[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3754986B2 - Abrasive composition and method for preparing the same - Google Patents

Abrasive composition and method for preparing the same Download PDF

Info

Publication number
JP3754986B2
JP3754986B2 JP2002093810A JP2002093810A JP3754986B2 JP 3754986 B2 JP3754986 B2 JP 3754986B2 JP 2002093810 A JP2002093810 A JP 2002093810A JP 2002093810 A JP2002093810 A JP 2002093810A JP 3754986 B2 JP3754986 B2 JP 3754986B2
Authority
JP
Japan
Prior art keywords
polishing
polishing composition
solution
added
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002093810A
Other languages
Japanese (ja)
Other versions
JP2003297778A (en
Inventor
邦明 前島
慎介 宮部
昌弘 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2002093810A priority Critical patent/JP3754986B2/en
Priority to TW92107324A priority patent/TW200400249A/en
Priority to CNB031212182A priority patent/CN1322087C/en
Publication of JP2003297778A publication Critical patent/JP2003297778A/en
Application granted granted Critical
Publication of JP3754986B2 publication Critical patent/JP3754986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリコンウェーハや半導体デバイス基板の表面または端面、または表面を酸化膜や窒化膜等で被覆した表面または端面の研磨加工を行なう研磨用組成物および該研磨用組成物の調整方法に関する。
【0002】
【従来の技術】
従来より、シリコンウェーハあるいは半導体デバイス基板(以下ウェーハ等と略記する)の研磨加工を行なう研磨用組成物として、酸化珪素またはその水和物をコロイド状に分散した懸濁液、所謂コロイダルシリカを含有する組成物が多数提案されている。
たとえば、米国特許第3170273号公報では、シリカゾル及びシリカゲルが研磨剤として提案されている。また、米国特許第4910155号公報では、半導体ウェーハの絶縁層の研磨剤としてフュームドシリカの水性分散スラリーの使用が開示されている。特開平7−221059号公報には、細長く歪んだ球状のシリカ粒子からなるコロイダルシリカが高い研磨速度を示す事が記載されている。特開2001−11433号公報には、球が数珠状につながった形体のシリカ粒子からなるコロイダルシリカが高いシリコン研磨速度を示す事が記載されている。
一方、液組成においても非常に多くの提案がなされている。米国特許第3328141号公報では、該懸濁液のpHを10.5〜12.5の範囲内にすることにより、研磨速度が増大する事が開示されている。米国特許第4169337号公報では、アミン類を研磨用組成物に添加することが開示されている。特開平2−158684号公報には、水、コロイダルシリカ、分子量10万以上の水溶性高分子、水溶性塩類からなる研磨用組成物が開示されている。更に特開平5−154760号公報では、水溶性アミンの一種であるピペラジンを、シリカゾルまたはシリカゲルのシリカ基準にて、10〜80重量%含む研磨組成物を使用した研磨方法を開示している。
これら開示されている方法は、アルカリ性の母液にシリカの微細粒子を分散させたスラリーやコロイダルシリカに、様々な添加剤を加えることにより研磨剤の分散性を上げたり、加工力の安定性を図ったり、加工速度を増加するものであって、現在要求される研磨性能すなわち、高速でかつ安定した研磨速度、加工後の洗浄性の良いこと、研磨面の平坦性等に十分対応できるものではなかった。
【0003】
特開平11−315273号公報、特開平11−302635号公報、特開平11−302634号公報および特開2000−158329号公報には、酸解離定数の逆数の対数値が8.0〜12.0の弱酸及び/または弱塩基を使用して、弱酸と強塩基、強酸と弱塩基あるいは弱酸と弱塩基の何れかの組み合わせのものを添加することによりpHの緩衝作用を有する緩衝溶液としたコロイダルシリカ組成物が開示されている。緩衝液の使用は、外的条件の変化によるpHの変化が少なく、繰り返し使用においても変化の少ない安定した研磨用組成物を提供しているが、pHが低くなる分だけ研磨速度が低くなり、さらなる改良が望まれていた。
特に近年電子回路の高集積化およびウェーハ自体の大型化に伴いシリコンウェーハ、半導体デバイス基板表面の高度な平坦化が必須となっている。さらに、生産効率を向上させるため、加工速度が速い研磨用組成物が望まれている。
【0004】
【発明が解決しようとする課題】
本発明者等は上述の、従来の研磨用組成物が持つ問題点に鑑み、鋭意研究を行ない、研磨用組成物溶液として、特定の粒度を有する酸化珪素の粒子を含むコロイド、すなわちコロイダルシリカのアルカリ性水溶液であって、pHの緩衝作用を有し、特定のイオン構成を構築することで、安定した高速加工が達成されることを見出し、本発明を完成するに至ったものであり、その目的となすところはpHの変化が少なく、かつ研磨速度が高速で、繰り返し使用においても変化の少ない安定した研磨を行うことができる、研磨後の洗浄性を改善した研磨用組成物を提供すること及び該研磨用組成物を調整する方法を提供することにある。
【0005】
【課題を解決するための手段】
上述の目的は、平均一次粒子径が30〜200nmの実質的に単分散である酸化珪素粒子がその濃度が1〜25重量%であるコロイド溶液からなり、該コロイド溶液が、pH8.7〜10.5の間で緩衝作用を有する緩衝溶液として調整されたものであり、成分の一つにフッ素イオンもしくはフッ素が配位した陰イオンをフッ素原子として1〜100ミリmol/Kgの濃度で含有することを特徴とする研磨用組成物によって達成される。この研磨用組成物は、例えば15〜65重量%の濃厚原液を使用の都度、水、有機溶剤、塩類を含んだ溶液あるいは水と有機溶媒の混合物で希釈して調整することができる。
【0006】
酸化珪素の微粒子はその製法から気相法酸化珪素と液相法酸化珪素に二分される。気相法酸化珪素としてはフュームドシリカを水性媒体に分散させたスラリーが半導体研磨に多用されてきたが、この微粒子は粒度分布が広く、更に凝集して二次粒子を構成し、典型的な多分散系である。液相法酸化珪素は水ガラスを原料とした一般のコロイダルシリカと、有機珪素化合物の加水分解法によって得られる高純度コロイダルシリカがある。本発明に用いる酸化珪素微粒子のコロイド溶液は、この一般のコロイダルシリカと高純度コロイダルシリカである。特に水ガラスを原料とした一般のコロイダルシリカは安価であり、研磨速度も速く、好適に用いられる。
【0007】
本発明に用いるコロイド溶液に含まれる酸化珪素の微粒子は平均一次粒子径が30〜200nmの実質的に単分散である酸化珪素粒子であり、好ましくは40〜100nmのものが用いられる。ここで言う平均一次粒子径とは、窒素吸着BET法により測定される比表面積を、球状粒子の直径に換算したものである。 コロイダルシリカのBET法粒径(比表面積)については、THE CHEMISTRY OF SILICA Solubility,Polymerizatoin,Colloid and Surface Properties,and Biochemistry(P344-354,RALPH K.ILER著,A Wiley-Interscience Publication JOHN WILEY & SONS P )に詳細に記載されている。計算式は粒子径(nm)=2720/比表面積(m2/g)である。
【0008】
平均一次粒子径が、30nmより小さい粒子の使用は緩衝液成分の電解質濃度を高くしたときにコロイド溶液が凝集し易く、研磨用組成物としての安定性が低下し、さらに研磨後のウェーハ表面に付着した粒子の洗浄性が低下する。また、平均一次粒子径が、200nm以上の粒子の使用は、デバイス研磨では配線幅に近く好ましくない。特に、複数枚の研磨に循環使用する際には、研磨屑やパッド屑の濾過除去が必要となるが、200nm以上の粒子では、屑との分離が出来なくなる。また、他の用途でも、粗大粒子が沈降し製品の経時安定性確保が難しくまた、価格的にも不利である。
【0009】
このような意味から、微細粒子や粗大粒子を含まない実質的に単一の粒度である単分散の粒子を使用することが必要となる。本発明で言う、実質的な単分散とは、電子顕微鏡法、遠心沈降法、レーザー光散乱法等の一般のコロイド粒子径測定法で測定された、個数平均径(Dn)と体積平均径(Dv)または重量平均径(Dw)の比(Dv/Dn)または(Dw/Dn)が1.00〜1.50の範囲にあることと定義する。単分散のコロイダルシリカとしては日本化学工業(株)製「シリカドール」、多摩化学工業(株)製「TCSOL703」、扶桑化学工業(株)製「超高純度コロイダルシリカPL−7」等がある。実質的な単分散でない分散系を多分散と記載する。多分散のコロイダルシリカとしては、DuPontAirProducts NanoMaterials L.L.C.社の「Syton」、「Mazin」、「Ascend」等がある。
【0010】
酸化珪素の濃度は、実際の研磨加工時において1〜25重量%であることが肝要であり、より好ましい範囲は、シリコンウェーハや半導体デバイス基板の表面研磨では3〜15重量%であり、端面研磨では10〜25重量%が良い。研磨時の酸化珪素の濃度が、3重量%未満であると研磨加工速度は低くなり実用的ではない。研磨時の酸化珪素濃度が高くなれば研磨加工速度自体は増大するが約25重量%を越えるとウェーハへの汚染が増大し、洗浄性が悪化する。
【0011】
以下、本発明をさらに説明する。
本発明においては研磨用組成物のpHは8.6〜10.5の範囲にあることが肝要である。更に好ましくはpHは9.5〜10.5の範囲にあることが良い。pHが8.6以下であると研磨速度は著しく低下し実用の範囲からは外れる。また、pHが10.6以上になると、ウェーハへの汚染が増大し、洗浄性が悪化する。そしてまた、このpHは摩擦、熱、外気との接触あるいは他の成分との混合等、考えられる外的条件の変化により容易に変化するようなものであってはならないが、本発明においては研磨用組成物溶液自体を、外的条件の変化に対してpHの変化の幅の少ない、いわゆる緩衝作用の強い液とすることをその必要条件とするものである。
【0012】
本発明の緩衝溶液を形成するイオンとしては、陰イオンは一例をあげると、塩酸、硝酸、フッ酸、硫酸などの強酸やホウ酸、炭酸、燐酸及び水溶性の有機酸等の弱酸があげられ、またその混合物であってもかまわない。特に好適なのは炭酸イオンもしく炭酸水素イオンである。陽イオンとしては、ナトリウム、カリウム等のアルカリ金属イオン、アンモニウム、コリン、テトラメチルアンモニウム等のアンモニウムイオン、エチレンジアミン、ピペラジン等のアミン類イオンなど水酸イオンと対をなしてアルカリ性を示すもので、それらの混合物でも良い。特にカリウムイオンやテトラメチルアンモニウムイオンやそれらの混合物が好ましい。本発明で述べる緩衝溶液とは、上述のイオンの組み合わせで形成され、酸、アルカリ、塩として添加され、イオンとして解離している状態及び、未解離の状態が共存している溶液を示し、少量の酸または、塩基が混入してもpHの変化が少ないことが特徴である。
【0013】
成分の一つにフッ素イオンもしくはフッ素が配位した陰イオンをフッ素原子として1〜100ミリmol/Kgの濃度で含有することが必要である。特に、本発明のようにpH緩衝液を使用して比較的低いpHで研磨を行う場合には、このような浸食作用の大きい成分を用いることが必要である。フッ素イオンはフッ酸として添加しても良く、上記の各塩基のフッ化物として添加することもできる。フッ素が配位した陰イオンとしては、テトラフルオロホウ酸イオンやヘキサフルオロ珪酸イオンが良い。これらは酸化珪素15〜65重量%の濃厚原液に添加しておくこともできるが、原液を使用の都度希釈して調整するときに添加しても良い。フッ素イオンもしくはフッ素が配位した陰イオンは、シリコンウェーハや半導体デバイス基板の表面または端面、または表面を酸化膜や窒化膜等で被覆した表面または端面の研磨速度を向上させると同時に、研磨加工後の洗浄性の向上作用がある。フッ素イオンもしくはフッ素が配位した陰イオンをフッ素原子として1ミリmol/Kg以下では充分な研磨速度は得られない。100ミリmol/Kg以上の添加は、浸食が強すぎて平坦な鏡面を得ることが出来ず、洗浄性も悪化する。好ましくは3〜60ミリmol/Kgである。
【0014】
また、一般的には酸化珪素濃度25〜65%の高濃度の組成物を調製しておき、水あるいは、水と有機溶媒の混合物で希釈して使用することが便利である。 高濃度の組成物には酸化珪素以外の上記必須成分のうちいずれかを欠いておき、希釈時に添加することもできる。
【0015】
本発明の研磨組成物の物性を改良するため、界面活性剤、分散剤、沈降防止剤などを併用することができる。界面活性剤、分散剤、沈降防止剤としては、水溶性の有機物、無機層状化合物などがあげられる。また、本発明の研磨組成物は基本的には水溶液としているが、有機溶媒を添加してもかまわない
【0016】
【実施例】
次に実施例及び比較例をあげて本発明の研磨用組成物、およびそれを用いた研磨加工方法を具体的に説明するが、特にこれにより限定を行なうものではない。
実施例で用いた単分散コロイダルシリカは、平均粒子径15nmは「シリカドール30」、平均粒子径40nmは「シリカドール30G」、平均粒子径80nmは「シリカドール40G−80」、平均粒子径120nmは「シリカドール40G−120」を使用し、その他の平均粒子径のコロイダルシリカは水ガラスを原料として製作した。個数平均径(Dn)と体積平均径(Dv)は、日機装(株)製マイクロトラックUPAを用いて測定し、その比(Dv/Dn)が1.00〜1.50の範囲にあることを確認した。多分散コロイダルシリカとは以下のようにして作成した。平均粒子径15nmの「シリカドール30」、平均粒子径40nmの「シリカドール30G」、平均粒子径80nmの「シリカドール40G−80」、平均粒子径120nmの「シリカドール40G−120」を任意の比率で混合し、平均粒子径40nm、(Dv/Dn)が2.0となるようにした。
【0017】
また、水酸化テトラメチメルアンモニウム(以下TMAHと略記)としては市販の水溶液を使用した。また、上記TMAH水溶液を炭酸ガスで中和して炭酸水素テトラメチメルアンモニウム(以下TMAHCと略記)を作成した。作成方法は以下のようにした。20%TMAH水溶液を500mlのガス洗浄瓶に入れ、炭酸ガスを微細泡状にして12時間吹き込み、TMAH水溶液に吸収させTMAHC溶液を得た。炭酸化の定量は、希塩酸で中和滴定を行い滴定曲線の変曲点より計算し、中和度は97%であった。
【0018】
フッ素は試薬のフッ酸水溶液、ホウフッ化水素酸水溶液、ケイフッ化水素酸水溶液を使用し、同様に試薬のフッ化ナトリウム、ケイフッ化ナトリウム、フッ化カリウムを使用した。炭酸塩は試薬の炭酸水素ナトリウム、炭酸水素カリウムを使用した。そのほか水酸化ナトリウムは工業用の50%水溶液を希釈して使用した。
【0019】
実施例1〜5および比較例1〜3のシリコンウェーハの表面研磨の実施例を示す。表1に示した組成となるよう調整した研磨組成物を用いて、以下の研磨条件で鏡面研磨加工を実施した。
研磨装置:スピードファム株式会社製、SH−24型片面加工機、
定盤回転数:70RPM
プレッシャープレート回転数:50RPM
研磨布:SUBA400(ロデールニッタ社製)
面圧力:200g/cm2
研磨組成物流量:80ml/分
研磨時間:2分
工作物:4インチ、酸化膜1200nm付きシリコンウェーハ。
研磨組成物のpHはpHメーターを用いて測定した。また、研磨面の評価は、集光灯下で肉眼にてヘイズ及びピットの状態を観察した。また、研磨速度は、研磨前後のシリコンウエハーの重量差より求めμm/分に換算した。
結果を表1に示した。実施例1〜5は比較例1〜3に比べ研磨速度が大きく、表面状態は良好である。
【0020】
実施例1〜5および比較例1〜3における研磨組成物の調整方法は以下のとおりである。
比較例1〜2と実施例1〜2:希釈したTMAH水溶液にフッ化水素酸水溶液を所定量添加混合し、次いで炭酸水素カリウムを添加し攪拌下で溶解させた。この添加剤溶液を各粒子径のコロイダルシリカに攪拌下添加して、最後に純水で希釈して表1の組成物とした。比較例1は平均粒子径15nmのコロイダルシリカを使用しており、比較例2は上記の方法で作成した多分散のコロイダルシリカを使用している。
実施例3:希釈したTMAH水溶液とTMAHC水溶液を所定量混合し、これにフッ化ナトリウムおよびフッ化カリウムを所定量添加し攪拌下で溶解させた。次いで、この添加剤溶液をコロイダルシリカに攪拌下添加して、最後に純水で希釈して表1の組成物とした。
実施例4:希釈したTMAH水溶液とTMAHC水溶液を所定量混合し、これにフッ化水素酸水溶液を所定量添加混合し、次いで炭酸水素カリウムを添加し攪拌下で溶解させた。次いで、この添加剤溶液をコロイダルシリカに攪拌下添加して、最後に純水で希釈して表1の組成物とした。
比較例3:フッ化水素酸水溶液を添加しなかった以外は、実施例4と同じにして表1の組成物とした。
実施例5:希釈したTMAH水溶液とTMAHC水溶液を所定量混合し、これにホウフッ化水素酸水溶液を所定量添加混合し、この添加剤溶液をコロイダルシリカに攪拌下添加して、最後に純水で希釈して表1の組成物とした。
【表1】

Figure 0003754986
【0021】
実施例6および比較例4の研磨組成液を循環使用したシリコンウェーハの表面研磨の実施例を示す。表2に示した組成となるよう調整した研磨組成物を用いて、研磨条件は実施例1と同じにして、研磨組成液を10回循環使用して、10枚のウェーハ研磨実験を行い、各回毎の研磨組成物のpHと研磨速度を測定した。結果は表2に示した。実施例6のpHは比較例4と比べ循環回数9回まで変化が少なく,研磨速度は大きい。
【0022】
実施例6および比較例4における研磨組成物の調整方法は以下のとおりである。実施例6:希釈したTMAH水溶液とTMAHC水溶液を所定量混合し、これにフッ化水素酸水溶液を所定量添加混合し、この添加剤溶液をコロイダルシリカに攪拌下添加して、最後に純水で希釈して表2の組成物とした。
比較例4:TMAH水溶液とTMAHC水溶液を添加せず、フッ化ナトリウムと水酸化ナトリウムだけをコロイダルシリカに攪拌下添加して、最後に純水で希釈して表2の組成物とした
【表2】
Figure 0003754986
【0023】
実施例7〜11および比較例5〜7のシリコンウェーハの端面研磨の実施例を示す。表3に示した組成となるよう調整した研磨組成物を用いて、以下の研磨条件方法で鏡面研磨加工を実施した。
研磨装置:スピードファム株式会社製、EP−IV型端面加工機
ドラム回転速度:800RPM
ウェーハ回転速度:70秒/REV
ウェーハ回転数:4回/枚
研磨布:DRP−II(スピードファム社製)
荷重:2.5Kg
研磨組成物流量:250ml/分
工作物:8インチ、酸化膜800nm+ポリシリコン膜2000nm付きシリコンウェーハ
研磨組成物のpHはpHメーターを用いて測定した。また、研磨面の評価は、集光灯下で肉眼にてヘイズ及びピットの状態を観察した。また、研磨速度は、研磨前後のシリコンウエハーの重量差より求めmg/分に換算した。
結果を表3に示した。実施例7〜11は比較例5〜7に比べ研磨速度が大きく、表面状態は良好である。
【0024】
実施例7〜11および比較例5〜7における研磨組成物の調整方法は以下のとおりである。
実施例7:希釈したTMAH水溶液にフッ化水素酸水溶液を所定量添加混合し、次いで炭酸水素カリウムおよび炭酸水素ナトリウムを添加し攪拌下で溶解させた。次いで、この添加剤溶液をコロイダルシリカに攪拌下添加して、最後に純水で希釈して表3の組成物とした。
実施例8〜9:希釈したTMAH水溶液とTMAHC水溶液を所定量混合し、これにホウフッ化水素酸水溶液を所定量添加混合し、この添加剤溶液をコロイダルシリカに攪拌下添加して、最後に純水で希釈して第3表の組成物とした。
実施例10:希釈したTMAH水溶液にフッ化水素酸水溶液を所定量添加混合し、次いで炭酸水素ナトリウムを添加し攪拌下で溶解させた。次いで、この添加剤溶液をコロイダルシリカに攪拌下添加して、最後に純水で希釈して表3の組成物とした。
実施例11:希釈したTMAH水溶液とTMAHC水溶液を所定量混合し、これにケイフッ化水素酸水溶液を所定量添加混合し、次いでケイフッ化ナトリウムを添加し攪拌下で溶解させた。次いで、この添加剤溶液をコロイダルシリカに攪拌下添加して、最後に純水で希釈して表3の組成物とした。
比較例5:単分散のコロイダルシリカに替えて、上記の方法で作成した多分散のコロイダルシリカを使用した以外は、実施例10と同じにして表3の組成物とした。
比較例6:希釈したTMAH水溶液にフッ化水素酸水溶液を所定量添加混合し、次いで炭酸水素ナトリウムを添加し攪拌下で溶解させた。次いで、この添加剤溶液をコロイダルシリカに攪拌下添加して、最後に純水で希釈して表3の組成物とした。この組成物はpHが8.2であった。
比較例7:希釈したTMAH水溶液にフッ化水素酸水溶液を所定量添加混合し、次いで炭酸水素ナトリウムを添加し攪拌下で溶解させ、更に水酸化ナトリウム水溶液を添加混合した。次いで、この添加剤溶液をコロイダルシリカに攪拌下添加して、最後に純水で希釈して表3の組成物とした。この組成物はpHが11.0であった。
【表3】
Figure 0003754986
【0025】
【発明の効果】
以上の説明で示される通り、本発明の研磨組成物は、平均一次粒子径が30〜200nmの実質的に単分散である酸化珪素粒子がその濃度が1〜25重量%であるコロイド溶液からなり、該コロイド溶液が、pH8.7〜10.5の間で緩衝作用を有する緩衝溶液として調整されたものであり、成分の一つにフッ素イオンもしくはフッ素が配位した陰イオンをフッ素として1〜100ミリmol/Kg含有することを特徴とする研磨用組成物は、pH変化が少なく、研磨速度が速く、洗浄性が良好な事が判明した。本発明の研磨組成物を使いシリコンウェーハ、半導体デバイス基板を研磨表面の品質を落とさず、安定に高速研磨する事が出来る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polishing composition for polishing a surface or end face of a silicon wafer or a semiconductor device substrate, or a surface or end face whose surface is covered with an oxide film, a nitride film, or the like, and a method for adjusting the polishing composition.
[0002]
[Prior art]
Conventionally, as a polishing composition for polishing a silicon wafer or a semiconductor device substrate (hereinafter abbreviated as a wafer or the like), a suspension in which silicon oxide or a hydrate thereof is colloidally dispersed, so-called colloidal silica is contained. Many compositions have been proposed.
For example, in US Pat. No. 3,170,273, silica sol and silica gel are proposed as abrasives. US Pat. No. 4,910,155 discloses the use of an aqueous dispersion slurry of fumed silica as an abrasive for the insulating layer of a semiconductor wafer. JP-A-7-221059 describes that colloidal silica composed of elongated and distorted spherical silica particles exhibits a high polishing rate. Japanese Patent Application Laid-Open No. 2001-11433 describes that colloidal silica composed of silica particles having a shape in which spheres are connected in a bead shape exhibits a high silicon polishing rate.
On the other hand, many proposals have been made on the liquid composition. U.S. Pat. No. 3,328,141 discloses that the polishing rate is increased by setting the pH of the suspension within the range of 10.5 to 12.5. U.S. Pat. No. 4,169,337 discloses adding amines to the polishing composition. JP-A-2-158684 discloses a polishing composition comprising water, colloidal silica, a water-soluble polymer having a molecular weight of 100,000 or more, and a water-soluble salt. Further, JP-A-5-154760 discloses a polishing method using a polishing composition containing 10 to 80% by weight of piperazine, which is a kind of water-soluble amine, based on silica sol or silica gel of silica gel.
In these disclosed methods, various additives are added to a slurry in which fine silica particles are dispersed in an alkaline mother liquor or colloidal silica to increase the dispersibility of the abrasive or to stabilize the processing force. Or increase the processing speed, and it does not sufficiently meet the currently required polishing performance, that is, high speed and stable polishing speed, good cleanability after processing, flatness of the polished surface, etc. It was.
[0003]
In JP-A-11-315273, JP-A-11-302635, JP-A-11-302634, and JP-A-2000-158329, the logarithm of the reciprocal of the acid dissociation constant is 8.0 to 12.0. Colloidal silica having a buffering action of pH by adding any combination of weak acid and strong base, strong acid and weak base, or weak acid and weak base, using weak acid and / or weak base A composition is disclosed. The use of a buffer solution provides a stable polishing composition with little change in pH due to changes in external conditions and little change in repeated use, but the polishing rate is lowered by the amount of lower pH, Further improvements were desired.
In particular, with the recent high integration of electronic circuits and the increase in size of the wafer itself, high level planarization of silicon wafer and semiconductor device substrate surfaces is essential. Furthermore, in order to improve production efficiency, a polishing composition having a high processing speed is desired.
[0004]
[Problems to be solved by the invention]
In view of the problems of the above-described conventional polishing composition, the present inventors have conducted intensive research, and as a polishing composition solution, a colloid containing colloidal silica containing particles of silicon oxide having a specific particle size is used. It is an alkaline aqueous solution, has a pH buffering action, found that stable high-speed processing is achieved by constructing a specific ion configuration, and has completed the present invention. The present invention provides a polishing composition with improved detergency after polishing, capable of performing stable polishing with little change in pH, high polishing rate, and little change even during repeated use. It is providing the method of adjusting this polishing composition.
[0005]
[Means for Solving the Problems]
The above-described object is that a substantially monodispersed silicon oxide particle having an average primary particle size of 30 to 200 nm is composed of a colloidal solution having a concentration of 1 to 25% by weight, and the colloidal solution has a pH of 8.7 to 10%. .5 is prepared as a buffer solution having a buffering action, and one of the components contains a fluorine ion or an anion coordinated with fluorine as a fluorine atom at a concentration of 1 to 100 millimol / kg. This is achieved by the polishing composition characterized by the above. This polishing composition can be prepared, for example, by diluting a concentrated stock solution of 15 to 65% by weight with a solution containing water, an organic solvent or salts, or a mixture of water and an organic solvent each time it is used.
[0006]
The fine particles of silicon oxide are divided into a gas phase silicon oxide and a liquid phase silicon oxide in accordance with the production method. As a vapor phase silicon oxide, a slurry in which fumed silica is dispersed in an aqueous medium has been widely used for semiconductor polishing. However, these fine particles have a wide particle size distribution and further aggregate to form secondary particles. Polydisperse system. Liquid phase silicon oxide includes general colloidal silica using water glass as a raw material and high-purity colloidal silica obtained by a hydrolysis method of an organic silicon compound. The colloidal solution of silicon oxide fine particles used in the present invention is this general colloidal silica and high-purity colloidal silica. In particular, general colloidal silica using water glass as a raw material is inexpensive, has a high polishing rate, and is preferably used.
[0007]
The fine particles of silicon oxide contained in the colloidal solution used in the present invention are substantially monodispersed silicon oxide particles having an average primary particle size of 30 to 200 nm, preferably 40 to 100 nm. The average primary particle size referred to here is a value obtained by converting a specific surface area measured by a nitrogen adsorption BET method into a diameter of a spherical particle. For BET particle size (specific surface area) of colloidal silica, THE CHEMISTRY OF SILICA Solubility, Polymerizatoin, Colloid and Surface Properties, and Biochemistry (P344-354, RALPH K. ILER, A Wiley-Interscience Publication JOHN WILEY & SONS P ) Is described in detail. The calculation formula is: particle diameter (nm) = 2720 / specific surface area (m 2 / g).
[0008]
The use of particles having an average primary particle size of less than 30 nm tends to agglomerate the colloidal solution when the electrolyte concentration of the buffer component is increased, and the stability as a polishing composition is lowered. The detergency of the adhered particles decreases. In addition, the use of particles having an average primary particle size of 200 nm or more is not preferable because it is close to the wiring width in device polishing. In particular, when circulating and used for polishing a plurality of sheets, it is necessary to filter and remove polishing scraps and pad scraps. However, particles of 200 nm or more cannot be separated from scraps. In other applications, coarse particles settle and it is difficult to ensure stability of the product over time, and it is disadvantageous in terms of price.
[0009]
In this sense, it is necessary to use monodispersed particles having a substantially single particle size that does not include fine particles and coarse particles. In the present invention, substantial monodispersion means the number average diameter (Dn) and volume average diameter (Dn) measured by a general colloidal particle diameter measuring method such as electron microscopy, centrifugal sedimentation, or laser light scattering. It is defined that the ratio (Dv / Dn) or (Dw / Dn) of Dv) or weight average diameter (Dw) is in the range of 1.00 to 1.50. Monodispersed colloidal silica includes “Silica Doll” manufactured by Nippon Chemical Industry Co., Ltd., “TCSOL703” manufactured by Tama Chemical Industry Co., Ltd., “Ultra High Purity Colloidal Silica PL-7” manufactured by Fuso Chemical Industry Co., Ltd. . A dispersion that is not substantially monodisperse is referred to as polydisperse. Polydispersed colloidal silica includes DuPont Air Products Nano Materials L.M. L. C. “Syton”, “Mazin”, “Ascend”, etc.
[0010]
It is important that the concentration of silicon oxide is 1 to 25% by weight at the time of actual polishing, and a more preferable range is 3 to 15% by weight for surface polishing of a silicon wafer or a semiconductor device substrate. Then, 10 to 25% by weight is preferable. When the concentration of silicon oxide at the time of polishing is less than 3% by weight, the polishing processing speed becomes low and it is not practical. If the silicon oxide concentration at the time of polishing increases, the polishing speed itself increases, but if it exceeds about 25% by weight, the contamination on the wafer increases and the cleaning property deteriorates.
[0011]
The present invention will be further described below.
In the present invention, it is important that the polishing composition has a pH in the range of 8.6 to 10.5. More preferably, the pH is in the range of 9.5 to 10.5. When the pH is 8.6 or less, the polishing rate is remarkably lowered and deviates from the practical range. On the other hand, if the pH is 10.6 or more, the contamination of the wafer increases and the cleaning properties deteriorate. In addition, this pH should not easily change due to possible changes in external conditions such as friction, heat, contact with outside air, or mixing with other components. It is a necessary condition that the composition solution itself should be a so-called buffering solution having a small change in pH with respect to changes in external conditions.
[0012]
As an example of the ions forming the buffer solution of the present invention, anions include strong acids such as hydrochloric acid, nitric acid, hydrofluoric acid and sulfuric acid, and weak acids such as boric acid, carbonic acid, phosphoric acid and water-soluble organic acids. Or a mixture thereof. Particularly preferred are carbonate ions or bicarbonate ions. Examples of the cation include alkali metal ions such as sodium and potassium, ammonium ions such as ammonium, choline and tetramethylammonium, and amine ions such as ethylenediamine and piperazine which show alkalinity as a pair. A mixture of In particular, potassium ions, tetramethylammonium ions, and mixtures thereof are preferable. The buffer solution described in the present invention refers to a solution formed by a combination of the above-mentioned ions, added as an acid, an alkali, and a salt, and dissociated as ions and undissociated states coexisting. It is characterized by little change in pH even when any acid or base is mixed.
[0013]
One of the components needs to contain a fluorine ion or an anion coordinated with fluorine as a fluorine atom at a concentration of 1 to 100 millimol / kg. In particular, when polishing is performed at a relatively low pH using a pH buffer solution as in the present invention, it is necessary to use such a component having a large erosion effect. Fluorine ions may be added as hydrofluoric acid or as fluorides of the above bases. As the anion coordinated with fluorine, a tetrafluoroborate ion or a hexafluorosilicate ion is preferable. These can be added to a concentrated stock solution of 15 to 65% by weight of silicon oxide, but may be added when the stock solution is diluted and adjusted each time it is used. Fluorine ions or anions coordinated with fluorine improve the polishing rate of the surface or end surface of a silicon wafer or semiconductor device substrate, or the surface or end surface of which the surface is coated with an oxide film or nitride film, and at the same time after polishing. Has the effect of improving the cleaning properties. A sufficient polishing rate cannot be obtained at a fluorine ion or an anion coordinated with fluorine of 1 millimol / Kg or less based on fluorine atoms . Addition of 100 millimol / Kg or more results in excessive erosion, and a flat mirror surface cannot be obtained, and the detergency is also deteriorated. Preferably it is 3-60 millimol / Kg.
[0014]
In general, it is convenient to prepare a high-concentration composition having a silicon oxide concentration of 25 to 65% and dilute it with water or a mixture of water and an organic solvent. The high-concentration composition lacks any of the above essential components other than silicon oxide, and can be added at the time of dilution.
[0015]
In order to improve the physical properties of the polishing composition of the present invention, a surfactant, a dispersant, an anti-settling agent and the like can be used in combination. Examples of the surfactant, dispersant, and anti-settling agent include water-soluble organic substances and inorganic layered compounds. The polishing composition of the present invention is basically an aqueous solution, but an organic solvent may be added.
【Example】
Next, the polishing composition of the present invention and the polishing method using the same will be specifically described with reference to examples and comparative examples, but the present invention is not particularly limited thereto.
The monodispersed colloidal silica used in the Examples has an average particle size of 15 nm “Silica Doll 30”, an average particle size of 40 nm “Silica Doll 30G”, an average particle size of 80 nm “Silica Doll 40G-80”, and an average particle size of 120 nm. Used “silica doll 40G-120”, and colloidal silica having other average particle diameters was produced from water glass. The number average diameter (Dn) and the volume average diameter (Dv) are measured using Nikkiso Co., Ltd. Microtrac UPA, and the ratio (Dv / Dn) is in the range of 1.00 to 1.50. confirmed. Polydispersed colloidal silica was prepared as follows. "Silica Dole 30" with an average particle size of 15 nm, "Silica Doll 30G" with an average particle size of 40 nm, "Silica Dole 40G-80" with an average particle size of 80 nm, and "Silica Doll 40G-120" with an average particle size of 120 nm The mixture was mixed at a ratio such that the average particle diameter was 40 nm and (Dv / Dn) was 2.0.
[0017]
A commercially available aqueous solution was used as tetramethymelammonium hydroxide (hereinafter abbreviated as TMAH). Further, the TMAH aqueous solution was neutralized with carbon dioxide gas to prepare tetramethylmermmonium hydrogen carbonate (hereinafter abbreviated as TMAHC). The creation method was as follows. A 20% TMAH aqueous solution was put into a 500 ml gas washing bottle, carbon dioxide gas was blown into fine bubbles for 12 hours, and absorbed in the TMAH aqueous solution to obtain a TMAHC solution. Carbonation was quantified by neutralization titration with dilute hydrochloric acid and calculated from the inflection point of the titration curve. The degree of neutralization was 97%.
[0018]
Fluorine used was a reagent hydrofluoric acid aqueous solution, a borohydrofluoric acid aqueous solution, and a silicohydrofluoric acid aqueous solution. Similarly, the reagents sodium fluoride, sodium silicofluoride, and potassium fluoride were used. As the carbonate, the reagents sodium hydrogen carbonate and potassium hydrogen carbonate were used. In addition, sodium hydroxide was used after diluting an industrial 50% aqueous solution.
[0019]
Examples of surface polishing of silicon wafers of Examples 1 to 5 and Comparative Examples 1 to 3 are shown. Using the polishing composition adjusted to have the composition shown in Table 1, mirror polishing was performed under the following polishing conditions.
Polishing device: SH-24 type single-side processing machine manufactured by Speed Fem Co., Ltd.
Plate rotation speed: 70 RPM
Pressure plate rotation speed: 50 RPM
Polishing cloth: SUBA400 (Rodel Nitta)
Surface pressure: 200 g / cm @ 2
Polishing composition flow rate: 80 ml / min Polishing time: 2 minutes Workpiece: 4 inches, silicon wafer with oxide film 1200 nm.
The pH of the polishing composition was measured using a pH meter. The polished surface was evaluated by observing the state of haze and pits with the naked eye under a condenser lamp. The polishing rate was obtained from the weight difference between the silicon wafers before and after polishing and converted to μm / min.
The results are shown in Table 1. In Examples 1 to 5, the polishing rate is higher than that in Comparative Examples 1 to 3, and the surface condition is good.
[0020]
The adjustment method of the polishing composition in Examples 1-5 and Comparative Examples 1-3 is as follows.
Comparative Examples 1-2 and Examples 1-2: A predetermined amount of hydrofluoric acid aqueous solution was added to and mixed with diluted TMAH aqueous solution, and then potassium hydrogen carbonate was added and dissolved under stirring. This additive solution was added to colloidal silica of each particle size with stirring, and finally diluted with pure water to obtain the compositions shown in Table 1. Comparative Example 1 uses colloidal silica having an average particle diameter of 15 nm, and Comparative Example 2 uses polydispersed colloidal silica prepared by the above method.
Example 3 A predetermined amount of diluted TMAH aqueous solution and TMAHC aqueous solution were mixed, and predetermined amounts of sodium fluoride and potassium fluoride were added and dissolved under stirring. Next, this additive solution was added to colloidal silica with stirring, and finally diluted with pure water to obtain the compositions shown in Table 1.
Example 4: A predetermined amount of diluted TMAH aqueous solution and TMAHC aqueous solution were mixed, and a predetermined amount of hydrofluoric acid aqueous solution was added thereto and mixed, and then potassium hydrogen carbonate was added and dissolved under stirring. Next, this additive solution was added to colloidal silica with stirring, and finally diluted with pure water to obtain the compositions shown in Table 1.
Comparative Example 3: A composition shown in Table 1 was prepared in the same manner as in Example 4 except that the aqueous hydrofluoric acid solution was not added.
Example 5: A predetermined amount of a diluted TMAH aqueous solution and a TMAHC aqueous solution are mixed, and a predetermined amount of a borohydrofluoric acid aqueous solution is added to and mixed with this, and this additive solution is added to colloidal silica with stirring. The composition of Table 1 was diluted.
[Table 1]
Figure 0003754986
[0021]
An example of surface polishing of a silicon wafer using the polishing composition liquids of Example 6 and Comparative Example 4 in a circulating manner will be shown. Using the polishing composition adjusted to have the composition shown in Table 2, the polishing conditions were the same as in Example 1, the polishing composition solution was circulated 10 times, and 10 wafer polishing experiments were performed. The pH and polishing rate of each polishing composition were measured. The results are shown in Table 2. The pH of Example 6 is less changed up to 9 times of circulation than Comparative Example 4, and the polishing rate is high.
[0022]
The adjustment method of the polishing composition in Example 6 and Comparative Example 4 is as follows. Example 6: A predetermined amount of diluted TMAH aqueous solution and TMAHC aqueous solution are mixed, a predetermined amount of hydrofluoric acid aqueous solution is added and mixed with this, and this additive solution is added to colloidal silica with stirring, and finally with pure water. The composition of Table 2 was diluted.
Comparative Example 4: TMAH aqueous solution and TMAHC aqueous solution were not added, only sodium fluoride and sodium hydroxide were added to colloidal silica with stirring, and finally diluted with pure water to obtain the compositions shown in Table 2. ]
Figure 0003754986
[0023]
Examples of end face polishing of silicon wafers of Examples 7 to 11 and Comparative Examples 5 to 7 are shown. Using the polishing composition adjusted to have the composition shown in Table 3, mirror polishing was performed by the following polishing condition method.
Polishing device: Speed-Fam Co., Ltd., EP-IV type end face processing machine drum rotation speed: 800 RPM
Wafer rotation speed: 70 seconds / REV
Number of wafer rotations: 4 times / sheet polishing cloth: DRP-II (manufactured by Speed Fam Co., Ltd.)
Load: 2.5Kg
Polishing composition flow rate: 250 ml / min Workpiece: 8 inches, pH of silicon wafer polishing composition with oxide film 800 nm + polysilicon film 2000 nm was measured using a pH meter. The polished surface was evaluated by observing the state of haze and pits with the naked eye under a condenser lamp. The polishing rate was determined from the weight difference between the silicon wafers before and after polishing and converted to mg / min.
The results are shown in Table 3. In Examples 7 to 11, the polishing rate is higher than that of Comparative Examples 5 to 7, and the surface state is good.
[0024]
The adjustment method of polishing composition in Examples 7-11 and Comparative Examples 5-7 is as follows.
Example 7: A predetermined amount of a hydrofluoric acid aqueous solution was added to a diluted TMAH aqueous solution, and then potassium hydrogen carbonate and sodium hydrogen carbonate were added and dissolved under stirring. Next, this additive solution was added to colloidal silica with stirring, and finally diluted with pure water to obtain the compositions shown in Table 3.
Examples 8 to 9: A predetermined amount of a diluted TMAH aqueous solution and a TMAHC aqueous solution are mixed, a predetermined amount of a borohydrofluoric acid aqueous solution is added thereto, and this additive solution is added to colloidal silica with stirring. Dilution with water gave the compositions in Table 3.
Example 10: A predetermined amount of an aqueous hydrofluoric acid solution was added to a diluted aqueous TMAH solution, and then sodium hydrogen carbonate was added and dissolved under stirring. Next, this additive solution was added to colloidal silica with stirring, and finally diluted with pure water to obtain the compositions shown in Table 3.
Example 11: A predetermined amount of a diluted TMAH aqueous solution and a TMAHC aqueous solution were mixed, a predetermined amount of a hydrofluoric acid aqueous solution was added thereto, and then sodium silicofluoride was added and dissolved under stirring. Next, this additive solution was added to colloidal silica with stirring, and finally diluted with pure water to obtain the compositions shown in Table 3.
Comparative Example 5 A composition shown in Table 3 was prepared in the same manner as in Example 10 except that polydispersed colloidal silica prepared by the above method was used instead of monodispersed colloidal silica.
Comparative Example 6: A predetermined amount of a hydrofluoric acid aqueous solution was added to and mixed with the diluted TMAH aqueous solution, and then sodium bicarbonate was added and dissolved under stirring. Next, this additive solution was added to colloidal silica with stirring, and finally diluted with pure water to obtain the compositions shown in Table 3. This composition had a pH of 8.2.
Comparative Example 7: A predetermined amount of a hydrofluoric acid aqueous solution was added to and mixed with the diluted TMAH aqueous solution, then sodium hydrogen carbonate was added and dissolved under stirring, and an aqueous sodium hydroxide solution was further added and mixed. Next, this additive solution was added to colloidal silica with stirring, and finally diluted with pure water to obtain the compositions shown in Table 3. This composition had a pH of 11.0.
[Table 3]
Figure 0003754986
[0025]
【The invention's effect】
As shown in the above description, the polishing composition of the present invention comprises a colloidal solution having a concentration of 1 to 25% by weight of substantially monodispersed silicon oxide particles having an average primary particle size of 30 to 200 nm. The colloidal solution is prepared as a buffer solution having a buffering action between pH 8.7 and 10.5, and fluorine ion or anion coordinated with fluorine is used as one of the components as 1 to 1 It was found that the polishing composition characterized by containing 100 millimol / kg has little pH change, high polishing rate, and good cleaning properties. The polishing composition of the present invention can be used to stably and rapidly polish silicon wafers and semiconductor device substrates without degrading the quality of the polished surface.

Claims (5)

平均一次粒子径が30〜200nmの実質的に単分散である酸化珪素粒子がその濃度が1〜25重量%であるコロイド溶液からなり、該コロイド溶液が、pH8.7〜10.5の間で緩衝作用を有する緩衝溶液として調整されたものであり、成分の一つにフッ素イオンもしくはフッ素が配位した陰イオンをフッ素原子として1〜100ミリmol/Kgの濃度で含有することを特徴とする研磨用組成物。A substantially monodispersed silicon oxide particle having an average primary particle size of 30 to 200 nm is composed of a colloidal solution having a concentration of 1 to 25% by weight, and the colloidal solution has a pH between 8.7 and 10.5. It is prepared as a buffer solution having a buffering action, and one of the components contains fluorine ions or anions coordinated with fluorine as fluorine atoms at a concentration of 1 to 100 millimol / kg. Polishing composition. 緩衝溶液を形成する陽イオンが、カリウムイオン及び/または、ナトリウムイオン及び/または、テトラメチルアンモニウムイオンであることを特徴とする請求項第1項記載の研磨用組成物。2. The polishing composition according to claim 1, wherein the cation forming the buffer solution is potassium ion and / or sodium ion and / or tetramethylammonium ion. 緩衝溶液を形成する陰イオンが、炭酸イオン及び/または、炭酸水素イオンを含むことを特徴とする請求項第1項又は請求項第2項の何れか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 and 2 , wherein the anion forming the buffer solution contains carbonate ions and / or bicarbonate ions. ナトリウムの含有量が2ミリmol/Kg以下である請求項第1項乃至3項の何れか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 3 , wherein the content of sodium is 2 millimol / Kg or less. 平均一次粒子径が30〜200nmの実質的に単分散である酸化珪素粒子がその濃度が25〜65重量%であるコロイド溶液からなり、該コロイド溶液が、pH緩衝作用を有する緩衝溶液として調整されたものであり、成分の一つにフッ素イオンもしくはフッ素が配位した陰イオンをフッ素原子として5〜500ミリmol/Kgの濃度で含有し、該コロイド溶液を、水、有機溶剤、塩類を含んだ溶液で希釈することを特徴とする、請求項第1項乃至4項の何れか1項に記載の研磨用組成物を調整する方法。A substantially monodispersed silicon oxide particle having an average primary particle size of 30 to 200 nm is composed of a colloidal solution having a concentration of 25 to 65% by weight, and the colloidal solution is prepared as a buffer solution having a pH buffering action. One of the components contains fluorine ions or anions coordinated with fluorine as fluorine atoms at a concentration of 5 to 500 millimol / kg, and the colloidal solution contains water, an organic solvent, and salts. The method for preparing a polishing composition according to any one of claims 1 to 4, wherein the polishing composition is diluted with an aqueous solution .
JP2002093810A 2002-03-29 2002-03-29 Abrasive composition and method for preparing the same Expired - Fee Related JP3754986B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002093810A JP3754986B2 (en) 2002-03-29 2002-03-29 Abrasive composition and method for preparing the same
TW92107324A TW200400249A (en) 2002-03-29 2003-03-28 Polishing agent composition and preparation method thereof
CNB031212182A CN1322087C (en) 2002-03-29 2003-03-28 Composition for grinding agent and making-up method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002093810A JP3754986B2 (en) 2002-03-29 2002-03-29 Abrasive composition and method for preparing the same

Publications (2)

Publication Number Publication Date
JP2003297778A JP2003297778A (en) 2003-10-17
JP3754986B2 true JP3754986B2 (en) 2006-03-15

Family

ID=28786172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002093810A Expired - Fee Related JP3754986B2 (en) 2002-03-29 2002-03-29 Abrasive composition and method for preparing the same

Country Status (3)

Country Link
JP (1) JP3754986B2 (en)
CN (1) CN1322087C (en)
TW (1) TW200400249A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2544198C (en) * 2003-10-29 2011-07-26 Mallinckrodt Baker, Inc. Alkaline, post plasma etch/ash residue removers and photoresist stripping compositions containing metal-halide corrosion inhibitors
JP4600169B2 (en) * 2004-06-25 2010-12-15 Jsr株式会社 Semiconductor component cleaning composition and method for manufacturing semiconductor device
DE602005000732T2 (en) * 2004-06-25 2007-12-06 Jsr Corp. Cleaning composition for semiconductor component and method for producing a semiconductor device
JP2006104354A (en) * 2004-10-06 2006-04-20 Nippon Chem Ind Co Ltd Polishing composition, method for producing the same and polishing method using the polishing composition
US7559825B2 (en) 2006-12-21 2009-07-14 Memc Electronic Materials, Inc. Method of polishing a semiconductor wafer
JP2008235481A (en) * 2007-03-19 2008-10-02 Nippon Chem Ind Co Ltd Semiconductor wafer polishing composition, manufacturing method thereof, and polishing processing method
CN113423799A (en) * 2019-10-03 2021-09-21 日产化学株式会社 Polishing composition containing cation for eliminating swelling around laser mark
CN118667447A (en) * 2024-08-22 2024-09-20 芯越微电子材料(嘉兴)有限公司 Chemical mechanical polishing solution and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230833A (en) * 1989-06-09 1993-07-27 Nalco Chemical Company Low sodium, low metals silica polishing slurries
JP2877440B2 (en) * 1989-06-09 1999-03-31 ナルコ ケミカル カンパニー Colloidal silica polishing slurry
JP3197575B2 (en) * 1991-05-09 2001-08-13 株式会社吾妻商会 Mounting method of light emitting display
JPH11130418A (en) * 1997-10-29 1999-05-18 Clariant Japan Kk Method for removing sodium ion from colloidal silica
JPH11302635A (en) * 1998-04-24 1999-11-02 Hiroaki Tanaka Polishing composition and method for polishing using it

Also Published As

Publication number Publication date
CN1322087C (en) 2007-06-20
TW200400249A (en) 2004-01-01
TWI306471B (en) 2009-02-21
CN1448459A (en) 2003-10-15
JP2003297778A (en) 2003-10-17

Similar Documents

Publication Publication Date Title
JP5275595B2 (en) Semiconductor wafer polishing composition and polishing method
JP3721497B2 (en) Method for producing polishing composition
US8114178B2 (en) Polishing composition for semiconductor wafer and polishing method
JP7206695B2 (en) Silica sol, polishing composition, method for polishing silicon wafer, method for producing silicon wafer, chemical-mechanical polishing composition, and method for producing semiconductor device
JP4113288B2 (en) Polishing composition and silicon wafer processing method using the same
JP4163785B2 (en) Polishing composition and polishing method
JP5495508B2 (en) Abrasive particle dispersion and method for producing the same
JP4963825B2 (en) Polishing silica sol and polishing composition containing the same
US20080038996A1 (en) Polishing composition for semiconductor wafer, production method thereof, and polishing method
JP2008235481A (en) Semiconductor wafer polishing composition, manufacturing method thereof, and polishing processing method
JP2002338232A (en) Secondary flocculated colloidal silica, method for producing the same and abrasive composition using the same
JP6207345B2 (en) Method for producing silica particles
JP2003297777A (en) Composition for polishing, method for modifying the same and method for polishing the same
JP3754986B2 (en) Abrasive composition and method for preparing the same
JP7356932B2 (en) Polishing composition and polishing method
JP4291665B2 (en) Abrasive composition for siliceous material and polishing method using the same
WO2005029563A1 (en) Polishing composition for silicon wafer and polishing method
JP4346712B2 (en) Wafer edge polishing method
JP4247955B2 (en) Abrasive composition for hard and brittle materials and polishing method using the same
JP7331437B2 (en) Silica particles, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method
CN112552824B (en) Polishing composition and polishing method
JP4396963B2 (en) Polishing composition, method for preparing the same, and method for polishing a wafer using the same
JP4042906B2 (en) Polishing composition, method for adjusting polishing composition, and polishing method
JPWO2005090511A1 (en) Polishing composition and polishing method
JP5373250B2 (en) Method for producing semiconductor wafer polishing composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3754986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees