【0001】
【産業上の利用分野】
本発明は、メソゲン基(それ単独で液晶相を示す分子)を側鎖として有する性能の優れたチオフェンポリマーの製造に用いられるモノマーに関する。
【0002】
【従来の技術】
メソゲン基を側鎖として有するチオフェンポリマーの製造法に関しては、電解酸化重合法、化学酸化重合法が知られている。(特開平2−227427、UKPat.2225008)
【0003】
しかしながら、これらのポリマーは、ポリマー中多くの不純物(例えば重合酸化剤、副生成物等)を含有し、メソゲン基を導入したにもかかわらず、液晶分子特有の熱相転移など観察されにくい欠点があった。またこれらの高分子は一般的溶媒には不溶であったり詳細な研究、材料化など困難であった。
【0004】
【発明が解決しようとする課題】
本発明は、メソゲン基を側鎖として有する性能の優れたチオフェンポリマーの製造に用いられるモノマーを提供することである。
【0005】
【課題を解決するための手段】
本発明は、3及び/又は4位にメソゲン基を有する2,5−ジハロゲノチオフェン誘導体を遷移金属化合物存在下にマグネシウム及び亜鉛よりなる群から選ばれる金属と反応させることを特徴とするメソゲン基を側鎖として有するチオフェンポリマーの製造に用いられるモノマーである。
【0006】
本発明に用いられる3及び/又は4位にメソゲン基を有する2,5−ジハロゲノチオフェン誘導体は、3又は4位の片方にのみメソゲン基を有するとき、他方は置換基で置換されていてもよい。これらは、例えば式〔I〕
【化3】
{式中、Xはハロゲン原子を示し、R1 は水素、シアノ、アルキル、置換されてもよいフェニルもしくはベンジル、COR3 (ここでR3 は、アルキル、置換されてもよいフェニル又はベンジルを示す。)又は−COOR4 (ここでR4 は、水素、アルキル、置換されてもよいフェニル又はベンジルを示す。)を示し、R2 は
【化4】
なる基〔ここでYは直結合、分岐もしくは直鎖状の炭素数1〜12のアルキレン、フェニレン、−CO−、−COO−、−COOalk−、−COOalkO−、−COOalkN(R5 )−(ここでR5 はアルキルを示す。)、−alkCOOalk′O−、−alkO−、−alkOalk′O−、−alkOCOalk′O−(ここでalk、alk′は分岐もしくは直鎖状の炭素数1〜12のアルキレンを示す。)を示し、Zは−HC=CH−、−CH=NNH−、−N=N(O)−、−C≡C−、−COO−、−N=N−、−S−又は直結合を示し、rは水素、ニトロ、シアノ、フッ素等のハロゲン、不斉炭素を有してもよく置換されてもよいアルキルもしくはアルコキシ、−COR6 (ここでR6 は不斉炭素を有してもよく置換されてもよいアルキル、置換されてもよいフェニルを示す。)、−COOR7 又はOCOR8 (ここでR7 、R8 は、水素、不斉炭素を有してもよく置換されてもよいアルキル、置換されてもよいフェニルを示す。)〕を示す。}で表わされるチオフェン誘導体である。
【0007】
本発明のチオフェン誘導体は、下記反応式或いは公知の類似の反応を適宜選択することにより製造される。
【0008】
【化5】
【0009】
【化6】
【0010】
【化7】
【0011】
反応終了後は通常の後処理を行うことにより目的物を得ることができる。構造は、IR、NMR、MS等から決定した。
【0012】
本発明のチオフェン誘導体を用いた重合法反応は、DMF、HMPAなどの不活性溶媒中、室温〜180℃で行う。本発明で用いる2,5−ジハロゲノチオフェン誘導体のハロゲンは、臭素、ヨウ素が好ましく、遷移金属化合物に対し高い反応性を有する化合物が好ましい。また、触媒としての遷移金属化合物としては、テトラキス(トリフェニルホスフィン)ニッケル:Ni(PPh3 )4 、ビス(1,5−シクロオクタジエン)ニッケル:Ni(cod)2 あるいはNi(cod)2 に中性配位子として、トリフェニルホスフィン:PPh3 や2,2’−ビピリジン:bpy等を加えた系、また2価ニッケル化合物を還元することによって得られた系など、ニッケルの0価錯体が一般に用いられる。触媒の量は原料有機化合物に対し、0.01〜2当量、好ましくは0.05〜0.8当量、更に好ましくは0.05〜0.5当量である。後処理は通常の後処理を行うことにより目的物が得られる。
【0013】
以上のようにして得られたポリマーは、数平均分子量は通常1,000から20,000であり、これは有機溶媒可溶な好適なものである。また、共重合可能なモノマー(例えば、2,5−ジハロゲンノチオフェン誘導体など)との共重合体も可能である。
【0014】
高分子膜得られたポリマーを有機溶媒に溶解し、例えばキャスティング法、浸漬法、スプレー法、超音波霧化法、スピンコーティング法等により成膜できる。なお、必要に応じて、本発明で得られたポリマー同志の混合、他のポリマーとの混合、安定剤、可塑剤などを含めた種々の無機、有機及び金属類等の添加物の添加など当業界においてよく知られている数多くの処理方法も用いることができる。
【0015】
【実施例】
次に実施例を挙げて本発明を詳述する。また、本発明の実施例以外の化合物は、以下の実施例と同様の反応で製造することが可能である。
【0016】
実施例1 モノマーの製造(i)2,5−ジブロモ−3−(11−ブロモウンデカンカルボニルオキシ)メチルチオフェンの合成
【化8】
温度計、攪拌機を付した反応容器に、11−ブロモウンデカン酸2.9g(11.0ミリモル)と塩化チオニル4.2mlを加え50℃で3時間反応を行った。反応終了後過剰の塩化チオニルを留去し塩化11−ブロモウンデカノイルを得た。次に別の反応容器に2,5−ジブロモ−3−ヒドロキシメチルチオフェン3.0g(11ミリモル)とトリエチルアミン2.8g(27.7ミリモル)、THF 20mlを加え、滴下ロートより、THF 15mlに溶解した塩化11−ブロモウンデカノイルを滴下し、一晩撹拌した。反応終了後THF、トリエチルアミンを留去し得られた生成物をクロロホルムに溶解し、水洗した。乾燥剤で脱水後カラムクロマトグラフィーで分離精製して目的物を得た。
(ii)2,5−ジブロモ−3−〔4′−(4−シアノビフェニル)オキシ〕ウンデカンカルボニルオキシメチルチオフェンの合成
【化9】
温度計、攪拌機を付した反応容器に4−ヒドロキシ−4′−シアノビフェニル0.74g(3.76ミリモル)と無水炭酸カリウム1.3g(9.3ミリモル)、アセトン40mlと触媒量のヨウ化カリウムを加え還流した。そこに(i)の生成物1.95g(3.76ミリモル)を加え24h還流した。反応終了後溶媒を留去し、クロロホルムに溶解水洗した。脱水後カラムクロマトグラフィーにより分離精製した。
【0017】
モノマー前駆体の例を第一表に示す。
【表1】
【0018】
前記実施例を含め、モノマーの例を第2表に示す。
【表2】
【0019】
参考例1 ポリマーの製造
【化10】
よく乾燥した反応容器に臭化ニッケル(II)0.089g(0.41mmol)、トリフェニルホスフィン0.799g(3.04mmol)と亜鉛〔酢酸中で撹拌後エーテル洗浄し真空乾燥したもの〕0.799g(12.22mmol)を加えた。真空ポンプで脱気後、窒素置換し、この操作を3回繰り返した。そこにモレキュラーシーブで脱水後蒸留したジメチルホルムアミド(DMF)3mlを加え、窒素雰囲気下50℃で30分撹拌した。赤褐色になった内容物にDMF3mlに溶解した1.285g(2.03mmol)のNo.5の化合物(DiBrESCN−10)を滴下し、滴下終了後窒素雰囲気下60℃で20時間撹拌した。反応終了後、内容物を濃縮し、エーテルに投入して沈澱物を得た。塩酸・メタノール混合液で洗浄後、中性になるまで、メタノールで洗浄した。クロロホルムに溶解後、氷浴で冷却したエーテルに投入しポリマーを得た。
収量 0.384g 収率 40.0%
【0020】
【発明の効果】
以上述べたように、本発明のチオフェン誘導体を用いて得られるポリマーは、有機溶媒に可溶で不純物が少なく、またこのポリマーを成形したフィルムは、熱相転と電気的活性があり、液晶性と電気的活性の2つの基本特性を同一分子内に有する。
また、上記ポリマーは有機溶媒に可溶であり、従来のスピンコード法などの塗工技術が容易であり、さらに、熱、電解等により塗膜の配列制御も可能であり、異方性を有する導電材料、誘導材料、また光スイッチ記憶材料、配向膜等の電気電子素子、光学素子等に応用できる。従って、優れた性能を有する上記ポリマーの原料となる本発明のチオフェン誘導体の産業上の利用価値は高いといえる。[0001]
[Industrial application fields]
The present invention relates to a monomer used for the production of a thiophene polymer having an excellent performance having a mesogenic group (a molecule exhibiting a liquid crystal phase alone) as a side chain.
[0002]
[Prior art]
As a method for producing a thiophene polymer having a mesogenic group as a side chain, an electrolytic oxidation polymerization method and a chemical oxidation polymerization method are known. (JP-A-2-227427, UK Pat. 2225008)
[0003]
However, these polymers contain many impurities in the polymer (for example, polymerization oxidants, by-products, etc.) and, despite the introduction of mesogenic groups, are not easily observed, such as thermal phase transitions peculiar to liquid crystal molecules. there were. In addition, these polymers are insoluble in general solvents, and detailed research and materialization are difficult.
[0004]
[Problems to be solved by the invention]
This invention is providing the monomer used for manufacture of the thiophene polymer excellent in the performance which has a mesogenic group as a side chain.
[0005]
[Means for Solving the Problems]
The present invention relates to a mesogenic group characterized by reacting a 2,5-dihalogenothiophene derivative having a mesogenic group at the 3 and / or 4 position with a metal selected from the group consisting of magnesium and zinc in the presence of a transition metal compound. Is a monomer used for the production of a thiophene polymer having as a side chain.
[0006]
When the 2,5-dihalogenothiophene derivative having a mesogenic group at the 3 and / or 4 position used in the present invention has a mesogenic group only at one of the 3 or 4 positions, the other may be substituted with a substituent. Good. These are, for example, those of the formula [I]
[Chemical 3]
{Wherein X represents a halogen atom, R1 represents hydrogen, cyano, alkyl, phenyl or benzyl which may be substituted, COR3 (wherein R3 represents alkyl, phenyl or benzyl which may be substituted) or -COOR4 (wherein R4 represents hydrogen, alkyl, phenyl or benzyl which may be substituted), and R2 represents
Wherein Y is a direct bond, branched or linear alkylene having 1 to 12 carbon atoms, phenylene, -CO-, -COO-, -COOalk-, -COOalkO-, -COOalkN (R5)-(here And R5 represents alkyl.), -AlkCOOalk'O-, -alkO-, -alkOalk'O-, -alkOCOalk'O- (wherein alk and alk 'are branched or linear carbon atoms of 1 to 12) Z represents —HC═CH—, —CH═NNH—, —N═N (O) —, —C≡C—, —COO—, —N═N—, —S—. Or r represents hydrogen, halogen such as nitro, cyano, or fluorine, alkyl or alkoxy which may have an asymmetric carbon and may be substituted, -COR6 (where R6 has an asymmetric carbon) Well replaced Alkyl, which may be substituted, and phenyl which may be substituted.), -COOR7 or OCOR8 (wherein R7 and R8 each have hydrogen, an asymmetric carbon which may be substituted or alkyl which may be substituted) Good phenyl.)]. } Is a thiophene derivative represented by:
[0007]
The thiophene derivative of the present invention is produced by appropriately selecting the following reaction formula or a known similar reaction.
[0008]
[Chemical formula 5]
[0009]
[Chemical 6]
[0010]
[Chemical 7]
[0011]
After completion of the reaction, the desired product can be obtained by carrying out ordinary post-treatment. The structure was determined from IR, NMR, MS and the like.
[0012]
The polymerization reaction using the thiophene derivative of the present invention is performed at room temperature to 180 ° C. in an inert solvent such as DMF and HMPA. The halogen of the 2,5-dihalogenothiophene derivative used in the present invention is preferably bromine or iodine, and is preferably a compound having high reactivity with the transition metal compound. Transition metal compounds as catalysts include tetrakis (triphenylphosphine) nickel: Ni (PPh3) 4, bis (1,5-cyclooctadiene) nickel: Ni (cod) 2 or Ni (cod) 2. Generally, a zero-valent complex of nickel, such as a system obtained by adding triphenylphosphine: PPh3 or 2,2'-bipyridine: bpy, or a system obtained by reducing a divalent nickel compound, is used as a functional ligand. It is done. The amount of the catalyst is 0.01 to 2 equivalents, preferably 0.05 to 0.8 equivalents, more preferably 0.05 to 0.5 equivalents, relative to the raw material organic compound. In the post-treatment, the desired product can be obtained by carrying out the usual post-treatment.
[0013]
The polymer obtained as described above usually has a number average molecular weight of 1,000 to 20,000, which is a suitable organic solvent-soluble polymer. A copolymer with a copolymerizable monomer (for example, a 2,5-dihalogenothiophene derivative or the like) is also possible.
[0014]
Polymer film The obtained polymer is dissolved in an organic solvent, and can be formed by, for example, a casting method, a dipping method, a spray method, an ultrasonic atomization method, a spin coating method, or the like. If necessary, mixing of the polymers obtained in the present invention, mixing with other polymers, addition of various inorganic, organic and metal additives including stabilizers, plasticizers, etc. Numerous processing methods well known in the industry can also be used.
[0015]
【Example】
EXAMPLES Next, an Example is given and this invention is explained in full detail. Moreover, compounds other than the Example of this invention can be manufactured by reaction similar to a following example.
[0016]
Example 1 Preparation of Monomer (i) Synthesis of 2,5-dibromo-3- (11-bromoundecanecarbonyloxy) methylthiophene
In a reaction vessel equipped with a thermometer and a stirrer, 2.9 g (11.0 mmol) of 11-bromoundecanoic acid and 4.2 ml of thionyl chloride were added and reacted at 50 ° C. for 3 hours. After completion of the reaction, excess thionyl chloride was distilled off to obtain 11-bromoundecanoyl chloride. Next, 3.0 g (11 mmol) of 2,5-dibromo-3-hydroxymethylthiophene and 2.8 g (27.7 mmol) of triethylamine and 20 ml of THF were added to another reaction vessel, and dissolved in 15 ml of THF from the dropping funnel. The 11-bromoundecanoyl chloride was added dropwise and stirred overnight. After completion of the reaction, THF and triethylamine were distilled off, and the resulting product was dissolved in chloroform and washed with water. After dehydration with a desiccant, separation and purification by column chromatography gave the desired product.
(Ii) Synthesis of 2,5-dibromo-3- [4 '-(4-cyanobiphenyl) oxy] undecanecarbonyloxymethylthiophene
In a reaction vessel equipped with a thermometer and a stirrer, 0.74 g (3.76 mmol) of 4-hydroxy-4'-cyanobiphenyl, 1.3 g (9.3 mmol) of anhydrous potassium carbonate, 40 ml of acetone and a catalytic amount of iodide Potassium was added and refluxed. Thereto was added 1.95 g (3.76 mmol) of the product of (i), and the mixture was refluxed for 24 hours. After completion of the reaction, the solvent was distilled off and the residue was dissolved in chloroform and washed with water. After dehydration, separation and purification were performed by column chromatography.
[0017]
Examples of monomer precursors are shown in Table 1.
[Table 1]
[0018]
Examples of monomers including the above examples are shown in Table 2.
[Table 2]
[0019]
Reference Example 1 Production of polymer
In a well-dried reaction vessel, 0.089 g (0.41 mmol) of nickel bromide (II), 0.799 g (3.04 mmol) of triphenylphosphine and zinc (stirred in acetic acid, washed with ether and dried in vacuo) 799 g (12.22 mmol) was added. After deaeration with a vacuum pump, the atmosphere was replaced with nitrogen, and this operation was repeated three times. Thereto was added 3 ml of dimethylformamide (DMF) which had been dehydrated after molecular sieves and distilled, and stirred at 50 ° C. for 30 minutes in a nitrogen atmosphere. 1.285 g (2.03 mmol) of No. 1 dissolved in 3 ml of DMF in the reddish brown content. Compound 5 (DiBrESCN-10) was added dropwise, and after completion of the dropwise addition, the mixture was stirred at 60 ° C. for 20 hours in a nitrogen atmosphere. After completion of the reaction, the content was concentrated and poured into ether to obtain a precipitate. After washing with a hydrochloric acid / methanol mixture, it was washed with methanol until neutral. After dissolving in chloroform, it was put into ether cooled in an ice bath to obtain a polymer.
Yield 0.384 g Yield 40.0%
[0020]
【The invention's effect】
As described above, the polymer obtained by using the thiophene derivative of the present invention is soluble in an organic solvent and has few impurities, and the film formed from this polymer has thermal phase inversion and electrical activity, and has liquid crystallinity. And two basic properties of electrical activity in the same molecule.
In addition, the polymer is soluble in an organic solvent, is easy to apply coating techniques such as a conventional spin code method, and further, can control the arrangement of the coating film by heat, electrolysis, etc. and has anisotropy. It can be applied to conductive materials, inductive materials, optical switch memory materials, electrical and electronic elements such as alignment films, optical elements, and the like. Therefore, it can be said that the industrial utility value of the thiophene derivative of the present invention, which is a raw material for the polymer having excellent performance, is high.