior art. (Kaihei 4-278097).
[0023]
In order to synthesize the compound of the above formula (5), a patent application (name of the invention, optical activity 2, 4, 4-) by the method described in the patent specification or the same filing date as the present invention by the present applicant. It can be easily synthesized by the method described in (Method for producing trimethyl-2-cyclohexen-1-ol and its esters).
[0024]
According to the latter method, racemic 2,4,4-trimethyl-2-cyclohexen-1-ols represented by the above formula (6) is asymmetrically hydrolyzed using lipase produced by Penicillium chrysogenum. Alternatively, it can be easily produced by asymmetric esterification.
Specifically, the following formula (5) -1 included in the compound of the above formula (5)
[0025]
Embedded image
[0026]
(R)-(+)-2,4,4-trimethyl-2-cyclohexen-1-ol represented by formula (6) is included in the compound of the above formula (6)
Following formula (6) -1
[0027]
Embedded image
[0028]
[Wherein, R represents a —COR ′ group, and R ′ represents a linear or branched alkyl group or alkenyl group having 1 to 10 carbon atoms which may be substituted with a halogen atom]
The racemic 2,4,4-trimethyl-2-cyclohexen-1-yl ester represented by the above can be easily produced by asymmetric hydrolysis using a lipase produced by Penicillium chrysogenum. This can be represented by the following process diagram.
[0029]
Embedded image
[0030]
[Wherein R ′ is as defined above]
Examples of the esters of the above formula [(6) -1] compound include, for example, acetate ester, propionate ester, isopropionate ester, butyrate ester, isobutyrate ester, valerate ester, isovalerate ester, caproic acid Preferred examples include esters, caprylic acid esters, capric acid esters, monochloroacetic acid esters, trichloroacetic acid esters, and methacrylic acid esters.
[0031]
In the reaction, for example, 1 part by weight of the compound of the above formula [(6) -1] is dispersed in about 5 to about 50 parts by weight of a 0.1 molar phosphate buffer aqueous solution (pH about 7), and lipase is added to about 500 to about 500 parts by weight. About 10,000 units are added and stirred vigorously at room temperature for about 5 to about 250 hours.
[0032]
After the reaction, the reaction solution is filtered through celite, and the solid is extracted several times with ether or the like. The extract is washed by a conventional method, and after adding a dehydrating agent such as sodium sulfate, magnesium sulfate, calcium chloride and drying, the solvent is recovered and removed, for example, purified by means such as silica gel chromatography, and the above formula (5) -1 compound can be easily obtained.
[0033]
The lipase used in this reaction is a novel lipase already filed by the same applicant as the present invention (Japanese Patent Laid-Open No. 6-141858). Penicillium chrysogenum (Penicillium chrysogenum).
Next, the following formula (5) -2 included in the compound of the above formula (5)
[0034]
Embedded image
[0035]
(S)-(−)-2,4,4-trimethyl-2-cyclohexen-1-ol represented by the formula (6) is included in the compound of the above formula (6)
Following formula (6) -2
[0036]
Embedded image
[0037]
A racemic 2,4,4-trimethyl-2-cyclohexen-1-ol represented by the above formula is asymmetrically esterified using a lipase produced by Penicillium chrysogenum, and an unreacted compound of the following formula (5) -2 Can be easily produced. This reaction can be represented by the following process diagram.
[0038]
Embedded image
[0039]
[Wherein, R is as defined above, and R ′ represents an alkenyl group]
Specific examples of RCOOR ′ used in this reaction include, for example, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl chloroacetate, vinyl methacrylate, vinyl benzoate and the like.
[0040]
In the reaction, for example, 1 part by weight of the compound of the formula (6) -2 is dissolved in about 10 to 20 parts by weight of the above RCOOR ', and the above lipase is dispersed in 500 to 10,000 units and about 10 to about 10 at room temperature. It is carried out with vigorous stirring for about 200 hours.
[0041]
After the reaction, the compound of formula (5) -2 can be easily produced by treating and purifying by the same means as the compound of formula (5) -1.
[0042]
In the asymmetric hydrolysis reaction, an unreacted ester of (S)-(−)-2,4,4-trimethyl-2-cyclohexen-1-ol represented by the above formula (6) -3 And esters of (R)-(+)-2,4,4-trimethyl-2-cyclohexen-1-ol represented by the above formula (6) -4 obtained by the asymmetric esterification reaction are also usually used. Can be converted into the compound of the above formula (5) -2 and the compound of the above formula (5) -1 and used as a raw material for the optically active α-ionone of the present invention.
[0043]
The compound of the formula (5) -1 and the compound of the formula (5) -2 obtained as described above are converted into 3,5-dinitrobenzoate and recrystallized using an organic solvent such as isopropyl ether. As a result, the optical purity can be further increased.
[0044]
From the (R) -form or (S) -form 2,4,4, -trimethyl-2-cyclohexen-1-ol included in the formula (5) of the present invention obtained as described above, the formula In order to synthesize the optically active 2,6,6-trimethyl-2-cyclohexen-1-ylacetaldehyde represented by (4), for example, in the presence of pivalic acid in an organic solvent or in the absence of a solvent. The reaction is carried out by reacting the compound of formula (5) with an alkyl vinyl ether, preferably by heating. The reaction can be performed, for example, in a sealed container, for example, at a temperature of about 50 ° C to about 300 ° C, more preferably at a temperature range of about 150 ° C to about 250 ° C. The reaction time can also be appropriately selected. For example, it is possible to easily synthesize Formula (5) by catalytic reaction in the range of about 0.5 hours to about 10 hours, more preferably about 1 hour to about 5 hours. it can. The above reaction is preferably performed in an inert gas such as nitrogen gas.
[0045]
In the above reaction, the amount of alkyl vinyl ether to be used can be appropriately selected. For example, the amount is about 1 to about 10 moles, more preferably about 1.2 to about 2 moles, relative to the compound of formula (5). The amount used can be exemplified. Specific examples of alkyl vinyl ethers include methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, isopropyl vinyl ether, isobutyl vinyl ether, and the like.
[0046]
Pivalic acid is a compound that can be easily obtained on the market. The amount of the compound used is, for example, about 0.1 to about 50% by weight, more preferably about An amount of about 10 to about 30% by weight can be exemplified.
[0047]
When the above reaction is carried out in the presence of an organic solvent, it is used in a range of, for example, about 10 to about 500% by weight, more preferably about 50 to about 200% by weight, relative to the compound of formula (5). The amount can be exemplified. Specific examples of such organic solvents include organic solvents such as toluene, xylene, benzene, petroleum ether, pentane, hexane, ether, tetrahydrofuran, dioxane, diglyme and the like.
[0048]
After completion of the reaction, the reaction product is washed with, for example, an aqueous sodium hydrogen carbonate solution, the solvent is distilled off, and distilled under reduced pressure to obtain an optically active 2,6,6-trimethyl represented by the formula (4). 2-Cyclohexen-1-ylacetaldehyde can be easily obtained with high purity.
[0049]
From the compound of formula (4) obtained as described above, optically active 3- (2,6,6-trimethyl-2-cyclohexen-1-yl) -2-hydroxypropio represented by the above formula (3) The synthesis of the nitrile can be easily performed by reacting the compound of the above formula (4) with potassium cyanide, preferably in the presence of acetic acid in an organic solvent.
[0050]
The reaction is more preferably performed, for example, under a temperature condition of about −30 ° C. to about 100 ° C., more preferably about −10 ° C. to about 50 ° C., for example, for a reaction time of about 1 to about 5 hours. Can do. Specific examples of the organic solvent used in the reaction include alcohols such as methanol, ethanol and propanol. The amount of these organic solvents used is not particularly limited and may be appropriately selected. For example, the amount used is about 1 to about 30 moles per mole of the compound of formula (4). . Furthermore, as the usage-amount of acetic acid, the usage-amount of about 1 to about 10 mol times can be illustrated with respect to potassium cyanide, for example.
[0051]
After completion of the reaction, for example, extraction with an organic solvent such as ether, neutralization with an appropriate alkali, washing with water and evaporation of the solvent, for example, purification using means such as distillation and column chromatography, 3) The compound can be easily produced.
[0052]
Further, for example, optically active 3- (2,6,6-trimethyl-2-cyclohexen-1-yl)-represented by the above formula (2) from the above compound of the above formula (3) that can be obtained as described above. In order to synthesize acrylonitrile, for example, the compound of formula (3) is contacted with mesyl chloride (MsC1) in the presence of a base to form a mesylate of the compound of formula (3). It can be easily synthesized by contacting with lithium bromide in the presence.
[0053]
Preferable examples of the base catalyst used in the above reaction include organic bases such as pyridine, piperidine, triethylamine, and pyrrolidine. As the usage-amount of these base catalysts, the usage-amount about about 1 to about 5 mol times can be preferably illustrated with respect to mesyl chloride, for example.
[0054]
The reaction can be carried out more preferably under a temperature condition of about -5 ° C to about 50 ° C, for example, with a reaction time of about 1 to about 5 hours. The mesylate of the compound of formula (3) thus formed is contacted with lithium bromide (LiBr) in the presence of calcium carbonate in dimethylformamide to form the compound of formula (2). be able to.
[0055]
The amount of dimethylformamide used in this reaction is not particularly limited, but examples include a range of about 10 to 100 parts by weight with respect to the mesylate compound. Calcium carbonate is usually used in an amount of, for example, about 10 to about 50 moles per mole of mesylate compound. Moreover, the usage-amount of lithium bromide can mention preferably the range of about 5 to about 20 mol with respect to 1 mol of mesylate compounds. The reaction is carried out at a temperature of about 50 to 150 ° C. for about 2 to 20 hours.
[0056]
After completion of the reaction, the desired product is extracted with an appropriate organic solvent according to a conventional method, the extract is washed and dried, and then purified by means such as silica gel chromatography to easily obtain the compound of formula (2). be able to.
[0057]
The optically active 3- (2,6,6-trimethyl-2-cyclohexen-1-yl) -acrylonitrile of the compound of formula (2) obtained as described above is a novel compound not described in the prior art, It is an important synthetic intermediate of the optically active α-ionone formula (1) of the invention.
[0058]
Synthesis of the optically active α-ionone of the above formula (1) of the present invention from the compound of the above formula (2) can be easily carried out, for example, by bringing the compound of the formula (2) into contact with methyllithium. .
[0059]
The reaction is preferably carried out in an organic solvent. For example, an organic solvent such as ether or tetrahydrofuran can be preferably used. The reaction temperature and reaction time can be appropriately selected depending on the solvent to be used, and examples include a reaction temperature of about −60 ° C. to about 50 ° C. and, for example, about 1 to about 5 hours. .
[0060]
The amount of methyllithium used for the above reaction is preferably, for example, in the range of about 1 to about 10 mol times with respect to the compound of formula (2).
[0061]
After completion of the reaction, for example, the product is treated with ammonium chloride, extracted with an organic solvent such as ether, washed with water, the solvent is distilled off, and purified by a purification means such as distillation or column chromatography. The compound of formula (1) can be easily synthesized.
[0062]
The above-mentioned formula (1) optically active α-ionone, which can be synthesized as described above, has a natural-like violet-like fragrance superior to conventionally known racemic α-ionone, and has excellent durability. It has a mild and rich natural character, and can provide excellent sustainability and a unique fragrance, particularly as an aroma or fragrance ingredient for various foods, cosmetics, health, hygiene, pharmaceuticals, etc. .
[0063]
The following examples further illustrate in detail several aspects of the production examples of the compound of formula (1) of the present invention.
[0064]
Example 1
(R)-(+)-2,4,4-trimethyl-2-cyclohexen-1-ol [ Synthesis of Formula (5) -1]
2,4,4-trimethyl-2-cyclohexenyl acetate 14.6 g (80.2 mol) of formula [(6) -1] was dispersed in 300 ml of 0.1 mol phosphate buffer (pH 7.0). Lipase 14.6 g (8,000 units) produced by Chrysogenum was added, and the mixture was stirred at room temperature for 114 hours for enzymatic degradation. After completion of the reaction, ethyl acetate and celite were added to the reaction mixture and stirred for a while, followed by filtration. The solid was washed with ethyl acetate and combined with the previous filtrate, and this was concentrated to give the formula [(5) -1 ] 14.0 g of a crude product comprising the compound and the compound of the formula [(6) -2] was obtained. The crude product was then purified by silica gel chromatography. As a result, 3.44 g (bp 63 to 64 ° C./3 Torr; compound [R)-(+)-2,4,4-trimethyl-2-cyclohexen-1-ol; 86.9% ee) and 7.88 g of (S)-(−)-2,4,4-trimethyl-2-cyclohexen-1-yl acetate of the compound of formula [(6) -2] (b. p.57-57.5 ° C./2 Torr; 73.3% ee).
The optical purity was measured by GLC using a cyclodextrin derivative as a chiral phase.
[0065]
To 50.8 g (0.36 mol, 89.4% ee) of the compound of the formula [(5) -1] obtained as described above, 86 g (1.1 mol) of pyridine, 400 ml of methylene chloride and 1.0 g of DMAP was added, and 100 g (0.44 mol) of 3,5-dinitrobenzoyl chloride was added little by little while stirring. After stirring for 3 hours at room temperature, the reaction mixture was poured into ice water and extracted several times with ether. The extract was washed with dilute hydrochloric acid aqueous solution, sodium hydrogen carbonate aqueous solution and brine, and then dried over magnesium sulfate, and ether was recovered to obtain 98 g of crude crystals. This was recrystallized from isopropyl ether, and 90 g of the obtained crystals were hydrolyzed according to a conventional method and purified by distillation to obtain 31 g [b. p. 98-99 ° C./28 Torr, [α]D= + 95.0 ° (20 ° C.), (C = 1.04; MeOH); 97% e.e. e. ] Was obtained.
[0066]
Example 2
Synthesis of (S)-(−)-2,4,4-trimethyl-2-cyclohexen-1-ol [Formula (5) -2]
10 g of 2,4,4-trimethyl-2-cyclohexen-1-ol formula [(6) -2] was dissolved in 100 ml of vinyl acetate at room temperature, and 10 g (6,400 units) of the same lipase used in Example 1 was dissolved therein. ) And stirred at room temperature for 137 hours to carry out an esterification reaction. After completion of the reaction, the reaction solution was extracted with chloroform, and then chloroform was distilled off to obtain 11 g of a crude product comprising a mixture of the formula [(5) -2] compound and the formula [(6) -4] compound. Subsequently, this crude product was purified by silica gel chromatography, and 6.5 g [b] of the compound of formula [(5) -2] (S)-(−)-2,4,4-trimethyl-2-cyclohexen-1-ol. . p. 62-64 ° C./3 Torr; 39% e. e. ] And [[6) -4] compound (R)-(+)-2,4,4-trimethyl-2-cyclohexenyl acetate 3.5 g [b. p. 61-63 ° C./3 Torr; 87.2% e.e. e. ]was gotten.
[0067]
The compound of the formula [(5) -2] obtained here was recrystallized by the same means as in Example 1 to obtain 3 g [b. p. 93 to 94 ° C./22 Torr, [α]D= -95.2 ° (20 ° C), (C = 1.10; MeOH); 98% e.e. e. ] Was obtained.
[0068]
Example 3
Synthesis of (R)-(+)-2,4,4-trimethyl-2-cyclohexen-1-ylacetaldehyde formula (4)
In a 100 ml pressure vessel, (R)-(+)-2,4,4-trimethyl-2-cyclohexen-1-ol 20 g (0.14 mol), ethyl vinyl ether 21 g (0.29 mol), pivalic acid 3 g ( 29 mmol) and 21 ml of toluene, and stirring is performed at 200 ° C. for 8 hours (during this time, the pressure is 6 kg / cm 2).2To rise).
[0069]
After completion of the reaction, 500 ml of toluene is added to the reaction solution, washed with aqueous sodium bicarbonate, washed with brine, and dried over anhydrous magnesium sulfate. Thereafter, toluene was distilled off, and the resulting crude product was subjected to silica gel chromatography (SiO 22500 g, n-hexane: ethyl acetate = 20: 1) to obtain 15 g of (R) -form compound of formula (4). Yield 60%.
[0070]
Example 4
Synthesis of (S)-(−)-2,6,6-trimethyl-2-cyclohexen-1-ylacetaldehyde Formula (4)
Except that (S)-(−)-2,4,4-trimethyl-2-cyclohexen-1-ol was used as a raw material, the reaction was performed according to Example 1, and the compound of formula (4) in the (S) -form 13 g was obtained. Yield 52%.
[0071]
Example 5
Synthesis of (R)-(+)-3- (2,6,6-trimethyl-2-cyclohexen-1-yl) -2-hydroxypropionitrile formula (3)
A 1 l flask is charged with 12 g (72 mmol) of the (R) -form (4) compound obtained in Example 3, 24 g (0.36 mol) of KCN and 220 ml of ethanol and cooled to 0 ° C. in an ice bath. 35 g (0.58 mol) of acetic acid is added dropwise over 10 minutes, stirred at 0 ° C. for 1 hour, warmed to room temperature, and further stirred for 2 hours.
[0072]
After completion of the reaction, the reaction solution is poured into water and extracted with ether. The organic layer is washed successively with aqueous sodium bicarbonate solution and brine and dried over anhydrous magnesium sulfate. The crude product obtained after concentration is chromatographed on silica gel (SiO 22200 g, n-hexane: ethyl acetate = 20: 1) to obtain 12 g of the compound of formula (3) in the (R) -form. Yield 85.6%.
[0073]
Example 6
Synthesis of (S)-(−)-3- (2,6,6-trimethyl-2-cyclohexen-1-yl) -2-hydroxypropionitrile Formula (3)
Except having used the (S) -formula (4) compound obtained in Example 4 as a raw material, it carried out according to Example 5, and obtained 11.2g of (S) -form formula (3) compounds. Yield 80%.
[0074]
Example 7
Synthesis of (R)-(+)-3- (2,6,6-trimethyl-2-cyclohexen-1-yl) -acrylonitrile formula (2)
A 500 ml flask was charged with 10 g (52 mmol) of the (R) -form compound (3) obtained in Example 5 and 230 ml of pyridine, cooled to 0 ° C. in an ice bath, and then 17.8 g of methanesulfonyl chloride (0. 16 mol) is added. After stirring at 0 ° C. for 3 hours, the reaction mixture is poured into water and extracted with ether. The ether layer is washed three times with an aqueous copper sulfate solution, and then washed successively with water, an aqueous sodium bicarbonate solution, and brine. Then, it was dried over anhydrous magnesium sulfate and concentrated to obtain 12 g of a crude product. To this crude product, 800 ml of dimethylformamide, CaCOThreeAdd 100 g and 45 g of LiBr and stir at 100 ° C. for 9 hours. After cooling, the reaction solution is filtered, and the filtrate is diluted with water and extracted with ether. The ether layer was washed successively with 2N aqueous hydrochloric acid, aqueous sodium bicarbonate, and brine, dried over anhydrous magnesium sulfate, and concentrated to obtain a crude product that was subjected to silica gel chromatography (SiO 2).2200 g, n-hexane: ethyl acetate = 20: 1) to obtain 3.4 g of the compound of formula (2) in the (R) -form. Yield 37.4%.
[0075]
Example 8
Synthesis of (S)-(−)-3- (2,6,6-trimethyl-2-cyclohexen-1-yl) -acrylonitrile formula (2)
Except having used the (S) -formula (3) compound obtained in Example 6 as a raw material, it carried out according to Example 7, and obtained 6.4g of (S) -form formula (2) compounds. Yield 70%.
[0076]
Example 9
Synthesis of (R)-(+)-α-ionone Formula (1)
A 500 ml flask is charged with 3 g (17 mmol) of the (R) -form compound (2) obtained in Example 7 and 100 ml of ether, and cooled to -60 ° C. To this solution, 31 ml (43 mmol) of a 1.4M MeLi / ether solution is added, stirred at the same temperature for 2 hours, and then stirred at 0 ° C. for 1 hour.
[0077]
The reaction solution is poured into a cooled aqueous ammonium chloride solution, and the solution that is continuously stirred for 12 hours is separated. The organic layer is washed successively with an aqueous sodium bicarbonate solution and brine, and dried over anhydrous magnesium acetate sulfate. The crude product obtained by concentration was purified by silica gel chromatography (SiO 2260 g, n-hexane: ethyl acetate = 20: 1) to obtain 1.1 g of (R)-(+)-α-ionone. Yield 33.7%.
The optical purity was measured by GLC with cyclodextrin in the chiral phase and 98.5% e.e. e. Met.
[Α]D= + 423.9 ° (20 ° C.), (C = 0.97; CHClThree)
[0078]
Example 10
Synthesis of (S)-(−)-α-ionone Formula (1)
Except having used the (S) -formula (2) compound obtained in Example 8 as a raw material, it carried out according to Example 9, and obtained 1.2 g of (S)-(-)-α-ionone. Yield 36.8%.
The optical purity was measured by GLC with cyclodextrin in the chiral phase and 98.2% e.e. e. Met.
[Α]D= −412.6 ° (20 ° C.), (C = 0.94; CHClThree)
[0079]
【The invention's effect】
According to the present invention, optically active α-ionone, which is superior in fragrance and long-lasting to known racemic α-ionone and has not been used as a conventional fragrance, can be synthesized industrially advantageously. A new recipe is provided.
Claims (1)
で表されるラセミ体の2,4,4−トリメチル−2−シクロヘキセン−1−オール類をペニシリウム・クリソゲヌムの生産するリパーゼを用いて不斉加水分解もしくは不斉エステル化させることにより得られる
下記式(5)
で表される光学活性2,4,4−トリメチル−2−シクロヘキセン−1−オールを、ピバリン酸の存在下、アルキルビニルエーテルと反応させて
下記式(4)
で表される光学活性2,6,6−トリメチル−2−シクロヘキセン−1−イルアセトアルデヒドを形成せしめ、該式(4)化合物を、酢酸の存在下にシアン化カリウムと接触反応させることにより、
下記式(3)
で表される光学活性3−(2,6,6−トリメチル−2−シクロヘキセン−1−イル)−2−ヒドロキシプロピオニトリルを形成せしめ、該式(3)化合物を塩基の存在下にメシルクロライド(MsCl)と接触せしめ、次いで生成物を炭酸カルシウムの存在下に臭化リチウム(LiBr)と接触せしめることにより、
下記式(2)
で表される光学活性3−(2,6,6−トリメチル−2−シクロヘキセン−1−イル)−アクリロニトリルを形成せしめ、該式(2)化合物をメチルリチウムと接触させることを特徴とする
下記式(1)
で表される光学活性α−イオノンの製法。 Following formula (6)
A racemic 2,4,4-trimethyl-2-cyclohexen-1-ol represented by the following formula is obtained by asymmetric hydrolysis or asymmetric esterification using a lipase produced by Penicillium chrysogenum: (5)
The optically active 2,4,4-trimethyl-2-cyclohexen-1-ol represented by the following formula (4) is reacted with alkyl vinyl ether in the presence of pivalic acid.
To form an optically active 2,6,6-trimethyl-2-cyclohexen-1-ylacetaldehyde represented by the formula (4) and reacting the compound of formula (4) with potassium cyanide in the presence of acetic acid,
Following formula (3)
An optically active 3- (2,6,6-trimethyl-2-cyclohexen-1-yl) -2-hydroxypropionitrile represented by the formula (3) is formed in the presence of a base. By contacting with (MsCl) and then contacting the product with lithium bromide (LiBr) in the presence of calcium carbonate,
Following formula (2)
An optically active 3- (2,6,6-trimethyl-2-cyclohexen-1-yl) -acrylonitrile represented by the following formula is formed, and the compound of formula (2) is contacted with methyllithium: (1)
The manufacturing method of optically active alpha-ionone represented by these .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26803096A JP3756266B2 (en) | 1996-09-18 | 1996-09-18 | Method for producing optically active α-ionone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26803096A JP3756266B2 (en) | 1996-09-18 | 1996-09-18 | Method for producing optically active α-ionone |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1084989A JPH1084989A (en) | 1998-04-07 |
JP3756266B2 true JP3756266B2 (en) | 2006-03-15 |
Family
ID=17452915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26803096A Expired - Fee Related JP3756266B2 (en) | 1996-09-18 | 1996-09-18 | Method for producing optically active α-ionone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3756266B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007032375A1 (en) | 2005-09-13 | 2007-03-22 | Takasago International Corporation | PROCESS FOR PRODUCTION OF OPTICALLY ACTIVE α-IONONE |
JP2007077226A (en) * | 2005-09-13 | 2007-03-29 | Takasago Internatl Corp | Flavor and fragrance composition |
WO2019230974A1 (en) * | 2018-06-01 | 2019-12-05 | Takasago International Corporation | Fragrance material |
-
1996
- 1996-09-18 JP JP26803096A patent/JP3756266B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1084989A (en) | 1998-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3756266B2 (en) | Method for producing optically active α-ionone | |
Harada et al. | A convenient synthesis of 2-deoxy-D-ribose | |
JP2013227345A (en) | Synthesis of half ester | |
EP0614986A1 (en) | Enzymatic racemate cleavage of 2-pipéridine alkylcarboxylates and their use as synthesis intermediates | |
JP2006525294A (en) | Process for producing 4-hydroxyisoleucine and its derivatives | |
JPS61145174A (en) | Novel optically active epoxypropionic acid ester derivative and preparation thereof | |
JP3673603B2 (en) | Process for producing optically active 2,4,4-trimethyl-2-cyclohexen-1-ol and esters thereof | |
RU2225859C2 (en) | Synthesis of 3-amino-3-arylpropanoates | |
JP2834501B2 (en) | Production method and intermediate of 3,4-epoxybutyrate | |
JP3550933B2 (en) | Process for producing diastereomeric hydroxycarboxylic acid amides and process for producing optically active δ-lactones | |
JP2709807B2 (en) | Process for producing 3-chloro-4-silyloxy-2-cyclopenten-1-ones | |
EP0008973A2 (en) | A process for preparing phenoxylactic acids and their derivatives, and products obtained | |
JP2804654B2 (en) | Method for producing (S)-(-)-dehydro-α-damaschol | |
JP2000500152A (en) | Preparation of allyl succinate derivatives and their starting materials | |
JP2824159B2 (en) | (S)-(-)-α-Damascon production method | |
JPH09143173A (en) | Optically active 5,5-diphenyl-2-oxazolidinone derivative | |
JP2756790B2 (en) | Method for producing optically active cyclopentenol derivative | |
JP2776995B2 (en) | Process for producing (R)-(+)-dihydro-α-ionone and novel intermediate thereof | |
JP5328564B2 (en) | Production method of wine lactone | |
JPH0417938B2 (en) | ||
JP2627507B2 (en) | Cis-3-chloro-4-silyloxy-2-cyclopenten-1-ols and their production | |
KR100320772B1 (en) | Process for Preparation of (S)-Benzoxazine Derivatives and Process for Racemization of (R)-Benzoxazine Derivatives | |
JP2542843B2 (en) | Novel norbornane derivative and method for producing the same | |
JPH0578541B2 (en) | ||
JP3071621B2 (en) | Process for producing (-)-8α, 13-epoxy-14,15,16-trinorrabuda-12-ene and a novel intermediate thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050419 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050609 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051221 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100106 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100106 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110106 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110106 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120106 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130106 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130106 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |