[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3755351B2 - Control device for direct-injection spark-ignition internal combustion engine - Google Patents

Control device for direct-injection spark-ignition internal combustion engine Download PDF

Info

Publication number
JP3755351B2
JP3755351B2 JP26226099A JP26226099A JP3755351B2 JP 3755351 B2 JP3755351 B2 JP 3755351B2 JP 26226099 A JP26226099 A JP 26226099A JP 26226099 A JP26226099 A JP 26226099A JP 3755351 B2 JP3755351 B2 JP 3755351B2
Authority
JP
Japan
Prior art keywords
combustion
fuel injection
fuel
switching
stratified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26226099A
Other languages
Japanese (ja)
Other versions
JP2001082211A (en
Inventor
岩雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP26226099A priority Critical patent/JP3755351B2/en
Priority to US09/649,995 priority patent/US6510834B1/en
Priority to EP06015607.2A priority patent/EP1710422B1/en
Priority to DE2000631611 priority patent/DE60031611T2/en
Priority to EP20000118781 priority patent/EP1081364B1/en
Publication of JP2001082211A publication Critical patent/JP2001082211A/en
Application granted granted Critical
Publication of JP3755351B2 publication Critical patent/JP3755351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、直噴火花点火式内燃機関の制御装置に関する。
【0002】
【従来の技術】
近年、機関の燃焼室内に直接燃料を噴射供給する構成とし、例えば、通常は吸気行程中に燃料噴射して均質混合気(燃焼室内全体に均等に燃料が分散している状態)で燃焼(均質燃焼)を行わせ、所定運転状態(低回転・低負荷状態等)において、圧縮行程中に燃料噴射し、点火栓周りに着火可能な可燃混合比の混合気からなる層状の成層混合気を形成し、極希薄な空燃比(リーン限界近傍の空燃比)での燃焼(成層リーン燃焼)を行なわせるようにした内燃機関(直噴火花点火式内燃機関)が知られている(特開昭62−191622号公報や特開平2−169834号公報等参照)。
【0003】
上記のような直噴火花点火式内燃機関に関し、冷機始動から暖機過程において、点火栓周りの局所的な空燃比をリッチとすることで局所的な空気量不足の状態を作り、燃焼で発生する不完全燃焼物(CO)と燃え残った燃料の一部を筒内の余剰酸素と主燃焼以降に反応させて、排気温度を上昇させることにより、排気浄化触媒の活性化促進を図ったものがある(特開平10−169488号公報参照)。
【0004】
また、本願出願人は、上記技術では着火が不安定でひいては未燃燃料(HC)排出量が増大するという課題に鑑み、点火栓周りに局所的に空燃比をリッチとした成層混合気を形成しつつ、通常の成層リーン燃焼より点火時期を遅らせるなどして噴霧燃料を十分に霧化することにより、安定した着火燃焼を行なって排気温度上昇による排気浄化触媒の活性化を促進しつつ未燃燃料(HC)の排出を抑制する技術を提案している(特願平11−46612号)。
【0005】
【発明が解決しようとする課題】
ところで、上記のように排気温度を上昇させて排気浄化触媒の活性化促進を図るため、点火栓周りに局所的に空燃比をリッチとした成層混合気を形成して、成層燃焼を行なうようにしたものでは、低温始動時には、まず安定した燃焼性を確保するため燃焼室全体に均質な混合気を形成して燃焼する均質燃焼を行ない、次いで排気温度上昇の要求から前記点火栓周りの空燃比を局所的にリッチとした成層燃焼を行ない、排気浄化触媒が活性化した後、均質リーン燃焼に切り換えられ、更に運転要求に応じて成層リーン燃焼、均質ストイキ燃焼に切り換えられる。
【0006】
しかしながら、成層燃焼は燃料と空気とを十分に混合させた均質燃焼に比較して熱効率が低いため、前記排気温度上昇用の成層燃焼とその前後の均質燃焼とを切り換えるときにトルク段差が発生し、運転性が損なわれてしまうという問題を生じる。
【0007】
本発明は、このような従来の課題に着目してなされたもので、排気温度上昇用の成層燃焼と、均質燃焼との切換時におけるトルク段差の発生を抑制し、安定した運転性が得られるようにした直噴火花点火式内燃機関の制御装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
このため、請求項1に係る発明は、図1(A)に示すように、
機関の燃焼室内に直接燃料を噴射供給する燃料噴射弁と、燃焼室内の混合気に火花点火する点火栓とを備え、
暖機完了前の条件で、圧縮行程での燃焼室内への燃料噴射により点火栓周りに空燃比がストイキよりリッチで、かつ、燃焼室内の平均空燃比が略ストイキである混合気を形成して、排気温度上昇用の成層燃焼を行なわせるように燃料噴射量、燃料噴射時期、点火時期を制御する成層燃焼制御手段と、
吸気行程のみでの燃料噴射により燃焼室全体に均質な混合気を形成して燃焼させるように燃料噴射量、燃料噴射時期、点火時期を制御する均質燃焼制御手段と、
前記成層燃焼制御手段による成層燃焼と、均質燃焼制御手段による均質燃焼とを機関運転要求に応じて切り換える燃焼切換手段と、
前記成層燃焼と均質燃焼との切換時に、該切換によるトルク段差を無くす方向に成層燃焼における圧縮行程での燃料噴射における噴射時期を補正する燃料噴射時期補正手段を含んで構成し、かつ、
前記燃焼切換手段は、前記排気温度上昇用の成層燃焼から前記均質燃焼への切換時は、該燃焼切換の要求が発生後、燃焼を切り換えるまでの間、圧縮行程での燃料噴射時期を徐々に進角側に補正することを特徴とする。
【0010】
請求項 1 に係る発明によると、
排気温度を上昇させる要求があると、(成層燃焼制御手段が、前記燃料噴射弁の燃料噴射量、燃料噴射時期及び点火栓の点火時期を制御することにより、)点火栓周り空燃比をストイキよりリッチで、かつ、燃焼室内の平均空燃比が略ストイキである成層混合気を形成して燃焼させる。このように、成層混合気がストイキよりリッチな空燃比であるため、主燃焼により不完全燃焼物(CO)が発生し、該不完全燃焼物が主燃焼後に燃焼室内及び排気通路内で再燃焼することにより、排気温度が上昇し排気浄化触媒が活性化される。
【0011】
また、低温始動時又は排気浄化触媒の活性後は、均質燃焼が要求され、(均質燃焼制御手段が、燃料噴射量、燃料噴射時期、点火時期を制御して、燃焼室全体に均質な混合気を形成して燃焼させる。
【0012】
そして、前記要求の切換に応じて均質燃焼から排気温度上昇用の成層燃焼に切り換えられ、また、該成層燃焼から均質燃焼に切り換えられるときに、(燃料噴射時期補正手段により)該燃焼切換によるトルク段差を無くす方向に前記成層燃焼における圧縮行程での燃料噴射時期が補正される。
特に、排気温度上昇用の成層燃焼から均質燃焼への切換時は、該燃焼切換の要求が発生後、燃焼を切り換えるまでの間、圧縮行程での燃料噴射時期が徐々に進角側に補正されることにより、圧縮行程で噴射される燃料と混合する燃焼室全体の空気の割合が増大し均質化される割合が増大するので、均質燃焼に近い燃焼に徐々に近づけられてトルクが漸増する。このようにして、トルクを徐々に増大した後、均質燃焼に切り換えるので、燃焼切換時のトルク段差を小さく抑制できると共に、燃焼切換前の噴射時期変化によるトルク変化も緩やかとなる。
【0013】
また、請求項2に係る発明は、請求項1同様の各手段を含み、
前記燃焼切換手段は、前記均質燃焼から前記排気温度上昇用の成層燃焼への切換時は、該燃焼を切換後、圧縮行程での進角側に補正された燃料噴射時期を徐々に遅角側に戻すことを特徴とする。
このようにすれば、均質燃焼から排気温度上昇用の成層燃焼への切換時は、前記とは逆の経過を辿り、燃焼切換時に圧縮行程での燃料噴射時期が進角側に補正されることにより成層燃焼でのトルクが増大して、切換前の均質燃焼時とのトルク段差を小さく抑制できると共に、その後徐々に遅角側に戻して本来の排気温度上昇用の成層燃焼に適合した燃料噴射時期に近づけられるので、噴射時期変化によるトルク変化も緩やかとなる。
以上のように請求項1,2では、前記燃焼切換時にトルク段差の発生が抑制され、運転性が安定する。また、燃料噴射時期を補正する簡易な制御でよい。
また、請求項3に係る発明は、
前記成層燃焼は、吸気行程と圧縮行程とに燃料噴射を分割して行なって、吸気行程での燃料噴射で燃焼室全体に空燃比がストイキよりリーンな混合気を形成すると共に圧縮行程での燃料噴射で点火栓周りに空燃比がストイキよりリッチな混合気を形成し、該混合気を燃焼するものであることを特徴とする。
【0014】
吸気行程で噴射された燃料により燃焼室全体に均質な混合気が形成され、その後圧縮行程で噴射された燃料により、点火栓周りに空燃比がストイキよりリッチな成層混合気が形成される。
【0015】
請求項3に係る発明によると、
前記点火栓周りのリッチな成層混合気が主燃焼し、該主燃焼によって生成された不完全燃焼物(CO)が、リーン混合気と共に再燃焼して燃焼室の隅々にまで火炎が良好に伝播されるので、燃焼室内の低温領域(クエンチングエリア)を均質燃焼時と変わりのない小さな領域とすることができる。さらに、リーン混合気が燃焼する領域の過剰な酸素を主燃焼後も残存させる形とするので、主燃焼の終了時点における残存酸素の温度も比較的高温となっており、COの再燃焼がより速やかに進行する。
【0020】
また、請求項4に係る発明は、図1(B)に示すように、
機関の燃焼室内に直接燃料を噴射供給する燃料噴射弁と、燃焼室内の混合気に火花点火する点火栓とを備え、
暖機完了前の条件で、圧縮行程での燃焼室内への燃料噴射により点火栓周りに空燃比がストイキよりリッチで、かつ、燃焼室内の平均空燃比が略ストイキである混合気を形成して、排気温度上昇用の成層燃焼を行なわせるように燃料噴射量、燃料噴射時期、点火時期を制御する成層燃焼制御手段と、
吸気行程のみでの燃料噴射により燃焼室全体に均質な混合気を形成して燃焼させるように燃料噴射量、燃料噴射時期、点火時期を制御する均質燃焼制御手段と、
前記成層燃焼制御手段による成層燃焼と、均質燃焼制御手段による均質燃焼とを機関運転要求に応じて切り換える燃焼切換手段と、
前記成層燃焼と均質燃焼との切換時に、該切換によるトルク段差を無くす方向に燃料噴射量を補正する燃料噴射量補正手段を含んで構成し、かつ、
前記燃焼切換手段は、前記排気温度上昇用の成層燃焼から前記均質燃焼への切換時は、該燃焼切換の要求が発生後、燃焼を切り換えるまでの間、燃料噴射量を徐々に増量補正することを特徴とする。
【0021】
請求項4に係る発明によると、
既述のように、排気温度を上昇させる要求があると、点火栓周り空燃比をストイキよりリッチな成層混合気を形成して燃焼させることにより、排気温度が上昇し排気浄化触媒が活性化され、低温始動時又は排気浄化触媒の活性後の、均質燃焼要求時は、燃焼室全体に均質な混合気を形成して燃焼させる。
【0022】
そして、前記要求の切換に応じて均質燃焼から排気温度上昇用の成層燃焼に切り換えられ、また、該成層燃焼から均質燃焼に切り換えられるときに、(燃料噴射量補正手段により)該燃焼切換によるトルク段差を無くす方向に燃料噴射量が補正される。
【0023】
特に、排気温度上昇用の成層燃焼から均質燃焼への切換時は、該燃焼切換の要求が発生後、燃焼を切り換えるまでの間、燃料噴射量が徐々に増量補正されることにより、トルクを徐々に増大した後、均質燃焼に切り換えるので、燃焼切換時のトルク段差を小さく抑制できると共に、燃焼切換前の噴射時期変化によるトルク変化も緩やかとなる。
また、請求項5に係る発明は、請求項4同様の各手段を含み、
前記燃焼切換手段は、前記均質燃焼から前記排気温度上昇用の成層燃焼への切換時は、該燃焼を切換後、増量補正された燃料噴射量を徐々に補正無しの状態に戻すことを特徴とする。
請求項5に係る発明によると、
均質燃焼から排気温度上昇用の成層燃焼への切換時は、前記とは逆の経過を辿り、燃焼切換時に燃料噴射量が増量補正されることにより成層燃焼でのトルクが増大して、切換前の均質燃焼時とのトルク段差を小さく抑制できると共に、その後徐々に燃料噴射量を減少するので、燃料噴射量変化によるトルク変化も緩やかとなる。
なお、トルク段差解消のためだけであれば、燃焼切換時に燃料噴射量を1回切換補正するだけでよいが、定常状態での切換前後の(同一運転条件における)燃料噴射量を等しく設定することで、空燃比をλ=1(理論空燃比)等に維持して排気浄化性能を良好に維持することができ、このような場合に、上記のように燃料噴射量を徐々に変化させることで、切換時のトルク段差を抑制しつつ定常時の燃料噴射量を等しくするように制御することができる。
以上のように、請求項4,5では、前記燃焼切換時にトルク段差の発生が抑制され、運転性が安定する。また、燃料噴射量を補正する簡易な制御でよい。
【0028】
また、請求項6に係る発明は、
前記成層燃焼時に増量補正される燃料噴射量は、圧縮行程時に燃料噴射される燃料噴射量、吸気行程時に燃料噴射される燃料噴射量、又は、吸気行程時及び圧縮行程時に燃料噴射される燃料噴射量のいずれかであることを特徴とする。
【0029】
請求項6に係る発明によると、
排気温度上昇用の成層燃焼時に、吸気行程での燃料噴射と圧縮行程での燃料噴射とを行なう場合には、圧縮行程時に燃料噴射される燃料噴射量、吸気行程時に燃料噴射される燃料噴射量、又は、吸気行程時及び圧縮行程時に燃料噴射される燃料噴射量のいずれかを増量補正することで、均質燃焼との切換時のトルク段差を小さく抑制することができる。
【0030】
また、請求項7に係る発明は、請求項4同様の各手段を含み、
前記燃焼切換手段は、前記排気温度上昇用の成層燃焼から前記均質燃焼への切換時は、燃焼を切換後、減量補正された燃料噴射量を徐々に増量して補正無しの状態に戻すことを特徴とする。
【0031】
請求項7に係る発明によると、
排気温度上昇用の成層燃焼から前記均質燃焼への切換時は、燃焼を切換時に燃料噴射量が減量補正されてトルクが減少して切換前の成層燃焼とのトルクの段差を小さく抑制でき、その後は燃料噴射量を徐々に増量して補正無しの状態{例えば、上記請求項4で説明した定常時の適性値(例えばλ=1相当値)}に戻すことで、トルク変化を緩やかに維持できる。
【0032】
また、請求項8に係る発明は、請求項4同様の各手段を含み、
前記燃焼切換手段は、前記均質燃焼から前記排気温度上昇用の成層燃焼への切換時は、該燃焼切換の要求が発生後、燃焼を切り換えるまでの間、燃料噴射量を徐々に減量補正することを特徴とする。
請求項8に係る発明によると、
均質燃焼から排気温度上昇用の成層燃焼への切換時は、前記とは逆の経過を辿り、燃料噴射量を徐々に減量補正した後、成層燃焼に切り換えるので、燃焼切換時のトルク段差を小さく抑制できると共に、燃焼切換前の燃料噴射量変化によるトルク変化も緩やかとなる。
また、請求項9に係る発明は、
前記成層燃焼は、吸気行程と圧縮行程とに燃料噴射を分割して行なって、吸気行程での燃料噴射で燃焼室全体に空燃比がストイキよりリーンな混合気を形成すると共に圧縮行程での燃料噴射で点火栓周りに空燃比がストイキよりリッチな混合気を形成し、該混合気を燃焼するものであることを特徴とする。
請求項9に係る発明によると、
前記請求項3で説明したとおりの作用・効果が得られる。
【0033】
【発明の実施の形態】
以下に、本発明の実施の形態を、添付の図面に基づいて説明する。
本発明の第1の実施形態のシステム構成を示す図2において、機関1の吸気通路2には吸入空気流量Qaを検出するエアフローメータ3及び吸入空気流量Qaを制御するスロットル弁4が設けられると共に、各気筒の燃焼室に臨ませて、燃料噴射弁5が設けられている。
【0034】
かかる燃料噴射弁5は、後述するコントロールユニット50において設定される駆動パルス信号によって開弁駆動され、図示しない燃料ポンプから圧送されてプレッシャレギュレータ(図示せず)により所定圧力に制御された燃料を燃焼室内に直接噴射供給することができるようになっている。
【0035】
なお、燃焼室に臨んで装着されて、コントロールユニット50からの点火信号に基づいて吸入混合気に対して点火を行う点火栓6が、各気筒に設けられている。
【0036】
一方、排気通路7には、排気中の特定成分(例えば、酸素)濃度を検出することによって排気延いては吸入混合気の空燃比を検出する空燃比センサ8(リッチ・リーン出力する酸素センサであっても良いし、空燃比をリニアに広域に亘って検出する広域空燃比センサであってもよい)が設けられ、その下流側には、排気を浄化するための排気浄化触媒9が介装されている。なお、排気浄化触媒9としては、ストイキつまり理論空燃比{λ=1、A/F(空気重量/燃料重量)・14.7}近傍において排気中のCO,HCの酸化とNOx の還元を行って排気を浄化することができる三元触媒、或いは排気中のCO,HCの酸化を行う酸化触媒等を用いることができる。
【0037】
更に、前記排気浄化触媒9の排気下流側には、排気中の特定成分(例えば、酸素)濃度を検出し、リッチ・リーン出力する下流側酸素センサ10が設けられるようになっている。
【0038】
ここでは、下流側酸素センサ10の検出値により、空燃比センサ8の検出値に基づく空燃比フィードバック制御を補正することで、空燃比センサ8の劣化等に伴う制御誤差を抑制する等のために(所謂ダブル空燃比センサシステム採用のために)、前記下流側酸素センサ10を設けて構成したが、空燃比センサ8の検出値に基づく空燃比フィードバック制御を行なわせるだけで良い場合には、かかる下流側酸素センサ10は省略することができるものである。また、空燃比フィードバック制御を行なわない場合には、空燃比センサ8と下流側酸素センサ10を共に省略することができるものである。
【0039】
なお、本実施形態においては、クランク角センサ11が備えられており、コントロールユニット50では、該クランク角センサ11から機関回転と同期して出力されるクランク単位角信号を一定時間カウントして、又は、クランク基準角信号の周期を計測して機関回転速度Neを検出できるようになっている。
【0040】
そして、機関1の冷却ジャケットに臨んで設けられ、冷却ジャケット内の冷却水温度Twを検出する水温センサ12が設けられている。
更に、前記スロットル弁4の開度を検出するスロットルセンサ13(アイドルスイッチとしても機能させることができる)が設けられている。
【0041】
ところで、本実施形態においては、前記スロットル弁4の開度を、DCモータ等のアクチュエータにより制御することができるスロットル弁制御装置14が備えられている。
【0042】
当該スロットル弁制御装置14は、運転者のアクセルペダル操作量等に基づき演算される要求トルクを達成できるように、コントロールユニット50からの駆動信号に基づき、スロットル弁4の開度を電子制御するものとして構成することができる。
【0043】
前記各種センサ類からの検出信号は、CPU,ROM,RAM,A/D変換器及び入出力インタフェース等を含んで構成されるマイクロコンピュータからなるコントロールユニット50へ入力され、当該コントロールユニット50は、前記センサ類からの信号に基づいて検出される運転状態に応じて、前記スロットル弁制御装置14を介してスロットル弁4の開度を制御し、前記燃料噴射弁5を駆動して燃料噴射量 (燃料供給量) を制御し、点火時期を設定して該点火時期で前記点火栓6を点火させる制御を行う。
【0044】
なお、例えば、所定運転状態(低・中負荷領域など)で燃焼室内に圧縮行程で燃料噴射して、燃焼室内の点火栓6周辺に可燃混合気を層状に形成して成層燃焼を行なうことができる一方、他の運転状態(高負荷領域など)では燃焼室内に吸気行程で燃料噴射して、シリンダ全体に略均質な混合比の混合気を形成して均質燃焼を行なうことができるように、燃料噴射時期(噴射タイミング)についても、運転状態などに応じて変更可能に構成されている。
【0045】
ところで、本実施形態に係るコントロールユニット50では、始動開始から排気浄化触媒9が活性化するまでの間における大気中へのHCの排出を抑制しながら、排気浄化触媒9の早期活性化を図るようにするために、キースイッチ16など各種センサからの入力信号を受け、例えば、以下のような制御を行なうようになっている。なお、本発明にかかる排気温度上昇用の成層燃焼を行う際に燃焼室内の平均空燃比をほぼストイキとするので、この燃焼形態を成層ストイキ燃焼と表現する。
【0046】
具体的には、例えば、図3に示すようなフローチャートを実行するようになっている。
ステップ(図では、Sと記してある。以下、同様)1では、従来同様の手法により、キースイッチ16のイグニッション信号がONとなったか(キー位置がイグニションON位置とされたか)否かを判断する。YESであればステップ2へ進み、NOであれば本フローを終了する。
【0047】
ステップ2では、従来同様の手法により、キースイッチ16のスタート信号がONとなったか(キー位置がスタート位置とされたか)否かを判断する。即ち、スターターモータ(図示せず)によるクランキング要求があるか否かを判断する。
【0048】
YESであれば、始動クランキング要求があるとしてステップ3へ進み、NOであれば未だクランキング要求はないと判断して、ステップ1へリターンする。ステップ3では、従来同様に、スターターモータの駆動を開始して、機関1をクランキングする。
【0049】
ステップ4では、従来同様に、始動のための燃料噴射{吸気行程での直接燃料噴射、図5(B)参照}を行なわせて、機関1の運転(直噴均質燃焼)を行なわせる。
【0050】
次のステップ5では、排気浄化触媒9が活性化していないか否かを判断する。当該判断は、例えば、排気通路7に臨んで設けられる下流側酸素センサ10が活性化していないか否かを判断することで代替することができる。即ち、排気浄化触媒9が活性化しているか否かは、下流側酸素センサ10の検出値号の変化の様子に基づいて判断することができるものである。
【0051】
また、機関水温Tw若しくは油温等を検出して排気浄化触媒9の温度(或いは出口温度)を推定し、その結果に基づいて排気浄化触媒9の活性化を判断することができ、或いは直接的に排気浄化触媒9の温度(或いは出口温度)を検出することによっても判断することができる。
【0052】
触媒が活性化していなければ(YESであれば)、ステップ6へ進む。
一方、触媒が活性化していれば(NOであれば)触媒活性化促進のための制御の必要はないとしてステップ9へ進み、燃費改善等のために、運転状態に応じて、従来と同様の燃焼形態で燃焼を行なわせて、本フローを終了する。
【0053】
ステップ6では、ピストン15の温度(特に、冠面凹部の表面温度)が所定温度(成層ストイキ燃焼移行許可温度)以上となっているか否かを判断する。かかる判定は、ピストン15(特に、冠面)に埋め込んだサーモカップル等により直接検出することで行なうことができ、或いは機関水温Tw又は油温を検出することでピストン(特に、冠面)温度を推定し、その結果に基づいて行なわせることもできる。
【0054】
なお、具体的には、例えば、ピストン冠面温度と相関のある疑似水温TWFに基づいて行なわせることができ、ピストン冠面温度と相関のある疑似水温TWFを推定演算し、その結果が所定値TWF1(成層ストイキ燃焼移行許可温度)に達したか否かで行なうことが可能である(特願平11−46612号の図6、図7等参照)。
【0055】
YESの場合には、後述する触媒活性化促進等のための成層ストイキ燃焼を行なわせても良好な着火性・燃焼性延いては機関安定性(機関運転性)等が得られるとして、ステップ7へ進む。
【0056】
一方、NOの場合には、後述する触媒活性化促進のための成層ストイキ燃焼を行なわせると、ピストン冠面温度が所定より低温であるために、当該ピストン冠面を利用した成層混合気の霧化・気化促進などが良好に行なわれなくなり、以って着火性、燃焼安定性延いては機関安定性(機関運転性)等が低下する惧れがあるとして、成層ストイキ燃焼への移行を禁止して、吸気行程での直接燃料噴射(直噴均質燃焼)を継続すべく、ステップ4へリターンする。
【0057】
ステップ7では、触媒が活性化していない場合で触媒活性化促進が必要であると共に、ピストン冠面温度が所定温度以上であり成層混合気の生成が良好に行なえる場合であるが、加速時等高出力を要求される運転条件では運転性能を優先させるべく、均質燃焼を行わせるようにするため、図4に示すように、機関回転速度と負荷とで決定される運転領域に応じて設定した燃焼切換マップ等に応じて燃焼方式を決定する。そして、該マップで成層ストイキ燃焼を実行する運転領域であれば、ステップ8へ進んで、触媒活性化促進のための成層ストイキ燃焼への移行を許可して、成層ストイキ燃焼を行なわせる。また、運転領域で均質燃焼が設定されている場合は、一旦成層ストイキ燃焼を開始した後であっても、ステップ4へ進んで均質燃焼が選択される。
【0058】
ステップ8では後述するトルク段差を解消する制御を経た後、成層ストイキ燃焼が実行される。具体的には、例えば、1燃焼サイクル当たりの吸入空気量で略完全燃焼させることができるトータル燃料量{略ストイキ(理論空燃比)を達成するのに必要な燃料重量}のうち、例えば略50%乃至略90%の燃料重量を、吸気行程で燃焼室内に噴射供給し、燃焼室内全体にストイキよりも比較的リーン(希薄)な均質混合気を形成すると共に{図5(B)に示す燃料噴射により形成する}、残りの略50%乃至略10%の燃料重量を、圧縮行程で燃焼室内に噴射供給し、点火栓6周りにストイキよりも比較的リッチな(燃料濃度の高い)混合気を層状に形成して{図5(A)参照}、燃焼させる(図6参照)。
【0059】
なお、当該成層ストイキ燃焼形態は、吸気行程中に燃焼室内に(本実施形態では吸気行程噴射により)形成されるストイキよりもリーンな混合気の空燃比を16〜28とし、圧縮行程中の燃料噴射により点火栓周りに形成されるストイキよりもリッチな混合気の空燃比が9〜13となるように、吸気行程中の燃料噴射量と、圧縮行程中の燃料噴射量と、の分担率を設定するようにしても良い。
【0060】
また、各混合気層の空燃比を上記のような範囲としておけば、燃焼室内の平均空燃比を理論空燃比から多少ずれた空燃比(例えば、13.8〜18の範囲)に設定しても良い。
【0061】
上記のような成層ストイキ燃焼によれば、従来の均質ストイキ燃焼と比較して排気温度を上昇させることができるだけでなく、燃焼室から排気通路に排出される未燃HC量を減少させることができる。
【0062】
即ち、成層ストイキ燃焼によれば、従来の燃焼形態{均質燃焼だけ、成層燃焼だけ、或いは、これらに対し更に追加燃料を燃焼後期以降(膨張行程以降や排気行程中)に噴射する燃焼形態など}で暖機を行なわせる場合に比べて、始動開始から排気浄化触媒9が活性化するまでの間における大気中へのHCの排出を抑制しながら、排気浄化触媒9の早期活性化を格段に促進できることになる。
【0063】
次に、ステップ9では、ステップ5と同様にして、排気浄化触媒9が活性化したか(暖機完了か)否かを判断する。YESであれば、ステップ10へ進む。NOであれば、ステップ8へリターンして、排気浄化触媒9が活性化するまで、成層ストイキ燃焼を継続する。
【0064】
ステップ10では、運転状態に応じ、所望の排気性能、或いは燃費性能、或いは運転性能(出力性能、安定性など)等を達成し得る燃焼形態(均質ストイキ燃焼、均質リーン燃焼或いは成層リーン燃焼など)へ移行させた後、本フローを終了する。但し、排気浄化触媒9が活性化したと判定された直後は、均質燃焼、特に成層ストイキ燃焼とのトルク段差を小さくできるように、均質ストイキ燃焼に切り換えられるようにする。
【0065】
なお、本実施形態では、成層ストイキ燃焼の燃焼性に悪影響を与える惧れのある運転状態において(例えば、ピストン冠面温度が所定温度より低温のときは)、該成層ストイキ燃焼への移行を禁止するように構成したが、排気浄化触媒9の早期活性化を最優先したい場合等には、このような構成を採用しなくても良いものである(即ち、図3のフローチャートにおけるステップ6は省略することも可能である)。
【0066】
次に、前記成層ストイキ燃焼と、その前後の均質燃焼との切換時にトルク段差を抑制するための本発明に係る制御について説明する。
最初に、成層ストイキ燃焼における圧縮行程での燃料噴射時期制御により、トルク段差を抑制する実施の形態を説明する。
【0067】
該燃料噴射時期制御による実施の形態を、図7のフローチャートにしたがって説明する。
ステップ11では、現在の燃焼が均質燃焼か成層ストイキ燃焼かを判別する。
【0068】
ステップ11で均質燃焼と判別されたときは、ステップ12へ進み、成層ストイキ燃焼が許可されている(図3のステップ7で成層ストイキ燃焼が選択されているとき)か否かを判定する。
【0069】
そして、成層ストイキ燃焼が許可されているとき、つまり、現在の均質燃焼から排気温度上昇用の成層ストイキ燃焼への切換要求が発生しているときには、ステップ13へ進み、現在の運転状態(機関回転速度、負荷)に応じた成層ストイキ燃焼の圧縮行程での燃料噴射時期IT0と、燃焼切換時のトルク段差抑制用の進角補正量ITHとをマップからの検索等により算出する。即ち、圧縮行程での燃料噴射時期ITを進角させることで、該噴射燃料と混合する燃焼室内の空気量が増大して混合気の均質化割合が増大し、均質燃焼に近づけられることにより、燃焼切換時のトルク段差を小さくすることができる。そこで、前記進角補正量ITHは、圧縮行程での燃料噴射による成層混合気形成による成層燃焼を確保しつつ燃焼切換時のトルク段差を十分に抑制することができる値に設定する。
【0070】
ステップ14では、燃焼を均質燃焼から成層ストイキ燃焼に切り換える。このとき、該燃焼切換時の成層ストイキ燃焼における圧縮行程での燃料噴射時期IT(進角値)を、前記運転状態に応じた燃料噴射時期IT0をトルク段差抑制用の進角補正量ITHで進角補正した値に制御する。
【0071】
このように、均質燃焼に近づけられた成層ストイキ燃焼が行なわれることで、燃焼切換時のトルク段差が抑制される。
次いで、ステップ15での所定時間経過判定毎に、ステップ16で圧縮行程での燃料噴射時期ITを補正量ΔITHずつ遅角させていき、ステップ17で該燃料噴射時期ITが前記運転状態に応じた燃料噴射時期IT0となったかを判定し、該燃料噴射時期IT0となった後は、このフローを終了し、以後は、成層ストイキ燃焼での運転状態に応じた燃料噴射時期ITの制御を継続する。
【0072】
一方、成層ストイキ燃焼から均質燃焼への切り換え時は、上記とは逆の経過を辿る。即ち、ステップ11で現在の燃焼が成層ストイキ燃焼と判定されたときは、ステップ18へ進んで、均質燃焼が許可されている(図3のステップ7で均質燃焼が選択されているとき)か否かを判定する。
【0073】
そして、均質燃焼が許可されているとき、つまり、現在の成層ストイキ燃焼から均質燃焼への切換要求が発生しているときには、ステップ19へ進み、現在の運転状態に応じた成層ストイキ燃焼の圧縮行程での燃料噴射時期IT0に対する燃焼切換時のトルク段差抑制用の進角補正量ITHを算出する。
【0074】
そして、ステップ20での所定時間経過判定毎に、ステップ21で圧縮行程での燃料噴射時期ITを補正量ΔITずつ進角させていき、ステップ22で補正量ΔITの合計値ΣΔITが進角補正量ITHに達したか、つまり、該燃料噴射時期ITが前記運転状態に応じた燃料噴射時期IT0を進角補正量ITHで補正した値となったかを判定し、該値になったと判定されたときにステップ23で燃焼を均質燃焼に切り換える。該、均質燃焼への切換時及びその後の燃料噴射時期は、運転状態に応じて制御される。
【0075】
このように、均質燃焼に近づけられた成層ストイキ燃焼としてから均質燃焼に切り換えることで、燃焼切換時のトルク段差が抑制される。
図8は、前記第1の実施形態における燃焼切換前後の燃料噴射時期の変化の様子を示し、図において、均質燃焼から成層ストイキ燃焼への切換時は、図の下側から上側へ連続的に変化し、成層ストイキ燃焼から均質燃焼への切換時は、図の上側から下側へ連続的に変化する(以下の実施の形態に対応した図でも同様)。
【0076】
次に、燃料噴射量制御によって、燃焼切換時のトルク段差を抑制する実施の形態を説明する。
まず、成層ストイキ燃焼における圧縮行程での燃料噴射量制御により、トルク段差を抑制する実施の形態を、図9のフローチャートにしたがって説明する。
【0077】
ステップ31,32で、前記ステップ11,12と同様にして、現在の燃焼が均質燃焼と判別され、成層ストイキ燃焼が許可されていると判定された時に、ステップ33へ進み、現在の運転状態(機関回転速度、負荷)に応じた成層ストイキ燃焼の圧縮行程での燃料噴射量CTiS0と、燃焼切換時のトルク段差抑制用の増量補正量CTiSHとをマップからの検索等により算出する。即ち、圧縮行程での燃料噴射量CTiSを増量してトルクを増大することで、燃焼切換時のトルク段差を小さくすることができる。そこで、前記増量補正量CTiSHは、圧縮行程での燃料噴射による成層混合気形成による成層燃焼を確保しつつ燃焼切換時のトルク段差を十分に抑制することができる値に設定する。
【0078】
ステップ34では、燃焼を均質燃焼から成層ストイキ燃焼に切り換える。このとき、該燃焼切換時の成層ストイキ燃焼における圧縮行程での燃料噴射量CTiSを、前記運転状態に応じた燃料噴射量CTiS0をトルク段差抑制用の増量補正量CTiSHで増量補正した値に制御する。
【0079】
このように、燃焼切換時にトルクを増大補正された成層ストイキ燃焼が行なわれることで、トルク段差が抑制される。
次いで、ステップ35での所定時間経過判定毎に、ステップ36で圧縮行程での燃料噴射量CTiSを補正量ΔCTiSずつ減量させていき、ステップ37で該燃料噴射量CTiSが前記運転状態に応じた燃料噴射量CTiS0となったかを判定し、該燃料噴射量CTiS0となった後は、成層ストイキ燃焼での運転状態に応じた燃料噴射量CTiSの制御を継続する。
【0080】
一方、成層ストイキ燃焼から均質燃焼への切り換え時は、上記とは逆の経過を辿る。即ち、ステップ31で現在の燃焼が成層ストイキ燃焼と判定され、ステップ38へ進んで、均質燃焼が許可されていると判定されたときは、ステップ39へ進み、現在の運転状態に応じた成層ストイキ燃焼の圧縮行程での燃料噴射量CTiS0に対する燃焼切換時のトルク段差抑制用の増量補正量CTiSHを算出する。
【0081】
そして、ステップ40での所定時間経過判定毎に、ステップ41で圧縮行程での燃料噴射量CTiSを補正量ΔCTiSHずつ増量させていき、ステップ42で補正量ΔCTiSHの合計値ΣΔCTiSHが増量補正量CTiSHに達したか、つまり、該燃料噴射量CTiSが前記運転状態に応じた燃料噴射量CTiS0を増量補正量CTiSHで補正した値となったかを判定し、該値になったと判定されたときに、ステップ43で燃焼を均質燃焼に切り換える。該、均質燃焼への切換時及びその後の燃料噴射量は、運転状態に応じて制御される。
【0082】
このように、成層ストイキ燃焼でトルクを増大した後、均質燃焼に切り換えることで、燃焼切換時のトルク段差が抑制される。
図10は、前記第2の実施形態における燃焼切換前後の燃料噴射量の変化の様子を示す。
【0083】
また、成層ストイキ燃焼における圧縮行程での燃料噴射量の補正と共に吸気行程時の燃料噴射量も補正することによっても、トルク段差を抑制することができる。図11は、該第3の実施形態における燃焼切換前後の燃料噴射時期の変化の様子を示す。フローチャートは省略するが、前記第2の実施の形態で圧縮行程での燃料噴射量の増量補正のみで、トルク段差を抑制しているのを、吸気行程での燃料噴射量の増量補正と、圧縮行程での燃料噴射量の増量補正とに振り分けて設定する構成とすればよい。ここで、吸気行程での燃料噴射量と圧縮行程での燃料噴射量との比(分割比)を一定に維持しつつ各行程の増量補正量を設定する構成とすることもでき、該増量補正による燃焼性の変化を小さくすることができる。
【0084】
また、成層ストイキ燃焼における吸気行程時の燃料噴射量のみを補正することによっても、トルク段差を抑制することができることは当然であり、このようにした第4の実施の形態における燃焼切換前後の燃料噴射量の変化の様子を、図12に示す。
【0085】
さらに、以上は、成層ストイキ燃焼時の燃料噴射量を増量補正することにより、トルク段差を抑制するものについて示したが、均質燃焼での燃料噴射量を減量補正することによってもトルク段差を抑制することができる。図13は、このようにした第5の実施の形態における燃焼切換前後の燃料噴射時期の変化の様子を示す。図13において、均質燃焼から成層ストイキ燃焼への切換時は、均質燃焼での運転状態に応じた燃料噴射量から徐々に減量補正して、燃焼切換時のトルク段差相当分まで減量した後、成層ストイキ燃焼に切り換える。該切換時及び切換後の成層ストイキ燃焼における吸気行程及び圧縮行程での燃料噴射量はそれぞれ運転状態に応じた定常時の値に制御される。
【0086】
成層ストイキ燃焼から均質燃焼への切換時は、前記とは逆の経過を辿り、均質燃焼への切換直後に燃料噴射量をトルク段差相当分減量した後、徐々に増量して定常時の燃料噴射量まで増量する。
【0087】
このように、均質燃焼での燃料噴射量を減量補正することのよっても、燃焼切換時のトルク段差を抑制することができる。
以上の実施の形態では、均質燃焼と成層ストイキ燃焼との同一運転状態(機関回転速度、負荷が同一)での定常状態での燃料噴射量(成層ストイキ燃焼では吸気行程時と圧縮行程時の合計燃料噴射量)を、等しく制御してあり、そのために切換前又は切換後の燃料噴射量を徐々に変化させている。これにより、定常状態では、各燃焼共にストイキ(λ=1)となって、排気浄化触媒による排気浄化性能を良好に維持することができる。ただし、トルク段差解消のためだけであれば、燃焼切換時に燃料噴射量を1回切換補正する(均質燃焼から成層ストイキ燃焼への切換時に増量、成層ストイキ燃焼から均質燃焼への切換時に減量)構成としてもよい。
【0088】
さらに、以上の実施の形態では、成層ストイキ燃焼として、吸気行程と圧縮行程とで2度燃料噴射するものを示したが、本発明は、成層ストイキ燃焼で圧縮行程のみで噴射を行ない、点火栓周りにストイキよりリッチな混合気層を形成し、その外側の燃焼室空間は空気層とするものにも適用できる。この場合も、燃焼室内の平均空燃比はストイキ域近傍とする。
【0089】
前記圧縮行程のみで燃料噴射する成層ストイキ燃焼するものに適用した各実施の形態における燃料噴射時期又は燃料噴射量の変化の様子を図14(燃料噴射時期制御)、図15(成層ストイキ燃焼の燃料噴射量を増量補正)、図16(均質燃焼の燃料噴射量を減量補正)に示す。
【図面の簡単な説明】
【図1】請求項2及び請求項6に係る発明の構成を示すブロック図。
【図2】本発明の実施形態に係るシステム構成図。
【図3】同上実施形態における制御を説明するためのフローチャート。
【図4】同上実施形態において運転領域により燃焼を切り換えるために使用する燃焼切換マップ。
【図5】(A)は、直噴圧縮行程噴射を説明するための模式図。(B)は、直噴吸気行程噴射を説明するための模式図。(C)は、燃料噴射時の平面図。
【図6】本発明にかかる成層ストイキ燃焼形態の燃焼室内における混合気の形成状態を説明するための図。
【図7】第1の実施の形態にかかる燃焼切換時における成層ストイキ燃焼の圧縮行程での燃料噴射時期補正制御を示すフローチャート。
【図8】同上第1の実施の形態における燃料噴射時期の変化の様子を示すタイムチャート。
【図9】第2の実施の形態にかかる燃焼切換時における成層ストイキ燃焼の圧縮行程での燃料噴射量補正制御を示すフローチャート。
【図10】同上第2の実施の形態における燃料噴射量の変化の様子を示すタイムチャート。
【図11】第3の実施の形態にかかる燃焼切換時における成層ストイキ燃焼の吸気行程及び圧縮行程での燃料噴射量補正制御における燃料噴射量の変化の様子を示すタイムチャート。
【図12】第4の実施の形態にかかる燃焼切換時における成層ストイキ燃焼の吸気行程での燃料噴射量補正制御における燃料噴射量の変化の様子を示すタイムチャート。
【図13】第5の実施の形態にかかる燃焼切換時における均質燃焼の燃料噴射量補正制御における燃料噴射量の変化の様子を示すタイムチャート。
【図14】第6の実施の形態にかかる燃焼切換時における圧縮行程のみ燃料噴射する成層ストイキ燃焼の燃料噴射時期の変化の様子を示すタイムチャート。
【図15】第7の実施の形態にかかる燃焼切換時における圧縮行程のみ燃料噴射する成層ストイキ燃焼の燃料噴射量の変化の様子を示すタイムチャート。
【図16】第7の実施の形態にかかる燃焼切換時における圧縮行程のみ燃料噴射する成層ストイキ燃焼を行なうもので、均質燃焼の燃料噴射量の変化の様子を示すタイムチャート。
【符号の説明】
1 内燃機関
5 燃料噴射弁
6 点火栓
7 排気通路
8 空燃比センサ
9 排気浄化触媒
10 下流側酸素センサ
11 クランク角センサ
50 コントロールユニット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a direct injection spark ignition internal combustion engine.
[0002]
[Prior art]
In recent years, fuel has been configured to be directly injected into the combustion chamber of an engine. For example, fuel is usually injected during the intake stroke and burned in a homogeneous mixture (a state where fuel is evenly distributed throughout the combustion chamber) (homogeneous). In a predetermined operating state (low rotation, low load state, etc.), fuel is injected during the compression stroke to form a stratified stratified mixture consisting of an flammable mixture that can be ignited around the spark plug An internal combustion engine (direct injection spark ignition type internal combustion engine) that performs combustion (stratified lean combustion) at an extremely lean air-fuel ratio (an air-fuel ratio in the vicinity of the lean limit) is known (JP-A-62). No. 191622 and Japanese Patent Laid-Open No. 2-169834).
[0003]
For the direct-injection spark ignition internal combustion engine as described above, the local air-fuel ratio around the spark plug is made rich in the process from cold start to warm-up, creating a local shortage of air and generated by combustion Which promotes activation of the exhaust purification catalyst by reacting incomplete combustion product (CO) and a part of the unburned fuel with excess oxygen in the cylinder after the main combustion and raising the exhaust temperature (See JP-A-10-169488).
[0004]
In addition, the applicant of the present application forms a stratified mixture with a locally rich air-fuel ratio around the spark plug in view of the problem that ignition is unstable in the above-described technique, which in turn increases unburned fuel (HC) emissions. However, by nebulizing the atomized fuel sufficiently, for example by delaying the ignition timing from the normal stratified lean combustion, the combustion is stabilized and the activation of the exhaust purification catalyst due to the rise in the exhaust temperature is promoted. A technology for suppressing fuel (HC) emissions has been proposed (Japanese Patent Application No. 11-46612).
[0005]
[Problems to be solved by the invention]
By the way, in order to increase the exhaust gas temperature and promote the activation of the exhaust gas purification catalyst as described above, a stratified mixture having a rich air-fuel ratio is locally formed around the spark plug to perform stratified combustion. In this case, at the time of cold start, first, in order to ensure stable combustibility, homogeneous combustion is performed in which a homogeneous mixture is formed in the entire combustion chamber and then combustion is performed. After the exhaust purification catalyst is activated, it is switched to homogeneous lean combustion, and further switched to stratified lean combustion and homogeneous stoichiometric combustion according to operation requirements.
[0006]
However, since stratified combustion has lower thermal efficiency than homogeneous combustion in which fuel and air are sufficiently mixed, a torque step occurs when switching between stratified combustion for raising the exhaust temperature and homogeneous combustion before and after that. This causes a problem that drivability is impaired.
[0007]
The present invention has been made paying attention to such a conventional problem, and suppresses generation of a torque step at the time of switching between stratified combustion for raising the exhaust gas temperature and homogeneous combustion, and stable operability can be obtained. An object of the present invention is to provide a control apparatus for a direct injection spark ignition internal combustion engine.
[0009]
[Means for Solving the Problems]
  For this reason, as shown in FIG.
  A fuel injection valve that directly injects fuel into the combustion chamber of the engine, and an ignition plug that sparks the air-fuel mixture in the combustion chamber,
  The air-fuel ratio around the spark plug is greater than the stoichiometric condition due to fuel injection into the combustion chamber during the compression stroke under the conditions before the warm-up is completed.A rich air-fuel mixture is formed with an average air-fuel ratio in the combustion chamber that is substantially stoichiometric.Stratified combustion control means for controlling the fuel injection amount, the fuel injection timing, and the ignition timing so as to perform stratified combustion for increasing the exhaust gas temperature;
  A homogeneous combustion control means for controlling the fuel injection amount, the fuel injection timing, and the ignition timing so as to form and burn a homogeneous mixture in the entire combustion chamber by fuel injection only in the intake stroke;
  Combustion switching means for switching between stratified combustion by the stratified combustion control means and homogeneous combustion by the homogeneous combustion control means according to the engine operation request;
  Fuel injection timing correction means for correcting the injection timing in the fuel injection in the compression stroke in the stratified combustion in the direction of eliminating the torque step due to the switching at the time of switching between the stratified combustion and the homogeneous combustion;Composed and
When switching from the stratified combustion for raising the exhaust gas temperature to the homogeneous combustion, the combustion switching means gradually increases the fuel injection timing in the compression stroke after the combustion switching request is generated and until the combustion is switched. Correct to the advance sideIt is characterized by.
[0010]
  Claim 1 Pertaining toAccording to the invention
  When there is a request to raise the exhaust gas temperature, the stratified charge combustion control means controls the fuel injection amount of the fuel injection valve, the fuel injection timing, and the ignition timing of the ignition plug).A stratified air-fuel mixture that is rich and has an average air-fuel ratio in the combustion chamber that is substantially stoichiometric is formed and burned.Thus, since the stratified mixture has an air-fuel ratio richer than stoichiometric, incompletely combusted matter (CO) is generated by main combustion, and the incompletely combusted product is recombusted in the combustion chamber and exhaust passage after main combustion. As a result, the exhaust temperature rises and the exhaust purification catalyst is activated.
[0011]
In addition, homogeneous combustion is required at low temperature starting or after the activation of the exhaust purification catalyst. (The homogeneous combustion control means controls the fuel injection amount, fuel injection timing, and ignition timing to produce a homogeneous mixture in the entire combustion chamber. To form and burn.
[0012]
  Then, when the demand is switched, the homogeneous combustion is switched to the stratified combustion for raising the exhaust gas temperature, and when the stratified combustion is switched to the homogeneous combustion, the torque by the combustion switching (by the fuel injection timing correcting means). The fuel injection timing in the compression stroke in the stratified combustion is corrected in the direction to eliminate the step.
  In particular, when switching from stratified combustion for raising the exhaust gas temperature to homogeneous combustion, the fuel injection timing in the compression stroke is gradually corrected to the advance side after the request for switching the combustion occurs until the combustion is switched. As a result, the ratio of air in the entire combustion chamber mixed with the fuel injected in the compression stroke increases and the ratio of homogenization increases, so that the torque is gradually increased by gradually approaching the combustion close to homogeneous combustion. In this way, since the torque is gradually increased and then switched to the homogeneous combustion, the torque step at the time of switching the combustion can be suppressed to be small, and the torque change due to the change in the injection timing before the switching of the combustion becomes gentle.
[0013]
  The invention according to claim 2 includes the same means as in claim 1,
  When switching from the homogeneous combustion to the stratified combustion for increasing the exhaust gas temperature, the combustion switching means gradually changes the fuel injection timing corrected to the advance side in the compression stroke after switching the combustion. It is characterized by returning to.
  In this way, when switching from homogeneous combustion to stratified combustion for raising the exhaust gas temperature, the reverse process is followed, and the fuel injection timing in the compression stroke is corrected to the advance side during combustion switching. As a result, the torque in stratified combustion increases, and the torque difference from the homogeneous combustion before switching can be suppressed to a small level, and then gradually returned to the retarded angle and fuel injection suitable for stratified combustion for raising the original exhaust gas temperature Since the timing can be approached, the torque change due to the injection timing change also becomes gradual.
  As described above, in claims 1 and 2,Generation of a torque step is suppressed at the time of combustion switching, and operability is stabilized. Further, simple control for correcting the fuel injection timing may be used.
  The invention according to claim 3
  The stratified combustion is performed by dividing fuel injection into an intake stroke and a compression stroke, and a fuel mixture in which the air-fuel ratio is leaner than stoichiometric is formed in the entire combustion chamber by fuel injection in the intake stroke, and fuel in the compression stroke is formed. It is characterized in that an air-fuel mixture having a richer air-fuel ratio than the stoichiometry is formed around the spark plug by injection, and the air-fuel mixture is combusted.
[0014]
A homogeneous mixture is formed in the entire combustion chamber by the fuel injected in the intake stroke, and then a stratified mixture whose air-fuel ratio is richer than stoichiometric is formed around the spark plug by the fuel injected in the compression stroke.
[0015]
According to the invention of claim 3,
The rich stratified mixture around the spark plug burns, and the incomplete combustion product (CO) generated by the main combustion is reburned together with the lean mixture, resulting in a good flame to every corner of the combustion chamber. Since it is propagated, the low temperature region (quenching area) in the combustion chamber can be made a small region that is not different from that during homogeneous combustion. Furthermore, since the excess oxygen in the region where the lean air-fuel mixture burns remains after the main combustion, the temperature of the remaining oxygen at the end of the main combustion is also relatively high, and the CO re-combustion is more Proceed quickly.
[0020]
  Further, the invention according to claim 4 is as shown in FIG.
  A fuel injection valve that directly injects fuel into the combustion chamber of the engine, and an ignition plug that sparks the air-fuel mixture in the combustion chamber,
  The air-fuel ratio around the spark plug is greater than the stoichiometric condition due to fuel injection into the combustion chamber during the compression stroke under the conditions before the warm-up is completed.A rich air-fuel mixture is formed with an average air-fuel ratio in the combustion chamber that is substantially stoichiometric.Stratified combustion control means for controlling the fuel injection amount, the fuel injection timing, and the ignition timing so as to perform stratified combustion for increasing the exhaust gas temperature;
  A homogeneous combustion control means for controlling the fuel injection amount, the fuel injection timing, and the ignition timing so as to form and burn a homogeneous mixture in the entire combustion chamber by fuel injection only in the intake stroke;
  Combustion switching means for switching between stratified combustion by the stratified combustion control means and homogeneous combustion by the homogeneous combustion control means according to the engine operation request;
  A fuel injection amount correcting means for correcting the fuel injection amount in a direction to eliminate a torque step due to the switching at the time of switching between the stratified combustion and the homogeneous combustion;Including, and
  The combustion switching means, when switching from the stratified combustion for raising the exhaust gas temperature to the homogeneous combustion, gradually increases and corrects the fuel injection amount until the combustion is switched after the combustion switching request is generated.It is characterized by.
[0021]
  According to claim 4According to the invention
  As described above, when there is a request to raise the exhaust gas temperature, the exhaust gas temperature rises and the exhaust purification catalyst is activated by burning the air-fuel ratio around the spark plug by forming a stratified mixture richer than the stoichiometric mixture. When homogeneous combustion is required at the time of low temperature starting or after the activation of the exhaust purification catalyst, a homogeneous mixture is formed in the entire combustion chamber and burned.
[0022]
Then, when the demand is switched, the homogeneous combustion is switched to the stratified combustion for raising the exhaust gas temperature, and when the stratified combustion is switched to the homogeneous combustion, the torque by the combustion switching (by the fuel injection amount correcting means). The fuel injection amount is corrected in the direction to eliminate the step.
[0023]
  In particular, when switching from stratified combustion for increasing exhaust gas temperature to homogeneous combustion, the fuel injection amount is gradually increased and corrected until the combustion is switched after the demand for combustion switching occurs, so that the torque is gradually increased. Then, the combustion is switched to homogeneous combustion, so that the torque step at the time of switching the combustion can be suppressed to a small level, and the torque change due to the change in the injection timing before the switching to the combustion becomes gentle.
  The invention according to claim 5 includes the same means as in claim 4,
  The combustion switching means, when switching from the homogeneous combustion to the stratified combustion for increasing the exhaust gas temperature, gradually returns the corrected fuel injection amount to the uncorrected state after switching the combustion. To do.
  According to the invention of claim 5,
  When switching from homogeneous combustion to stratified combustion for raising the exhaust temperature, the reverse process is followed, and the fuel injection amount is corrected to increase at the time of combustion switching, increasing the torque in stratified combustion, before switching. The torque difference from the homogeneous combustion can be suppressed to a small level, and the fuel injection amount is gradually reduced thereafter, so that the torque change due to the fuel injection amount change becomes moderate.
  If it is only to eliminate the torque step, it is only necessary to correct the fuel injection amount once at the time of combustion switching. However, the fuel injection amount before and after switching in the steady state (under the same operating conditions) should be set equal. Thus, the air-fuel ratio can be maintained at λ = 1 (theoretical air-fuel ratio) or the like to maintain good exhaust purification performance. In such a case, the fuel injection amount is gradually changed as described above. Thus, it is possible to control the fuel injection amount in the steady state to be equal while suppressing the torque step at the time of switching.
  As described above, in claims 4 and 5, theOccurrence of a torque step is suppressed at the time of combustion switching, and drivability is stabilized. In addition, simple correction of the fuel injection amountControl is sufficient.
[0028]
  Also,Claim 6The invention according to
  The fuel injection amount that is corrected to increase during the stratified combustion is a fuel injection amount that is injected during the compression stroke, a fuel injection amount that is injected during the intake stroke, or a fuel injection that is injected during the intake stroke and the compression stroke. It is characterized by being either of quantity.
[0029]
  Claim 6According to the invention according to
  When performing fuel injection in the intake stroke and fuel injection in the compression stroke during stratified combustion for increasing the exhaust gas temperature, the amount of fuel injected during the compression stroke and the amount of fuel injected during the intake stroke Alternatively, the torque step at the time of switching to the homogeneous combustion can be suppressed to be small by correcting the increase in any of the fuel injection amounts injected during the intake stroke and the compression stroke.
[0030]
  Also,The invention according to claim 7 includes the same means as in claim 4,
  The combustion switching meansWhen switching from the stratified combustion for raising the exhaust gas temperature to the homogeneous combustion, after switching the combustion, the fuel injection amount that has been corrected for reduction is gradually increased to a state without correction.It is characterized by returning.
[0031]
  Claim 7According to the invention according to
  When switching from stratified combustion for raising the exhaust gas temperature to the homogeneous combustion, the fuel injection amount is corrected to decrease when switching the combustion, the torque decreases, and the torque difference from the stratified combustion before switching can be suppressed to a small level. Is a state without correction by gradually increasing the fuel injection amount {for example, the aboveClaim 4The torque change can be moderately maintained by returning to the appropriate value (for example, a value corresponding to λ = 1)} in the steady state described in the above.
[0032]
  The invention according to claim 8 includes the same means as in claim 4,
  The combustion switching means, when switching from the homogeneous combustion to the stratified combustion for raising the exhaust gas temperature, gradually corrects the fuel injection amount until the combustion is switched after the combustion switching request is generated. It is characterized by.
  According to the invention of claim 8,
  When switching from homogeneous combustion to stratified combustion for raising the exhaust gas temperature, the reverse process is followed, and the fuel injection amount is gradually reduced and then switched to stratified combustion. In addition to being able to be suppressed, the torque change due to the fuel injection amount change before the combustion switching is also gradual.
  The invention according to claim 9 is
  The stratified combustion is performed by dividing fuel injection into an intake stroke and a compression stroke, and a fuel mixture in which the air-fuel ratio is leaner than stoichiometric is formed in the entire combustion chamber by fuel injection in the intake stroke, and fuel in the compression stroke is formed. It is characterized in that an air-fuel mixture having a richer air-fuel ratio than the stoichiometry is formed around the spark plug by injection, and the air-fuel mixture is combusted.
  According to the invention of claim 9,
  The operation and effect as described in the third aspect can be obtained.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
In FIG. 2 showing the system configuration of the first embodiment of the present invention, an air flow meter 3 for detecting the intake air flow rate Qa and a throttle valve 4 for controlling the intake air flow rate Qa are provided in the intake passage 2 of the engine 1. A fuel injection valve 5 is provided facing the combustion chamber of each cylinder.
[0034]
The fuel injection valve 5 is driven to open by a drive pulse signal set in a control unit 50, which will be described later, and burns fuel that is pumped from a fuel pump (not shown) and controlled to a predetermined pressure by a pressure regulator (not shown). It can be directly injected into the room.
[0035]
A spark plug 6 that is mounted facing the combustion chamber and ignites the intake air-fuel mixture based on an ignition signal from the control unit 50 is provided in each cylinder.
[0036]
On the other hand, in the exhaust passage 7, an air-fuel ratio sensor 8 (an oxygen sensor that performs rich / lean output) detects the air-fuel ratio of the exhaust gas mixture by detecting the concentration of a specific component (for example, oxygen) in the exhaust gas. Or a wide area air-fuel ratio sensor that linearly detects the air-fuel ratio over a wide area), and an exhaust purification catalyst 9 for purifying exhaust gas is provided downstream thereof. Has been. The exhaust purification catalyst 9 performs oxidation of CO, HC and reduction of NOx in the exhaust in the vicinity of stoichiometric, that is, the theoretical air-fuel ratio {λ = 1, A / F (air weight / fuel weight) · 14.7}. A three-way catalyst that can purify the exhaust gas or an oxidation catalyst that oxidizes CO and HC in the exhaust gas can be used.
[0037]
Further, a downstream oxygen sensor 10 that detects the concentration of a specific component (for example, oxygen) in the exhaust and outputs a rich lean gas is provided on the exhaust downstream side of the exhaust purification catalyst 9.
[0038]
Here, in order to suppress a control error associated with deterioration of the air-fuel ratio sensor 8 or the like by correcting the air-fuel ratio feedback control based on the detection value of the air-fuel ratio sensor 8 based on the detection value of the downstream oxygen sensor 10. Although the downstream oxygen sensor 10 is provided (for the so-called double air-fuel ratio sensor system), it is necessary to perform the air-fuel ratio feedback control based on the detected value of the air-fuel ratio sensor 8. The downstream oxygen sensor 10 can be omitted. When air-fuel ratio feedback control is not performed, both the air-fuel ratio sensor 8 and the downstream oxygen sensor 10 can be omitted.
[0039]
In the present embodiment, the crank angle sensor 11 is provided, and the control unit 50 counts a crank unit angle signal output from the crank angle sensor 11 in synchronization with the engine rotation for a predetermined time, or The engine rotational speed Ne can be detected by measuring the cycle of the crank reference angle signal.
[0040]
A water temperature sensor 12 that is provided facing the cooling jacket of the engine 1 and detects the cooling water temperature Tw in the cooling jacket is provided.
Further, a throttle sensor 13 (which can also function as an idle switch) for detecting the opening degree of the throttle valve 4 is provided.
[0041]
By the way, in this embodiment, the throttle valve control apparatus 14 which can control the opening degree of the said throttle valve 4 with actuators, such as a DC motor, is provided.
[0042]
The throttle valve control device 14 electronically controls the opening degree of the throttle valve 4 based on the drive signal from the control unit 50 so that the required torque calculated based on the driver's accelerator pedal operation amount and the like can be achieved. Can be configured.
[0043]
Detection signals from the various sensors are input to a control unit 50 including a microcomputer including a CPU, a ROM, a RAM, an A / D converter, an input / output interface, and the like. The opening of the throttle valve 4 is controlled via the throttle valve control device 14 in accordance with the operating state detected based on the signals from the sensors, and the fuel injection valve 5 is driven to drive the fuel injection amount (fuel The amount of supply) is controlled, the ignition timing is set, and the ignition plug 6 is ignited at the ignition timing.
[0044]
Note that, for example, stratified combustion can be performed by injecting fuel into the combustion chamber in a compression stroke in a predetermined operation state (low / medium load region, etc.) and forming a combustible air-fuel mixture in the vicinity of the spark plug 6 in the combustion chamber. On the other hand, in other operating conditions (high load region, etc.), fuel can be injected into the combustion chamber during the intake stroke, so that an air-fuel mixture with a substantially uniform mixing ratio can be formed in the entire cylinder so that homogeneous combustion can be performed. The fuel injection timing (injection timing) can also be changed according to the operating state.
[0045]
By the way, in the control unit 50 according to the present embodiment, the exhaust purification catalyst 9 can be activated early while suppressing the discharge of HC into the atmosphere from the start to the activation of the exhaust purification catalyst 9. In order to achieve this, input signals from various sensors such as the key switch 16 are received and, for example, the following control is performed. Note that, when performing stratified combustion for raising the exhaust gas temperature according to the present invention, the average air-fuel ratio in the combustion chamber is almost stoichiometric, so this combustion mode is expressed as stratified stoichiometric combustion.
[0046]
Specifically, for example, a flowchart as shown in FIG. 3 is executed.
In step (denoted as S in the figure, the same applies hereinafter) 1, whether or not the ignition signal of the key switch 16 is turned ON (whether the key position is set to the ignition ON position) is determined by a method similar to the prior art. To do. If YES, the process proceeds to Step 2, and if NO, this flow ends.
[0047]
In step 2, it is determined whether or not the start signal of the key switch 16 is turned ON (whether or not the key position is set to the start position) by a method similar to the conventional technique. That is, it is determined whether or not there is a cranking request by a starter motor (not shown).
[0048]
If YES, it is determined that there is a start cranking request, and the process proceeds to step 3. If NO, it is determined that there is no cranking request yet, and the process returns to step 1. In step 3, the starter motor is started and the engine 1 is cranked as in the prior art.
[0049]
In step 4, as in the prior art, fuel injection for start-up (direct fuel injection in the intake stroke, see FIG. 5B) is performed, and the engine 1 is operated (direct injection homogeneous combustion).
[0050]
In the next step 5, it is determined whether or not the exhaust purification catalyst 9 is not activated. The determination can be replaced by, for example, determining whether the downstream oxygen sensor 10 provided facing the exhaust passage 7 is not activated. That is, whether or not the exhaust purification catalyst 9 is activated can be determined based on the state of change in the detection value number of the downstream oxygen sensor 10.
[0051]
Further, the engine water temperature Tw or the oil temperature or the like is detected to estimate the temperature (or the outlet temperature) of the exhaust purification catalyst 9, and activation of the exhaust purification catalyst 9 can be determined based on the result, or directly. Further, it can also be determined by detecting the temperature (or outlet temperature) of the exhaust purification catalyst 9.
[0052]
If the catalyst is not activated (if YES), go to step 6.
On the other hand, if the catalyst is activated (if NO), it is determined that there is no need for control for promoting the catalyst activation, and the process proceeds to step 9 to improve fuel efficiency and the like according to the driving state. Combustion is performed in the combustion mode, and this flow is finished.
[0053]
In Step 6, it is determined whether or not the temperature of the piston 15 (particularly the surface temperature of the crown recess) is equal to or higher than a predetermined temperature (stratified stoichiometric combustion transition allowable temperature). Such a determination can be made by directly detecting with a thermocouple or the like embedded in the piston 15 (especially the crown), or by detecting the engine water temperature Tw or the oil temperature, the piston (especially the crown) temperature is determined. It is also possible to perform estimation and perform based on the result.
[0054]
Specifically, for example, the simulation can be performed based on the pseudo water temperature TWF correlated with the piston crown surface temperature, the pseudo water temperature TWF correlated with the piston crown surface temperature is estimated, and the result is a predetermined value. This can be done depending on whether TWF1 (stratified stoichiometric combustion transition permission temperature) has been reached or not (see FIGS. 6 and 7 of Japanese Patent Application No. 11-46612).
[0055]
In the case of YES, it is assumed that even if stratified stoichiometric combustion for promoting catalyst activation, which will be described later, is performed, good ignitability, combustibility, and engine stability (engine operability) are obtained. Proceed to
[0056]
On the other hand, in the case of NO, if the stratified stoichiometric combustion for promoting the catalyst activation described later is performed, the piston crown surface temperature is lower than the predetermined temperature. The transition to stratified stoichiometric combustion is prohibited as there is a possibility that ignition and vaporization promotion will not be carried out well, and there is a possibility that the ignitability, combustion stability and engine stability (engine driveability) will decrease. Then, the routine returns to step 4 in order to continue the direct fuel injection (direct injection homogeneous combustion) in the intake stroke.
[0057]
In Step 7, when the catalyst is not activated, it is necessary to promote the activation of the catalyst, and the piston crown surface temperature is equal to or higher than the predetermined temperature so that the stratified mixture can be generated satisfactorily. In order to prioritize the driving performance under the driving conditions that require high output, homogeneous combustion is performed. As shown in FIG. 4, it is set according to the operating range determined by the engine speed and load. A combustion method is determined according to a combustion switching map or the like. And if it is the operation range which performs stratified stoichiometric combustion in this map, it will progress to Step 8, and will shift to stratified stoichiometric combustion for catalyst activation promotion, and will perform stratified stoichiometric combustion. If homogeneous combustion is set in the operation region, the process proceeds to step 4 and homogeneous combustion is selected even after stratified stoichiometric combustion is once started.
[0058]
In step 8, stratified stoichiometric combustion is performed after control for eliminating a torque step, which will be described later, is performed. Specifically, for example, about 50 of the total fuel amount {fuel weight necessary to achieve a substantially stoichiometric (theoretical air-fuel ratio)} that can be almost completely burned with the amount of intake air per combustion cycle, for example, about 50 % To approximately 90% of the fuel weight is injected and supplied into the combustion chamber in the intake stroke to form a homogeneous mixture that is relatively leaner than the stoichiometric air in the entire combustion chamber {the fuel shown in FIG. 5B The remaining fuel weight of about 50% to about 10% is injected and supplied into the combustion chamber in the compression stroke, and the air-fuel mixture is relatively richer (higher fuel concentration) than the stoichiometry around the spark plug 6. Are formed in layers {see FIG. 5 (A)} and burned (see FIG. 6).
[0059]
The stratified stoichiometric combustion mode is such that the air-fuel ratio of the air-fuel mixture leaner than the stoichiometric air-fuel ratio formed in the combustion chamber during the intake stroke (by the intake stroke injection in this embodiment) is 16 to 28, and the fuel during the compression stroke The share ratio between the fuel injection amount during the intake stroke and the fuel injection amount during the compression stroke is set so that the air-fuel ratio of the air-fuel mixture richer than the stoichiometry formed around the spark plug by injection becomes 9-13. You may make it set.
[0060]
Further, if the air-fuel ratio of each air-fuel mixture is set in the above range, the average air-fuel ratio in the combustion chamber is set to an air-fuel ratio (for example, a range of 13.8 to 18) slightly deviated from the stoichiometric air-fuel ratio. Also good.
[0061]
According to the stratified stoichiometric combustion as described above, it is possible not only to raise the exhaust temperature as compared with the conventional homogeneous stoichiometric combustion, but also to reduce the amount of unburned HC discharged from the combustion chamber to the exhaust passage. .
[0062]
That is, according to the stratified stoichiometric combustion, the conventional combustion mode {combustion mode in which only homogeneous combustion, only stratified combustion, or additional fuel is injected after the later stage of combustion (after the expansion stroke or during the exhaust stroke)} Compared with the case where the engine is warmed up, the early activation of the exhaust purification catalyst 9 is greatly promoted while suppressing the emission of HC into the atmosphere between the start of start and the exhaust purification catalyst 9 being activated. It will be possible.
[0063]
Next, in step 9, as in step 5, it is determined whether or not the exhaust purification catalyst 9 has been activated (whether the warm-up has been completed). If yes, go to step 10. If NO, the routine returns to step 8 where stratified stoichiometric combustion is continued until the exhaust purification catalyst 9 is activated.
[0064]
In step 10, a combustion mode (homogeneous stoichiometric combustion, homogeneous lean combustion, stratified lean combustion, etc.) that can achieve desired exhaust performance, fuel efficiency performance, driving performance (output performance, stability, etc.), etc., depending on the operating conditions After shifting to, this flow ends. However, immediately after it is determined that the exhaust purification catalyst 9 has been activated, switching to homogeneous stoichiometric combustion is performed so that the torque step between homogeneous combustion, particularly stratified stoichiometric combustion, can be reduced.
[0065]
In the present embodiment, the transition to the stratified stoichiometric combustion is prohibited in an operating state that may adversely affect the flammability of the stratified stoichiometric combustion (for example, when the piston crown surface temperature is lower than a predetermined temperature). However, when it is desired to give the highest priority to the early activation of the exhaust purification catalyst 9, such a configuration may not be adopted (that is, step 6 in the flowchart of FIG. 3 is omitted). Can also be done).
[0066]
Next, the control according to the present invention for suppressing the torque step at the time of switching between the stratified stoichiometric combustion and the homogeneous combustion before and after that will be described.
First, an embodiment in which the torque step is suppressed by controlling the fuel injection timing in the compression stroke in the stratified stoichiometric combustion will be described.
[0067]
An embodiment based on the fuel injection timing control will be described with reference to the flowchart of FIG.
In step 11, it is determined whether the current combustion is homogeneous combustion or stratified stoichiometric combustion.
[0068]
When it is determined in step 11 that the combustion is homogeneous, the process proceeds to step 12 and it is determined whether or not stratified stoichiometric combustion is permitted (when stratified stoichiometric combustion is selected in step 7 of FIG. 3).
[0069]
When the stratified stoichiometric combustion is permitted, that is, when a request for switching from the current homogeneous combustion to the stratified stoichiometric combustion for raising the exhaust gas temperature is generated, the routine proceeds to step 13 and the current operation state (engine rotation) The fuel injection timing IT0 in the compression stroke of the stratified stoichiometric combustion according to the speed and the load) and the advance correction amount ITH for suppressing the torque step at the time of combustion switching are calculated by searching from a map or the like. That is, by advancing the fuel injection timing IT in the compression stroke, the amount of air in the combustion chamber mixed with the injected fuel is increased, the homogenization ratio of the air-fuel mixture is increased, and can be brought closer to homogeneous combustion. The torque step at the time of combustion switching can be reduced. Therefore, the advance angle correction amount ITH is set to a value that can sufficiently suppress the torque step at the time of combustion switching while ensuring the stratified combustion by the formation of the stratified mixture by the fuel injection in the compression stroke.
[0070]
In step 14, the combustion is switched from homogeneous combustion to stratified stoichiometric combustion. At this time, the fuel injection timing IT (advance value) in the compression stroke in the stratified stoichiometric combustion at the time of the combustion switching is advanced by the fuel injection timing IT0 corresponding to the operating state by the advance correction amount ITH for suppressing the torque step. Control the angle corrected value.
[0071]
As described above, the stratified stoichiometric combustion that is brought close to the homogeneous combustion is performed, so that a torque step at the time of switching the combustion is suppressed.
Next, every time the predetermined time elapses in step 15, the fuel injection timing IT in the compression stroke is retarded by the correction amount ΔITH in step 16. In step 17, the fuel injection timing IT corresponds to the operation state. It is determined whether or not the fuel injection timing IT0 has been reached. After the fuel injection timing IT0 has been reached, this flow is terminated, and thereafter the control of the fuel injection timing IT according to the operation state in the stratified stoichiometric combustion is continued. .
[0072]
On the other hand, when switching from stratified stoichiometric combustion to homogeneous combustion, the reverse of the above is followed. That is, when it is determined in step 11 that the current combustion is stratified stoichiometric combustion, the routine proceeds to step 18 where homogeneous combustion is permitted (when homogeneous combustion is selected in step 7 of FIG. 3). Determine whether.
[0073]
When the homogeneous combustion is permitted, that is, when a request for switching from the current stratified stoichiometric combustion to the homogeneous combustion is generated, the routine proceeds to step 19, where the compression stroke of the stratified stoichiometric combustion according to the current operating state is performed. An advance correction amount ITH for suppressing a torque level difference at the time of combustion switching with respect to the fuel injection timing IT0 is calculated.
[0074]
Each time a predetermined time elapse is determined in step 20, the fuel injection timing IT in the compression stroke is advanced by the correction amount ΔIT in step 21, and the total value ΣΔIT of the correction amount ΔIT is advanced in step 22 in step 22. It is determined whether the fuel injection timing IT has reached ITH, that is, whether the fuel injection timing IT has become a value obtained by correcting the fuel injection timing IT0 corresponding to the operating state by the advance angle correction amount ITH. In step 23, the combustion is switched to the homogeneous combustion. The fuel injection timing at the time of switching to the homogeneous combustion and the subsequent fuel injection are controlled according to the operation state.
[0075]
As described above, the stratified stoichiometric combustion approaching the homogeneous combustion is switched to the homogeneous combustion, thereby suppressing a torque step at the time of the combustion switching.
FIG. 8 shows a change in the fuel injection timing before and after the combustion switching in the first embodiment. In the figure, when switching from homogeneous combustion to stratified stoichiometric combustion, it is continuously from the lower side to the upper side of the figure. When changing from stratified stoichiometric combustion to homogeneous combustion, it changes continuously from the upper side to the lower side of the figure (the same applies to the figures corresponding to the following embodiments).
[0076]
Next, an embodiment in which the torque step at the time of combustion switching is suppressed by fuel injection amount control will be described.
First, an embodiment in which the torque step is suppressed by controlling the fuel injection amount in the compression stroke in the stratified stoichiometric combustion will be described with reference to the flowchart of FIG.
[0077]
In Steps 31 and 32, when it is determined that the current combustion is homogeneous combustion and stratified stoichiometric combustion is permitted in the same manner as in Steps 11 and 12, the process proceeds to Step 33 and the current operation state ( The fuel injection amount CTiS0 in the compression stroke of the stratified stoichiometric combustion according to the engine speed and the load) and the increase correction amount CTiSH for suppressing the torque step at the time of combustion switching are calculated by searching from a map or the like. That is, the torque step at the time of combustion switching can be reduced by increasing the torque by increasing the fuel injection amount CTiS in the compression stroke. Therefore, the increase correction amount CTiSH is set to a value that can sufficiently suppress the torque step at the time of combustion switching while ensuring the stratified combustion by the formation of the stratified mixture by the fuel injection in the compression stroke.
[0078]
In step 34, the combustion is switched from homogeneous combustion to stratified stoichiometric combustion. At this time, the fuel injection amount CTiS in the compression stroke in the stratified stoichiometric combustion at the time of the combustion switching is controlled to a value obtained by increasing the fuel injection amount CTiS0 corresponding to the operation state with the increase correction amount CTiSH for suppressing the torque step. .
[0079]
As described above, the stratified stoichiometric combustion in which the torque is increased and corrected at the time of the combustion switching is performed, so that the torque step is suppressed.
Next, every time a predetermined time elapse determination in step 35, the fuel injection amount CTiS in the compression stroke is decreased by a correction amount ΔCTiS in step 36, and in step 37, the fuel injection amount CTiS is a fuel corresponding to the operating state. It is determined whether or not the injection amount CTiS0 has been reached. After the fuel injection amount CTiS0 has been reached, the control of the fuel injection amount CTiS according to the operation state in the stratified stoichiometric combustion is continued.
[0080]
On the other hand, when switching from stratified stoichiometric combustion to homogeneous combustion, the reverse of the above is followed. That is, if it is determined in step 31 that the current combustion is stratified stoichiometric combustion and the process proceeds to step 38 and it is determined that homogeneous combustion is permitted, the process proceeds to step 39, where the stratified stoichiometric combustion corresponding to the current operating state is performed. An increase correction amount CTiSH for suppressing a torque step at the time of combustion switching with respect to the fuel injection amount CTiS0 in the compression stroke of combustion is calculated.
[0081]
Then, for each predetermined time elapsed determination in step 40, the fuel injection amount CTiS in the compression stroke is increased by the correction amount ΔCTiSH in step 41, and in step 42, the total value ΣΔCTiSH of the correction amount ΔCTiSH becomes the increase correction amount CTiSH. It is determined whether the fuel injection amount CTiS has reached the value obtained by correcting the fuel injection amount CTiS0 corresponding to the operating state with the increase correction amount CTiSH. At 43, combustion is switched to homogeneous combustion. The fuel injection amount at the time of switching to the homogeneous combustion and thereafter is controlled according to the operating state.
[0082]
In this way, after increasing the torque by stratified stoichiometric combustion, switching to homogeneous combustion suppresses the torque step at the time of combustion switching.
FIG. 10 shows how the fuel injection amount changes before and after the combustion switching in the second embodiment.
[0083]
Further, by correcting the fuel injection amount in the intake stroke as well as correcting the fuel injection amount in the compression stroke in the stratified stoichiometric combustion, the torque step can be suppressed. FIG. 11 shows a change in the fuel injection timing before and after the combustion switching in the third embodiment. Although the flowchart is omitted, the torque difference is suppressed only by the fuel injection amount increase correction in the compression stroke in the second embodiment, and the fuel injection amount increase correction and compression in the intake stroke are suppressed. What is necessary is just to set it as distributing and setting to the increase correction | amendment of the fuel injection quantity in a process. Here, an increase correction amount for each stroke can be set while maintaining a constant ratio (division ratio) between the fuel injection amount in the intake stroke and the fuel injection amount in the compression stroke. The change in combustibility due to can be reduced.
[0084]
In addition, it is natural that the torque step can be suppressed by correcting only the fuel injection amount during the intake stroke in the stratified stoichiometric combustion, and the fuel before and after the combustion switching in the fourth embodiment thus configured. FIG. 12 shows how the injection amount changes.
[0085]
In addition, the above has been shown to suppress the torque step by increasing the fuel injection amount at the time of stratified stoichiometric combustion. However, the torque step is also suppressed by correcting the decrease in the fuel injection amount in homogeneous combustion. be able to. FIG. 13 shows how the fuel injection timing changes before and after the combustion switching in the fifth embodiment. In FIG. 13, at the time of switching from homogeneous combustion to stratified stoichiometric combustion, the fuel injection amount corresponding to the operation state in homogeneous combustion is gradually reduced and corrected to a torque step equivalent at the time of combustion switching, and then stratified. Switch to stoichiometric combustion. The fuel injection amount in the intake stroke and the compression stroke in the stratified stoichiometric combustion at the time of switching and after switching is controlled to a steady-state value corresponding to the operating state.
[0086]
When switching from stratified stoichiometric combustion to homogeneous combustion, the reverse process is followed, and immediately after switching to homogeneous combustion, the fuel injection amount is reduced by an amount corresponding to the torque step, and then gradually increased to increase steady state fuel injection. Increase to volume.
[0087]
Thus, the torque step at the time of combustion switching can be suppressed even by correcting the amount of fuel injection in homogeneous combustion to be reduced.
In the above embodiment, the fuel injection amount in the steady state in the same operation state (the engine speed and load are the same) in the homogeneous combustion and the stratified stoichiometric combustion (in the stratified stoichiometric combustion, the sum of the intake stroke and the compression stroke) The fuel injection amount) is controlled equally, so that the fuel injection amount before or after switching is gradually changed. Thereby, in a steady state, each combustion is stoichiometric (λ = 1), and the exhaust purification performance by the exhaust purification catalyst can be maintained well. However, if it is only to eliminate the torque step, the fuel injection amount is corrected once when the combustion is switched (increased when switching from homogeneous combustion to stratified stoichiometric combustion, decreased when switching from stratified stoichiometric combustion to homogeneous combustion) It is good.
[0088]
  Further, in the above embodiment, the stratified stoichiometric combustion is shown in which fuel injection is performed twice in the intake stroke and the compression stroke, but the present invention performs injection only in the compression stroke in the stratified stoichiometric combustion, and the spark plug The present invention can also be applied to a case where an air-fuel mixture layer that is richer than stoichiometric is formed around it and the outer combustion chamber space is an air layer. In this case as well, the average air-fuel ratio in the combustion chamber is close to the stoichiometric range.To do.
[0089]
FIG. 14 (fuel injection timing control) and FIG. 15 (stratified stoichiometric combustion fuel) show changes in the fuel injection timing or fuel injection amount in each embodiment applied to the fuel that performs stratified stoichiometric combustion in which fuel is injected only in the compression stroke. The injection amount is corrected to increase), and FIG. 16 (homogeneous combustion fuel injection amount is corrected to decrease).
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an invention according to claim 2 and claim 6;
FIG. 2 is a system configuration diagram according to the embodiment of the present invention.
FIG. 3 is a flowchart for explaining control in the embodiment.
FIG. 4 is a combustion switching map used for switching combustion according to an operation region in the embodiment.
FIG. 5A is a schematic diagram for explaining direct injection compression stroke injection. (B) is a schematic diagram for explaining direct injection intake stroke injection. (C) is a top view at the time of fuel injection.
FIG. 6 is a view for explaining the state of air-fuel mixture formation in the combustion chamber of the stratified stoichiometric combustion mode according to the present invention.
FIG. 7 is a flowchart showing fuel injection timing correction control in a compression stroke of stratified stoichiometric combustion at the time of combustion switching according to the first embodiment.
FIG. 8 is a time chart showing a change in fuel injection timing in the first embodiment.
FIG. 9 is a flowchart showing fuel injection amount correction control in a compression stroke of stratified stoichiometric combustion at the time of combustion switching according to a second embodiment.
FIG. 10 is a time chart showing how the fuel injection amount changes in the second embodiment.
FIG. 11 is a time chart showing a change in the fuel injection amount in the fuel injection amount correction control in the intake stroke and compression stroke of stratified stoichiometric combustion at the time of combustion switching according to the third embodiment.
FIG. 12 is a time chart showing a change in the fuel injection amount in the fuel injection amount correction control in the intake stroke of stratified stoichiometric combustion at the time of combustion switching according to the fourth embodiment.
FIG. 13 is a time chart showing a change in the fuel injection amount in the fuel injection amount correction control for homogeneous combustion at the time of combustion switching according to the fifth embodiment.
FIG. 14 is a time chart showing a change in fuel injection timing of stratified stoichiometric combustion in which fuel is injected only during the compression stroke at the time of combustion switching according to the sixth embodiment.
FIG. 15 is a time chart showing a change in the fuel injection amount of stratified stoichiometric combustion in which fuel is injected only during the compression stroke at the time of combustion switching according to the seventh embodiment.
FIG. 16 is a time chart showing the state of change in the fuel injection amount of homogeneous combustion, in which stratified stoichiometric combustion in which fuel is injected only during the compression stroke at the time of combustion switching according to the seventh embodiment is performed.
[Explanation of symbols]
1 Internal combustion engine
5 Fuel injection valve
6 Spark plug
7 Exhaust passage
8 Air-fuel ratio sensor
9 Exhaust gas purification catalyst
10 Downstream oxygen sensor
11 Crank angle sensor
50 Control unit

Claims (9)

機関の燃焼室内に直接燃料を噴射供給する燃料噴射弁と、燃焼室内の混合気に火花点火する点火栓とを備え、
暖機完了前の条件で、圧縮行程での燃焼室内への燃料噴射により点火栓周りに空燃比がストイキよりリッチで、かつ、燃焼室内の平均空燃比が略ストイキである混合気を形成して、排気温度上昇用の成層燃焼を行なわせるように燃料噴射量、燃料噴射時期、点火時期を制御する成層燃焼制御手段と、
吸気行程のみでの燃料噴射により燃焼室全体に均質な混合気を形成して燃焼させるように燃料噴射量、燃料噴射時期、点火時期を制御する均質燃焼制御手段と、
前記成層燃焼制御手段による成層燃焼と、均質燃焼制御手段による均質燃焼とを機関運転要求に応じて切り換える燃焼切換手段と、
前記成層燃焼と均質燃焼との切換時に、該切換によるトルク段差を無くす方向に成層燃焼における圧縮行程での燃料噴射における噴射時期を補正する燃料噴射時期補正手段を含んで構成し、かつ、
前記燃焼切換手段は、前記排気温度上昇用の成層燃焼から前記均質燃焼への切換時は、該燃焼切換の要求が発生後、燃焼を切り換えるまでの間、圧縮行程での燃料噴射時期を徐々に進角側に補正することを特徴とする直噴火花点火式内燃機関の制御装置。
A fuel injection valve that directly injects fuel into the combustion chamber of the engine, and an ignition plug that sparks the air-fuel mixture in the combustion chamber;
Under the conditions before the completion of warm-up, fuel mixture is injected into the combustion chamber in the compression stroke to form an air-fuel mixture around the spark plug that is richer in air / fuel ratio than stoichiometric and whose average air / fuel ratio in the combustion chamber is substantially stoichiometric Stratified combustion control means for controlling the fuel injection amount, the fuel injection timing, and the ignition timing so as to perform stratified combustion for increasing the exhaust gas temperature;
A homogeneous combustion control means for controlling the fuel injection amount, the fuel injection timing, and the ignition timing so as to form and burn a homogeneous mixture in the entire combustion chamber by fuel injection only in the intake stroke;
Combustion switching means for switching between stratified combustion by the stratified combustion control means and homogeneous combustion by the homogeneous combustion control means according to the engine operation request;
Comprising fuel injection timing correction means for correcting the injection timing in the fuel injection in the compression stroke in the stratified combustion in the direction of eliminating the torque step due to the switching at the time of switching between the stratified combustion and the homogeneous combustion ; and
When switching from the stratified combustion for raising the exhaust gas temperature to the homogeneous combustion, the combustion switching means gradually increases the fuel injection timing in the compression stroke after the combustion switching request is generated and until the combustion is switched. A control device for a direct-injection spark-ignition internal combustion engine , wherein correction is made to the advance side .
機関の燃焼室内に直接燃料を噴射供給する燃料噴射弁と、燃焼室内の混合気に火花点火する点火栓とを備え、A fuel injection valve that directly injects fuel into the combustion chamber of the engine, and an ignition plug that sparks the air-fuel mixture in the combustion chamber,
暖機完了前の条件で、圧縮行程での燃焼室内への燃料噴射により点火栓周りに空燃比がストイキよりリッチで、かつ、燃焼室内の平均空燃比が略ストイキである混合気を形成して、排気温度上昇用の成層燃焼を行なわせるように燃料噴射量、燃料噴射時期、点火時期を制御する成層燃焼制御手段と、Under the conditions before the completion of warm-up, fuel mixture is injected into the combustion chamber in the compression stroke to form an air-fuel mixture around the spark plug that is richer in air / fuel ratio than stoichiometric and in which the average air / fuel ratio in the combustion chamber is substantially stoichiometric. Stratified combustion control means for controlling the fuel injection amount, the fuel injection timing, and the ignition timing so as to perform stratified combustion for increasing the exhaust gas temperature;
吸気行程のみでの燃料噴射により燃焼室全体に均質な混合気を形成して燃焼させるように燃料噴射量、燃料噴射時期、点火時期を制御する均質燃焼制御手段と、A homogeneous combustion control means for controlling the fuel injection amount, the fuel injection timing, and the ignition timing so as to form and burn a homogeneous mixture in the entire combustion chamber by fuel injection only in the intake stroke;
前記成層燃焼制御手段による成層燃焼と、均質燃焼制御手段による均質燃焼とを機関運転要求に応じて切り換える燃焼切換手段と、Combustion switching means for switching between stratified combustion by the stratified combustion control means and homogeneous combustion by the homogeneous combustion control means according to the engine operation request;
前記成層燃焼と均質燃焼との切換時に、該切換によるトルク段差を無くす方向に成層燃焼における圧縮行程での燃料噴射における噴射時期を補正する燃料噴射時期補正手段を含んで構成し、かつ、Comprising fuel injection timing correction means for correcting the injection timing in the fuel injection in the compression stroke in the stratified combustion in the direction of eliminating the torque step due to the switching at the time of switching between the stratified combustion and the homogeneous combustion; and
前記燃焼切換手段は、前記均質燃焼から前記排気温度上昇用の成層燃焼への切換時は、該燃焼を切換後、圧縮行程での進角側に補正された燃料噴射時期を徐々に遅角側に戻すことを特徴とする直噴火花点火式内燃機関の制御装置。When switching from the homogeneous combustion to the stratified combustion for increasing the exhaust gas temperature, the combustion switching means gradually changes the fuel injection timing corrected to the advance side in the compression stroke after switching the combustion. A control device for a direct-injection spark-ignition internal combustion engine, wherein
前記成層燃焼は、吸気行程と圧縮行程とに燃料噴射を分割して行なって、吸気行程での燃料噴射で燃焼室全体に空燃比がストイキよりリーンな混合気を形成すると共に圧縮行程での燃料噴射で点火栓周りに空燃比がストイキよりリッチな混合気を形成し、該混合気を燃焼するものであることを特徴とする請求項1又は請求項2に記載の直噴火花点火式内燃機関の制御装置。  The stratified combustion is performed by dividing fuel injection into an intake stroke and a compression stroke, and a fuel mixture in which the air-fuel ratio is leaner than stoichiometric is formed in the entire combustion chamber by fuel injection in the intake stroke, and fuel in the compression stroke is formed. 3. The direct injection spark ignition type internal combustion engine according to claim 1, wherein an air-fuel ratio is formed around the spark plug by injection and the air-fuel ratio is richer than stoichiometric, and the air-fuel mixture is combusted. Control device. 機関の燃焼室内に直接燃料を噴射供給する燃料噴射弁と、燃焼室内の混合気に火花点火する点火栓とを備え、
暖機完了前の条件で、圧縮行程での燃焼室内への燃料噴射により点火栓周りに空燃比がストイキよりリッチで、かつ、燃焼室内の平均空燃比が略ストイキである混合気を形成して、排気温度上昇用の成層燃焼を行なわせるように燃料噴射量、燃料噴射時期、点火時期を制御する成層燃焼制御手段と、
吸気行程のみでの燃料噴射により燃焼室全体に均質な混合気を形成して燃焼させるように燃料噴射量、燃料噴射時期、点火時期を制御する均質燃焼制御手段と、
前記成層燃焼制御手段による成層燃焼と、均質燃焼制御手段による均質燃焼とを機関運転要求に応じて切り換える燃焼切換手段と、
前記成層燃焼と均質燃焼との切換時に、該切換によるトルク段差を無くす方向に燃料噴射量を補正する燃料噴射量補正手段を含んで構成し、かつ、
前記燃焼切換手段は、前記排気温度上昇用の成層燃焼から前記均質燃焼への切換時は、該燃焼切換の要求が発生後、燃焼を切り換えるまでの間、燃料噴射量を徐々に増量補正することを特徴とする直噴火花点火式内燃機関の制御装置。
A fuel injection valve that directly injects fuel into the combustion chamber of the engine, and an ignition plug that sparks the air-fuel mixture in the combustion chamber,
Under the conditions before the completion of warm-up, fuel mixture is injected into the combustion chamber in the compression stroke to form an air-fuel mixture around the spark plug that is richer in air / fuel ratio than stoichiometric and whose average air / fuel ratio in the combustion chamber is substantially stoichiometric Stratified combustion control means for controlling the fuel injection amount, the fuel injection timing, and the ignition timing so as to perform stratified combustion for increasing the exhaust gas temperature;
A homogeneous combustion control means for controlling the fuel injection amount, the fuel injection timing, and the ignition timing so as to form and burn a homogeneous mixture in the entire combustion chamber by fuel injection only in the intake stroke;
Combustion switching means for switching between stratified combustion by the stratified combustion control means and homogeneous combustion by the homogeneous combustion control means according to the engine operation request;
Comprising fuel injection amount correction means for correcting the fuel injection amount in a direction to eliminate the torque step due to the switching at the time of switching between the stratified combustion and the homogeneous combustion , and
The combustion switching means, when switching from the stratified combustion for raising the exhaust gas temperature to the homogeneous combustion, gradually increases and corrects the fuel injection amount until the combustion is switched after the combustion switching request is generated. A control apparatus for a direct-injection spark ignition type internal combustion engine.
機関の燃焼室内に直接燃料を噴射供給する燃料噴射弁と、燃焼室内の混合気に火花点火する点火栓とを備え、A fuel injection valve that directly injects fuel into the combustion chamber of the engine, and an ignition plug that sparks the air-fuel mixture in the combustion chamber,
暖機完了前の条件で、圧縮行程での燃焼室内への燃料噴射により点火栓周りに空燃比がストイキよりリッチで、かつ、燃焼室内の平均空燃比が略ストイキである混合気を形成して、排気温度上昇用の成層燃焼を行なわせるように燃料噴射量、燃料噴射時期、点火時期を制御する成層燃焼制御手段と、Under the conditions before the completion of warm-up, fuel mixture is injected into the combustion chamber in the compression stroke to form an air-fuel mixture around the spark plug that is richer in air / fuel ratio than stoichiometric and in which the average air / fuel ratio in the combustion chamber is substantially stoichiometric. Stratified combustion control means for controlling the fuel injection amount, the fuel injection timing, and the ignition timing so as to perform stratified combustion for increasing the exhaust gas temperature;
吸気行程のみでの燃料噴射により燃焼室全体に均質な混合気を形成して燃焼させるように燃料噴射量、燃料噴射時期、点火時期を制御する均質燃焼制御手段と、A homogeneous combustion control means for controlling the fuel injection amount, the fuel injection timing, and the ignition timing so as to form and burn a homogeneous mixture in the entire combustion chamber by fuel injection only in the intake stroke;
前記成層燃焼制御手段による成層燃焼と、均質燃焼制御手段による均質燃焼とを機関運転要求に応じて切り換える燃焼切換手段と、Combustion switching means for switching between stratified combustion by the stratified combustion control means and homogeneous combustion by the homogeneous combustion control means according to the engine operation request;
前記成層燃焼と均質燃焼との切換時に、該切換によるトルク段差を無くす方向に燃料噴射量を補正する燃料噴射量補正手段を含んで構成し、かつ、Comprising fuel injection amount correction means for correcting the fuel injection amount in a direction to eliminate the torque step due to the switching at the time of switching between the stratified combustion and the homogeneous combustion, and
前記燃焼切換手段は、前記均質燃焼から前記排気温度上昇用の成層燃焼への切換時は、該燃焼を切換後、増量補正された燃料噴射量を徐々に補正無しの状態に戻すことを特徴とする直噴火花点火式内燃機関の制御装置。The combustion switching means, when switching from the homogeneous combustion to the stratified combustion for increasing the exhaust gas temperature, gradually returns the corrected fuel injection amount to the uncorrected state after switching the combustion. Control device for direct-injection spark-ignition internal combustion engine.
前記成層燃焼時に増量補正される燃料噴射量は、圧縮行程時に燃料噴射される燃料噴射量、吸気行程時に燃料噴射される燃料噴射量、又は、吸気行程時及び圧縮行程時に燃料噴射される燃料噴射量のいずれかであることを特徴とする請求項4または請求項5に記載の直噴火花点火式内燃機関の制御装置。The fuel injection amount that is corrected to increase during the stratified combustion is a fuel injection amount that is injected during the compression stroke, a fuel injection amount that is injected during the intake stroke, or a fuel injection that is injected during the intake stroke and the compression stroke. 6. The control device for a direct injection spark ignition type internal combustion engine according to claim 4 or 5, wherein the control device is a quantity. 機関の燃焼室内に直接燃料を噴射供給する燃料噴射弁と、燃焼室内の混合気に火花点火する点火栓とを備え、A fuel injection valve that directly injects fuel into the combustion chamber of the engine, and an ignition plug that sparks the air-fuel mixture in the combustion chamber,
暖機完了前の条件で、圧縮行程での燃焼室内への燃料噴射により点火栓周りに空燃比がストイキよりリッチで、かつ、燃焼室内の平均空燃比が略ストイキである混合気を形成して、排気温度上昇用の成層燃焼を行なわせるように燃料噴射量、燃料噴射時期、点火時期を制御する成層燃焼制御手段と、Under the conditions before the completion of warm-up, fuel mixture is injected into the combustion chamber in the compression stroke to form an air-fuel mixture around the spark plug that is richer in air / fuel ratio than stoichiometric and in which the average air / fuel ratio in the combustion chamber is substantially stoichiometric. Stratified combustion control means for controlling the fuel injection amount, the fuel injection timing, and the ignition timing so as to perform stratified combustion for increasing the exhaust gas temperature;
吸気行程のみでの燃料噴射により燃焼室全体に均質な混合気を形成して燃焼させるように燃料噴射量、燃料噴射時期、点火時期を制御する均質燃焼制御手段と、A homogeneous combustion control means for controlling the fuel injection amount, the fuel injection timing, and the ignition timing so as to form and burn a homogeneous mixture in the entire combustion chamber by fuel injection only in the intake stroke;
前記成層燃焼制御手段による成層燃焼と、均質燃焼制御手段による均質燃焼とを機関運転要求に応じて切り換える燃焼切換手段と、Combustion switching means for switching between stratified combustion by the stratified combustion control means and homogeneous combustion by the homogeneous combustion control means according to the engine operation request;
前記成層燃焼と均質燃焼との切換時に、該切換によるトルク段差を無くす方向に燃料噴射量を補正する燃料噴射量補正手段を含んで構成し、かつ、Comprising fuel injection amount correction means for correcting the fuel injection amount in a direction to eliminate the torque step due to the switching at the time of switching between the stratified combustion and the homogeneous combustion, and
前記燃焼切換手段は、前記排気温度上昇用の成層燃焼から前記均質燃焼への切換時は、燃焼を切換後、減量補正された燃料噴射量を徐々に増量して補正無しの状態に戻すことを特徴とする直噴火花点火式内燃機関の制御装置。When switching from the stratified combustion for raising the exhaust gas temperature to the homogeneous combustion, the combustion switching means gradually increases the fuel injection amount that has been corrected for reduction and returns it to the state without correction after switching combustion. A control device for a direct-injection spark-ignition internal combustion engine.
機関の燃焼室内に直接燃料を噴射供給する燃料噴射弁と、燃焼室内の混合気に火花点火する点火栓とを備え、A fuel injection valve that directly injects fuel into the combustion chamber of the engine, and an ignition plug that sparks the air-fuel mixture in the combustion chamber,
暖機完了前の条件で、圧縮行程での燃焼室内への燃料噴射により点火栓周りに空燃比がストイキよりリッチで、かつ、燃焼室内の平均空燃比が略ストイキである混合気を形成して、排気温度上昇用の成層燃焼を行なわせるように燃料噴射量、燃料噴射時期、点火時期Under the conditions before the completion of warm-up, fuel mixture is injected into the combustion chamber in the compression stroke to form an air-fuel mixture around the spark plug that is richer in air / fuel ratio than stoichiometric and in which the average air / fuel ratio in the combustion chamber is substantially stoichiometric. , Fuel injection amount, fuel injection timing, ignition timing to cause stratified combustion for exhaust gas temperature rise を制御する成層燃焼制御手段と、Stratified combustion control means for controlling
吸気行程のみでの燃料噴射により燃焼室全体に均質な混合気を形成して燃焼させるように燃料噴射量、燃料噴射時期、点火時期を制御する均質燃焼制御手段と、A homogeneous combustion control means for controlling the fuel injection amount, the fuel injection timing, and the ignition timing so as to form and burn a homogeneous mixture in the entire combustion chamber by fuel injection only in the intake stroke;
前記成層燃焼制御手段による成層燃焼と、均質燃焼制御手段による均質燃焼とを機関運転要求に応じて切り換える燃焼切換手段と、Combustion switching means for switching between stratified combustion by the stratified combustion control means and homogeneous combustion by the homogeneous combustion control means according to the engine operation request;
前記成層燃焼と均質燃焼との切換時に、該切換によるトルク段差を無くす方向に燃料噴射量を補正する燃料噴射量補正手段を含んで構成し、かつ、Comprising fuel injection amount correction means for correcting the fuel injection amount in a direction to eliminate the torque step due to the switching at the time of switching between the stratified combustion and the homogeneous combustion, and
前記燃焼切換手段は、前記均質燃焼から前記排気温度上昇用の成層燃焼への切換時は、該燃焼切換の要求が発生後、燃焼を切り換えるまでの間、燃料噴射量を徐々に減量補正することを特徴とするThe combustion switching means, when switching from the homogeneous combustion to the stratified combustion for raising the exhaust gas temperature, gradually corrects the fuel injection amount until the combustion is switched after the combustion switching request is generated. Characterized by
直噴火花点火式内燃機関の制御装置。Control device for a direct injection spark ignition internal combustion engine.
前記成層燃焼は、吸気行程と圧縮行程とに燃料噴射を分割して行なって、吸気行程での燃料噴射で燃焼室全体に空燃比がストイキよりリーンな混合気を形成すると共に圧縮行程での燃料噴射で点火栓周りに空燃比がストイキよりリッチな混合気を形成し、該混合気を燃焼するものであることを特徴とする請求項4〜請求項8のいずれか1つに記載の直噴火花点火式内燃機関の制御装置。The stratified combustion is performed by dividing fuel injection into an intake stroke and a compression stroke, and a fuel mixture in which the air-fuel ratio is leaner than stoichiometric is formed in the entire combustion chamber by fuel injection in the intake stroke, and fuel in the compression stroke is formed. The direct eruption according to any one of claims 4 to 8 , wherein an air-fuel ratio is formed around the spark plug by injection and the air-fuel ratio is richer than stoichiometric, and the air-fuel mixture is combusted. A control device for a flower ignition type internal combustion engine.
JP26226099A 1999-08-31 1999-09-16 Control device for direct-injection spark-ignition internal combustion engine Expired - Lifetime JP3755351B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP26226099A JP3755351B2 (en) 1999-09-16 1999-09-16 Control device for direct-injection spark-ignition internal combustion engine
US09/649,995 US6510834B1 (en) 1999-08-31 2000-08-29 Control for spark-ignited direct fuel injection internal combustion engine
EP06015607.2A EP1710422B1 (en) 1999-08-31 2000-08-30 Control for spark-ignited direct fuel injection internal combustion engine
DE2000631611 DE60031611T2 (en) 1999-08-31 2000-08-30 Control for spark-ignited internal combustion engine with direct injection
EP20000118781 EP1081364B1 (en) 1999-08-31 2000-08-30 Control for spark-ignited direct fuel injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26226099A JP3755351B2 (en) 1999-09-16 1999-09-16 Control device for direct-injection spark-ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001082211A JP2001082211A (en) 2001-03-27
JP3755351B2 true JP3755351B2 (en) 2006-03-15

Family

ID=17373318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26226099A Expired - Lifetime JP3755351B2 (en) 1999-08-31 1999-09-16 Control device for direct-injection spark-ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP3755351B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013428A (en) * 2000-06-30 2002-01-18 Mitsubishi Motors Corp Cylinder injection internal combustion engine
JP4329860B2 (en) 2005-11-30 2009-09-09 トヨタ自動車株式会社 In-cylinder injection spark ignition internal combustion engine
JP5375085B2 (en) * 2008-12-26 2013-12-25 日産自動車株式会社 Control device for internal combustion engine
JP5625842B2 (en) * 2010-12-08 2014-11-19 トヨタ自動車株式会社 Control device for internal combustion engine
JP5435157B2 (en) * 2013-02-21 2014-03-05 日産自動車株式会社 Fuel injection control device for internal combustion engine
JP5477498B2 (en) * 2013-05-23 2014-04-23 日産自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2001082211A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
JP4023115B2 (en) Control device for direct-injection spark ignition engine
JP3414303B2 (en) Control device for direct injection spark ignition type internal combustion engine
KR100394842B1 (en) Internal Combustion Engine and it's Controlling Method
US20060075741A1 (en) Exhaust emission control apparatus and method for internal combustion engine
JP2005120942A (en) Control device for direct injection spark ignition type internal combustion engine
JP3755351B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP3731403B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP4032859B2 (en) Control device for direct-injection spark ignition engine
JP4000926B2 (en) Control device and control method for direct-injection spark ignition engine
JP3743277B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP3726580B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP2000120471A (en) Cylinder injection type engine control device
JP4075341B2 (en) Control device for direct injection spark ignition engine
JP3890449B2 (en) Direct-injection spark ignition internal combustion engine
JP3812301B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP2001073835A (en) Control device of internal combustion engine of direct injection spark ignition type
JP5477498B2 (en) Control device for internal combustion engine
JP2001073913A (en) Control device of direct injection spark ignition internal combustion engine
JP3724369B2 (en) Control device for direct-injection spark ignition engine
JPH10212986A (en) In-cylinder injection type engine
JP2010163930A (en) Control device of direct-injection spark ignition internal combustion engine
JP4388258B2 (en) Control device for direct-injection spark ignition engine
JP4175184B2 (en) Control device for internal combustion engine
JP4061870B2 (en) Control device for direct injection spark ignition engine
JP3791274B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3755351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

EXPY Cancellation because of completion of term