JP3747921B2 - ガイド波を用いた非破壊検査装置及び非破壊検査方法 - Google Patents
ガイド波を用いた非破壊検査装置及び非破壊検査方法 Download PDFInfo
- Publication number
- JP3747921B2 JP3747921B2 JP2003175683A JP2003175683A JP3747921B2 JP 3747921 B2 JP3747921 B2 JP 3747921B2 JP 2003175683 A JP2003175683 A JP 2003175683A JP 2003175683 A JP2003175683 A JP 2003175683A JP 3747921 B2 JP3747921 B2 JP 3747921B2
- Authority
- JP
- Japan
- Prior art keywords
- waveform
- inspection
- guide wave
- transmission
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007689 inspection Methods 0.000 title claims description 161
- 238000000034 method Methods 0.000 title claims description 42
- 230000005540 biological transmission Effects 0.000 claims description 120
- 230000001066 destructive effect Effects 0.000 claims description 5
- 230000000644 propagated effect Effects 0.000 claims description 5
- 230000001902 propagating effect Effects 0.000 claims description 2
- 239000000284 extract Substances 0.000 claims 1
- 230000007547 defect Effects 0.000 description 42
- 238000010586 diagram Methods 0.000 description 23
- 230000008569 process Effects 0.000 description 23
- 239000006185 dispersion Substances 0.000 description 10
- 230000035945 sensitivity Effects 0.000 description 10
- 238000012360 testing method Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 229910000975 Carbon steel Inorganic materials 0.000 description 3
- 239000010962 carbon steel Substances 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010415 tidying Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/221—Arrangements for directing or focusing the acoustical waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/4409—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
- G01N29/4436—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a reference signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/32—Excitation or detection systems, e.g. using radio frequency signals
- G01R33/36—Electrical details, e.g. matching or coupling of the coil to the receiver
- G01R33/3621—NMR receivers or demodulators, e.g. preamplifiers, means for frequency modulation of the MR signal using a digital down converter, means for analog to digital conversion [ADC] or for filtering or processing of the MR signal such as bandpass filtering, resampling, decimation or interpolation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/01—Indexing codes associated with the measuring variable
- G01N2291/011—Velocity or travel time
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/025—Change of phase or condition
- G01N2291/0258—Structural degradation, e.g. fatigue of composites, ageing of oils
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02827—Elastic parameters, strength or force
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02854—Length, thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/042—Wave modes
- G01N2291/0421—Longitudinal waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/042—Wave modes
- G01N2291/0422—Shear waves, transverse waves, horizontally polarised waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/10—Number of transducers
- G01N2291/102—Number of transducers one emitter, one receiver
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/263—Surfaces
- G01N2291/2634—Surfaces cylindrical from outside
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- Signal Processing (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
Description
【発明の属する技術分野】
本発明は、配管の劣化をガイド波を用いて長距離区間一括して検査する非破壊検査装置及び非破壊検査方法に関する。
【0002】
【従来の技術】
各種プラントに用いられる配管は、建設から長期間が経過すると、その配管の内外面からの劣化、即ち腐食や侵食が顕在化してくる。これらの劣化が進行して配管の肉厚を貫通するまでに至ると、漏洩事故につながる恐れがある。このため、配管の肉厚の状態を、非破壊的な手段により評価し、漏洩に至る以前に、配管の交換や補修といった対策を施す必要がある。
【0003】
音波を用いた非破壊測定手段の代表的なものに、超音波厚み計がある。超音波厚み計は、一般には、電気と音響を相互に変換する圧電素子から成る超音波センサを用いて、対象配管中にバルク波(縦波や横波といった弾性波)を励起して、配管底面で反射した弾性波を同一もしくは別の超音波センサで受信して、配管の肉厚を測定する装置である。
【0004】
この装置は、受信波の受信時間を肉厚に換算するという測定原理上、高い精度で配管の肉厚を測定することができる一方で、検査範囲は、センサの大きさとほぼ同等程度に限られる。長尺の配管のように検査要求範囲が広くなると、測定点の増加により、多大な検査時間を要するという欠点がある。また、保温材がある配管や、埋設配管,垂直配管などアクセス性に問題のある配管においては、検査の準備・片付けに要する時間も多大である。
【0005】
このような問題に対する一つの対応策として、ガイド波(配管や板のように境界面を有する物体中を、反射やモード変換しながら進行する縦波・横波の干渉によって形成される弾性波)を用いて配管の長距離区間を一括して検査する方法がある。この方法は、ガイド波が配管の周方向断面積が変化する位置で反射する特徴を利用した方式である。配管の軸方向に、配管の中心軸に対して対称の単一モードのガイド波を伝播させて、その反射波の波高値や出現時間から減肉あるいは欠陥の大きさと軸方向位置を測定する。減肉あるいは欠陥以外に、溶接線からの反射波も得られるが、減肉あるいは欠陥からの反射波が、配管の中心軸に対して非軸対称に振動するのに対して、溶接線からの反射波が軸対称に振動する特徴を捉えて識別する(特に、特許文献1を参照)。
【0006】
また、検出信号と参照信号との相関を求めて、その相関の極大値に基づいて高精度に欠陥の位置等を特定する弾性波を用いた配管の検査装置(特に特許文献2を参照)が公知である。
【0007】
【特許文献1】
特表平10−507530号公報
【特許文献2】
特開2002−236113号公報
【0008】
【発明が解決しようとする課題】
前記の従来技術は、ガイド波の励振リングにトーンバースト波(4サイクルのトーンバースト波を図26に例示)を印加するとして説明されている。しかしながら、ガイド波は、音速が周波数によって変化する特性(以下、音速が周波数によって変化することを分散すると称し、この特性を分散特性と称する)を示すので、群速度(波束(波の塊)が進む速度)が、一定でない周波数帯域のガイド波を利用すると、遠方にある減肉や欠陥に対しての検出性能が低下する。
【0009】
この現象について詳細に説明する。例えば、材質が炭素鋼(縦波音速=5940m/s,横波音速=3260m/s)で、外径114.3mm ,肉厚6mm(肉厚と外径の比が0.052 )の配管の場合、周波数と肉厚の積とガイド波の音速の関係は、図27に示すようになることが理論的にわかっている。同図(a)は位相速度を示しており、51aはL(0,1)モード、52aはL(0,2)モード、53aはL(0,3)モード、54aはL(0,4)モードと呼ばれ、L(n,m)で表すmの数字が大きいほど板厚方向の変位分布が複雑になる。モードによる変位の特徴を模式的に示したのが図28であり、上から順にL(0,1)モード,L(0,2)モード,L(0,3)モードを示している。
【0010】
図27(b)は群速度を示しており、51bはL(0,1)モード、52bはL(0,2)モード、53bはL(0,3)モード、54bはL(0,4)モードである。L(0,2)モードの場合、約150kHz以下の帯域(周波数×肉厚=0.9MHzmm 以下)で群速度52bがほぼ一定になるが、300kHzから500kHzの付近(周波数×肉厚が1.8〜3.0MHzmm)は、群速度52bが周波数によって大きく変化する。
【0011】
この理論を検証するために、外径114.3mm ,肉厚6mm,長さ5500mmの配管に、端部から1500mmの位置に欠陥を施し、中心周波数500kHzのL(0,2)モードガイド波を送信して、欠陥からの反射波形を検出した。その結果を図29の説明図に示す。図29(a)は、センサを欠陥から200mm離して(配管端部から1700mmの位置に)設置した場合での反射波形であり、61は欠陥からの反射波形、62は配管端部からの反射波形である。図29(b)は、センサを欠陥から1000mm離して(配管端部から2500mmの位置に)設置した場合での反射波形であり、63は欠陥からの反射波形、64は配管端部からの反射波形である。欠陥からの反射波形である61と63を比較すると、センサと欠陥の距離が遠い反射波形63の方が、明らかに波動の持続時間が長くなっている。これは、前述したように音速が周波数によって異なる分散特性示すためであり、このような周波数帯域を使うと、ガイド波のエネルギーが、伝播距離が長くなるにしたがって時間軸上で広がって振幅が低下し、特に微小な割れや減肉の検出に支障をきたすこととなる。
【0012】
音速が分散する帯域は、一般に周波数が高い帯域に良く現れるので、周波数を下げるのが一つの対応策であるが、同時に波長が長くなるので、微小な欠陥に対しての感度が悪化することになる。
【0013】
本発明は、周波数で音速が分散する比較的周波数が高い帯域を利用しながらも、分散による振幅の低下を補償して、長距離区間を一括して検査可能な非破壊検査装置及びその方法を提供することを目的としている。
【0014】
【課題を解決するための手段】
本発明の目的を達成するために、本発明の非破壊検査装置は、基準波形を用いて送信波形を作成する波形作成手段と、前記送信波形が印加されて被検査体内にガイド波を発生させる送信素子と、前記被検査体の検査領域から前記ガイド波の反射波を受信する受信素子と、前記受信素子で受信した前記反射波の受信波形に基づいて得た検査情報を出力する解析手段と、前記検査情報を表示する表示手段とを備えている。
【0015】
同じく、本発明の非破壊検査方法は、基準波形を用いて送信波形を作成するステップと、前記送信波形を送信素子に印加して被検査体内にガイド波を発生させるステップと、前記被検査体の検査領域から前記ガイド波の反射波を受信素子で受信するステップと、前記受信素子で受信した前記反射波の受信波形に基づいて得た検査情報を得るステップと、前記検査情報を表示するステップとを備えている。
【0016】
【発明の実施の形態】
以下に、本発明の第1の実施形態における装置の構成を、図1から図3を用いて説明する。図1は、本実施形態に係わる配管検査装置のブロック図であり、同図において、1はガイド波送受信素子であって送信素子と受信素子とにガイド波の発生時とそのガイド波の反射波の受信時に用いられる送受信共通の素子、2は送受信素子リング、3はガイド波送受信手段、4はA/D変換器、5は波形作成・解析手段、6は入力手段、7は表示手段である。ガイド波とは、超音波であって、配管や板のように境界面を有する物体中を、反射やモード変換しながら進行する縦波や横波の干渉によって形成される弾性波と定義される。ガイド波送受信素子1は、共通の圧電素子を、送信時には送信素子として、受信時には受信素子として用いられる。尚、送信素子専用の圧電素子と、受信素子専用の圧電素子を近接して備えるようにして、送受信の用途別に専用化してもかまわない。
【0017】
ガイド波送受信素子1は、配管9にガイド波を発生させる素子で、例えば圧電素子で構成されており、配管9に接触して配置され、ガイド波送受信手段3と同軸ケーブルを介して電気的に接続されている。送受信素子リング2は、複数のガイド波送受信素子1を配管の周囲に円環状に把持する治具で、好ましくは、ガイド波送受信素子1を円周方向に等間隔に格納する構造を持ち、配管に対して着脱可能な構造とする。送受信素子リング2は、リング状のフレームをリングの直径に沿って切断した2分割の構造を有し、その分割端はネジで結合されてリング状に組み立てられている。したがって、配管9の外周囲にリング状のフレームを組み立てると送受信素子リング2は配管の外周に装着される。その送受信素子リング2のリング状のフレームの内側には、複数のガイド波送受信素子1が格納されるとともに、送受信素子リング2のリング状のフレームから配管9の外周面に向けて伸縮するバネで支持されている。そのため、その送受信素子リング2が配管9の外周面に装着されると、複数のガイド波送受信素子1がバネで配管9の外周面に押し当てられてガイド波送受信素子1から配管9に対してガイド波を発生させやすいようにされる。
【0018】
ガイド波送受信手段3は、ガイド波を送信するためにガイド波送受信素子1に送信波形を印加して、さらにガイド波送受信素子1からの受信波形を増幅する手段で、波形作成・解析手段5とデジタルデータを通信できるように接続され、また、受信波形を、A/D変換器4に送るように同軸ケーブルを介して接続されている。このガイド波送受信手段3は、例えば、送信波形の周波数を任意に設定できるシンセサイザ、もしくは任意波形発生器と、それらの信号を増幅するパワーアンプと、市販の超音波レシーバ、もしくは広帯域アンプで構成することができる。
【0019】
A/D変換器4は、アナログ信号をデジタル信号に変換する機能を有し、ガイド波送受信手段3から出力されるガイド波の受信波形をデジタル波形として波形作成・解析手段5に通信するように接続される。このA/D変換器4は、例えば、市販のオシロスコープやコンピュータ組み込み式のボードタイプが利用される。
【0020】
波形作成・解析手段5は、送信波形の作成や受信波形の解析を行うとともに、配管検査装置の全体の動作を統括する手段であって、コンピュータなどで構成でき、操作者の指示を受け付けるキーボードなどの入力手段6及びCRTなどの表示手段7に接続される。
【0021】
次に、ガイド波送受信素子1の構成例を、図2を用いて説明する。同図において、101はアクリル、102は厚み振動子、103は厚み振動子102から送信された縦波、9は配管、8は配管9を伝播するガイド波である。厚み振動子102は、配管9に対して縦波103を入射角度θで入射するように斜角に配置され、入射角度θは、屈折角度を90°としたスネルの法則θ=sin-1(Cw/c(ω))で算定される。ここで、Cwはアクリルの縦波音速、c(ω)(ωはガイド波の中心角周波数)は、発生させたいモードの位相速度である。
【0022】
例えば、アクリルの縦波音速を2720m/sとすると、L(0,2)モードの周波数×肉厚=3MHzmmでは、位相速度が3480m/s(図27(a)参照)なので、入射角θは51°に決定される。なお、101の材質はアクリルに限らず、ポリスチレンやその他の樹脂系材質を用いることができる。
【0023】
図3は、ガイド波送受信手段3とガイド波送受信素子1との接続図である。同図において、1a,1b,1cはガイド波送受信素子であり、すべてガイド波送受信手段3に並列に接続されている。このため、ガイド波送受信手段3から印加された送信波形は、ガイド波送受信素子1a,1b,1cを同時に振動させることができる。
【0024】
次に、本発明の第1の実施形態における配管検査装置の動作を、図1,図4,図5,図7、および波形作成・解析手段5の内部処理を示す図6のフローチャートを用いて説明する。初めに、波形作成・解析手段5は、検査条件の入力を求める(ステップS1)。このとき、表示手段7に、図4(a)に示す検査条件設定ウインドウを表示し、配管の肉厚,材質もしくは音速(縦波と横波の音速)、および検査領域(ガイド波送受信素子1を原点(0mm)とする距離)の入力を求める。図4には記載していないが、さらに、配管の外径の入力を求めるようにしておいても良い。
【0025】
配管の材質が入力された場合、予め格納された材質と音速とを対応させるデータベースを参照し、入力された材質の縦波と横波の音速を求める。また、必要に応じて、図4(b)に示す基準波形選択/表示ウインドウを表示し、後述する送信波形の基準となる基準波形の候補を複数表示して、選択を求める。また、サイクル数,中心周波数の入力を求め、入力された条件の基準波形を基準波形プレビューに表示して、入力を補助する。
【0026】
また、表示手段7に、図5に示す送信波形表示ウインドウを表示し、検査領域を複数のセグメントに分割をするか否かを選択させるが、本実施形態は、セグメントを分割しない場合(Noにチェックマーク)についての説明である。
【0027】
すべての条件が入力されると、波形作成・解析手段5は、送信波形を自動作成する(ステップS2)。送信波形の自動作成は、次に示す数式を波形作成・解析手段5中にソフトウエアとして実装することで実現されるが、この内容を図7を参照して説明する。
【0028】
初めに、基準波形u(t)(図7(a))に、式(1)に基づくフーリエ変換を施して、複素フーリエ成分U(ω)を求める。図7(d)に示した波形が受信素子に受信したい波形であり、これが基準波形u(t)と同等の波形となる。
【0029】
【数1】
【0030】
次に、U(ω)に、距離d(ガイド波送受信素子1から検査領域Rの中心までの距離)を往復伝播したとき、すなわち距離2dを伝播したときに相当する位相遅延を与え、逆フーリエ変換を施して、距離2d伝播後の計算波形u(2d,t)(図7(b))を算出する(式(2))。最後に、式(4)により計算波形u(2d,t)を時間反転させて、送信波形u′(t)(図7(c))を得る。
【0031】
【数2】
【0032】
ここで、ωは角周波数、c(ω)はガイド波の位相速度、tmax は、群速度の最小値をcmin とするときにtmax =2d/cmin で決定される時間である。なお、ガイド波の位相速度c(ω)は、J.L. Rose著の“Ultrasonic Waves in Solid Media”のpp.159−162に述べられている特性方程式の数値解を解くことで求められることが知られているが、詳細は省略する。
【0033】
作成された送信波形u′(t)は、ガイド波送受信手段3に転送されるとともに、送信波形表示ウインドウ(図5)に表示される。一例を挙げれば、検査領域Rが500mm〜1500mmであると、検査領域の中心は、1000mmであるので、距離d=1000mmとして、送信波形が計算され、送信波形プレビューに表示される。
【0034】
次に、ガイド波の送受信を行う(ステップS3)。ガイド波の送受信は、波形作成・解析手段5が、ガイド波送受信手段3へトリガ信号を送出することで開始される。トリガ信号を検出したガイド波送受信手段3は、ガイド波送受信素子1に送信波形を印加すると同時に、A/D変換器4に対してトリガ信号を送信する。
【0035】
送信波形を印加されたガイド波送受信素子1は、機械的に振動することによって、配管9に対してガイド波8を励起する。ガイド波8は、配管9を軸方向に伝播するが、このうち、割れや減肉などの不連続な点(D0)で反射した成分は、ガイド波送受信素子1で受信され、受信波形としてガイド波送受信手段3に入力される。ガイド波送受信手段3は、受信波形を増幅して、増幅した受信波形をA/D変換器4に送る。
【0036】
A/D変換器4は、ガイド波送受信手段3がガイド波送受信素子1に送信波形を印加すると同時に発生させたトリガ信号に同期して、信号のデジタル化を開始しており、増幅した受信波形は、A/D変換器4でデジタル信号に変換され、波形作成・解析手段5に転送される。次に、検査情報として検査結果を表示する(ステップS4)。この場合の検査結果は、時間もしくは距離を横軸として波形で表示される。以上で、動作を終了する。
【0037】
次に、本発明の第1の実施形態により、欠陥のある配管を実際に検査した試験結果の例を、図8と図9を用いて説明する。試験に用いた配管は、発明が解決しようとする課題の中で述べたものと同じく、外径114.3mm, 肉厚6mm,長さ5500mmの炭素鋼管であり、端部から1500mmの位置に欠陥を施してある。
【0038】
ガイド波送受信素子1を欠陥から1000mmの位置(端部からは2500mm)に配置し、本実施形態により検査を実施した。検査条件設定ウインドウで、配管の肉厚を6mm,材質を炭素鋼,検査領域を500mm〜1500mmと入力し、基準波形選択/表示ウインドウで、トーンバースト波を選択し、サイクル数を4、中心周波数を500kHzと入力した。このとき送信波形表示ウインドウに表示される送信波形は図8のようになる。また、検査情報としての検査結果は、図9(b)の通りであり、通常の送信波形を用いた場合である図9(a)と比較すると、時間軸上での波の広がりが抑制されることが確認された。
【0039】
なお、L(0,1)モードやL(0,2)モードの群速度(図27の51bや52b)が大きく変わる領域では、通常の送信波形を用いた波形(図9(a)の63に相当)の時間軸上の広がりが元々大きいので、本実施形態を適用することでW24のような波形になり、波形の時間軸上の広がりを抑制する効果が非常に高い。具体的には、周波数(MHz)×肉厚(mm)が0.5から4.0の領域で用いるのが良い。
【0040】
前述した本発明の第1の実施形態によれば、周波数で音速が分散する比較的周波数が高い帯域を利用しながらも、配管の特定の位置において、分散による振幅の低下を補償することができるので、配管の特定の位置における欠陥の検出感度を向上することができる。
【0041】
次に、本発明の第2の実施形態として、検査領域を軸方向に複数のセグメントに分割して各セグメント毎に送信波形を割り当てて検査する実施形態を説明する。本実施形態に係わる配管検査装置のブロック図は、第1の実施形態のブロック図である図1と同じであるので、説明は省略する。
【0042】
本発明の第2の実施形態における配管検査装置の動作を、図10,図13、および波形作成・解析手段5の内部処理を示す図6,図11,図12のフローチャートを用いて説明する。初めに、波形作成・解析手段5は、検査条件の入力を求める(ステップS1)。このときの動作は、本発明の第1の実施形態に準じるが、本実施の形態では、図10(a)に示す例のように送信波形表示ウインドウにおいて、セグメント分割でYesを選択する。このとき、検査セグメントの分割条件はセグメント数で入力され、波形作成・解析手段5は、各検査セグメント長さが同じになるように検査セグメントを決定し、ガイド波送受信素子1に近い順にセグメントに番号を割り当てる。
【0043】
また、図10(b)に示すように、検査セグメントの区間が個別に入力されるようにもできる。すべての条件が入力されると、波形作成・解析手段5は、送信波形を自動作成する(ステップS2)。この内容を図11のフローチャートを用いて説明する。はじめに、検査セグメントを示す変数jに1を代入する(ステップS201)。次に、変数jがセグメント数以下かどうか判定を行う(ステップS202)。j=1のときはYesの判定となるので、ステップS203に進むが、このときNoの判定であればステップS206に進む。次に、基準波形u(t)と、ガイド波送受信素子1から第jの検査セグメントの中心までの距離dをもとに、送信波形u′(t)を演算する(ステップS203)。このときの演算内容は、本発明の第1の実施形態と同じであるので、説明は省略する。
【0044】
次に、送信波形u′(t)をメモリに格納する(ステップS204)。次に、変数jに1を加算する(ステップS205)。次に、ステップS202に戻るが、変数jがセグメント数以下の間は、S202→S203→S204→S205を繰り返し、全ての検査セグメントに対して送信波形u′(t)を算出する。変数jがセグメント数を超えた場合、波形作成・解析手段5はガイド波送受信手段3に一連の送信波形u′(t)を転送する(ステップS206)。
【0045】
以上のステップで、送信波形の作成処理を終了する。作成されたすべての送信波形は、送信波形表示ウインドウ(図10)に表示され、確認できるようになっている。次に、波形作成・解析手段5は、ガイド波を送受信する(ステップS3)。このときの動作は、本発明の第1の実施形態と同じであるが、波形作成・解析手段5が、ガイド波送受信手段3へトリガ信号を送出する前に、送信波形選択信号を送出し、送信信号を選択するステップが追加される。
【0046】
次に、検査情報である検査結果を解析・表示する(ステップS4)。この内容を、図12のフローチャートと図13を用いて説明する。はじめに、波形作成・解析手段5は、検査セグメントを示す変数jに1を代入する(ステップS401)。次に、変数jがセグメント数以下かどうか判定を行う(ステップS402)。j=1のときはYesの判定となるので、ステップS403に進むが、このときNoの判定であればステップS405に進む。次に、検査セグメントjの受信波形を読み出す(ステップS403)。
【0047】
次に、検査セグメントを示す変数jに1を加算してメモリに格納し(ステップS404)、ステップS402に進む。変数jがセグメント数以下の間は、
S402→S403→S404を繰り返し、全ての検査セグメントに対して受信波形を読み出す。変数jがセグメント数を超えた場合、読み出した受信波形に対して、検査セグメントの位置に相当する時間ゲートを設け、各ゲート内の信号を抜き出して、時間軸上で連結する(ステップS405)。
【0048】
次に、波形作成・解析手段5は、時間もしくは距離を横軸とした波形を映像信号として表示手段7に出力し、表示手段7は映像信号を受信して波形を表示する(ステップS406)。表示の一例を図13に示す。同図において、(a)は第2の検査セグメントR2に対して高感度になる送信波形をガイド波送受信素子1に印加したときの受信波形であり、21は送信波形、22はR2にある欠陥からの反射波形、23はR3にある欠陥からの反射波形、G2はR2に相当するゲートである。
【0049】
また、図13(b)は第3の検査セグメントR3に対して高感度になる送信波形をガイド波送受信素子1に印加したときの受信波形であり、24は送信波形、25はR2にある欠陥からの反射波形、26はR3にある欠陥からの反射波形、G3はR3に相当するゲートである。各ゲート内の波形を連結したのが、図13(c)で示した連結波形である。感度が良いゲート内の波形を連結することで、すべての検査セグメントに対して、高感度な波形を得ることができる。
【0050】
図14は、本発明の第2の実施形態により作成した送信波形の例である。このときの基準波形は、式(5)で与えるトーンバースト波(周波数500kHz)である(形状は図26と同じ)。
【0051】
【数3】
【0052】
図14(a)の送信波形W20は、d=500mmとして式(4)に基づき計算した送信波形である。すなわちガイド波送受信素子1から送信されたガイド波が、500mm離れた位置にある欠陥から反射して、再びガイド波送受信素子1で受信される際に、ガイド波の持続時間が短時間となるように、位相速度のデータ(図27(a)の52a)を参照して計算した波形である。d=1000mm、d=2000mmで計算した送信波形は、各々図14(b)のW21、図14(c)のW22のようになる。
【0053】
次に、本発明の第2の実施形態により作成した送信波形により、ガイド波を励起した場合の効果を図15を用いて説明する。ガイド波送受信素子1と欠陥の距離dを変えて反射波を収録した。図15はその結果で、図15(a)は、基準波形を500kHzのトーンバースト4サイクルとしてd=500mmとして計算した送信波形u′(t)を用いて500mm先にある欠陥からの反射波形を収録した結果である。
【0054】
図15(b)は、d=1000mmとして計算した送信波形u′(t)を用いて1000mm先にある欠陥からの反射波形を収録した結果、図15(c)は、d=2000mmとして計算した送信波形u′(t)を用いて2000mm先にある欠陥からの反射波形を収録した結果である。W23,W24,W25は欠陥からの反射波形であるが、いずれの信号も図29の反射波形61や63と比べると、持続時間が短くなっている。なお、W26,W27,W28は送信波形である。
【0055】
図16は、ガイド波送受信素子1から欠陥までの距離と受信波形の振幅の関係を測定した試験結果を示している。同図において、31はd=0mmとして計算した送信波形(基準波形と同じ)を用いた場合、32はd=250mmとして計算した送信波形を用いた場合、33はd=500mmとして計算した送信波形を用いた場合、34はd=1500mmとして計算した送信波形を用いた場合である。いずれの結果も、ガイド波の持続時間が短時間となる距離において、相対振幅が極大値を示しており、結果に対する感度が高くなっていることがわかる。測定結果31との差が、本実施形態に基づく送信方法を採用したことによる改善分である。
【0056】
前述した本発明の第2の実施形態によれば、本発明の第2の実施形態で説明した配管の軸方向を複数の検査セグメントに分割して、各検査セグメント毎に異なる送信信号で送受信した受信信号を連結するので、配管のすべての位置を高い感度で検査することが可能になる。
【0057】
次に、本発明の第3の実施形態を図17を用いて説明する。第3の実施形態における装置構成は、第1及び第2の実施形態と同じであるので、説明は省略する。本実施形態における配管検査装置の動作は、本発明の第2の実施形態に準じるが、検査結果の解析・表示処理(図12)において、ステップS405の後に、次の機能が追加される。すなわち、波形作成・解析手段5は、受信波形を図17(a)に示す分散振幅補正曲線41が、その包絡線42に対して低下する分を補正し、補正した波形を、新たに受信波形とする。
【0058】
例えば、図17(b)が受信波形の連結波形であるとすると、波形22に対しては振幅差43を補正する。補正したことによって、分散振幅補正後の連結波形は、図17(c)のようになり、波形22は波形22aのように振幅が補正して示される。なお、この分散振幅補正曲線41は、図16の試験に基づくデータから作成される。
【0059】
前述した本発明の第3の実施形態によれば、検査セグメントの中心から外れた位置において、信号レベルが低下するのを補正することで、特定の位置で検出性能が悪化するのを抑える効果がある。
【0060】
次に、本発明の第4の実施形態を図18から図24を用いて説明する。
【0061】
図18は、本実施形態に係わる配管検査装置のブロック図であり、同図において、1はガイド波送受信素子、2は送受信素子リング、3はガイド波送受信手段、4はA/D変換器、5は波形作成・解析手段、6は入力手段、7は表示手段、10は素子切替手段である。
【0062】
素子切替手段10は、波形作成・解析手段5からの制御信号によって制御され、ガイド波送受信手段3と接続するガイド波送受信素子1を選択する手段で、例えば、市販のマルチプレクサで構成される。その他の構成は、本発明の第1の実施形態と同様であるので、説明は省略する。
【0063】
図19は、素子切替手段10とガイド波送受信素子との接続図である。同図において、1a,1b,1cはガイド波送受信素子であり、各々素子切替手段10のチャンネル1,チャンネル2,チャンネル3と接続されている。チャンネル4以降は、図中に接続線を省略しているが、同様に他のガイド波送受信素子と一対一に接続されている。
【0064】
次に、本発明の第4の実施形態における配管検査装置の動作を、図6,図20と図21のフローチャート、及び図22を用いて説明する。初めに、波形作成・解析手段5は、検査条件の入力を求める(ステップS1)。ここでの動作は、本発明の第2の実施形態と同じであるので、説明は省略する。次に、送信波形を自動作成する(ステップS2)。ここでの動作も、本発明の第2の実施形態と同じであるので、説明は省略する。
【0065】
次に、ガイド波を送受信する(ステップ3)。この内容を図20を参照して説明する。はじめに、メモリ中に格納されたチャンネルを示す変数iに1を代入する(ステップS301)。次に、変数iがチャンネル数以下かどうか判定を行う(ステップS302)。i=1のときはYesの判定となるので、ステップS303に進むが、このときNoの判定であれば動作を終了する。ステップS303では、波形作成・解析手段5は、素子切替手段10に素子選択信号を送出する(ステップS303)。
【0066】
素子選択信号を受けた素子切替手段10は、スイッチ10aを切り替えて、ガイド波送受信手段3とチャンネル1を電気的に接続する。これによって、ガイド波送受信手段3とガイド波送受信素子1aが接続される。次に、メモリ中に格納された検査セグメントを示す変数jに1を代入する(ステップS304)。次に、変数jが検査セグメント数以下かどうか判定を行う。j=1のときはYesの判定であるので、ステップS306に進むが、Noの判定であればステップS310に進む(ステップS305)。
【0067】
次に、波形作成・解析手段5は、ガイド波送受信手段3が第1の検査セグメントR1に対して作成した送信波形を準備するように、ガイド波送受信手段3に送信波形選択信号を送る(ステップS306)。次に、波形作成・解析手段5は、ガイド波送受信手段3に対して、送信のトリガ信号を送る(ステップS307)。トリガ信号を検出したガイド波送受信手段3は、素子切替手段10を介してガイド波送受信素子1aに送信波形を印加すると同時に、A/D変換器4に対してトリガ信号を送信する。送信波形を印加されたガイド波送受信素子1aは、機械的に振動することによって、配管9に対してガイド波8aを励起する。
【0068】
ガイド波8aは、配管9を軸方向に伝播するが、このうち、割れや減肉などの不連続な点で反射したガイド波は、ガイド波送受信素子1aで受信され、受信波形としてガイド波送受信手段3に入力される。ガイド波送受信手段3は、受信波形を増幅して、増幅した受信波形をA/D変換器4に送る。A/D変換器4は、ガイド波送受信手段3がガイド波送受信素子1aに送信波形を印加すると同時に発生させたトリガ信号に同期して、信号のデジタル化を開始しており、増幅した受信波形は、A/D変換器4でデジタル信号に変換され、波形作成・解析手段5に転送される。
【0069】
次に、波形作成・解析手段5は、デジタル信号をメモリに格納する(ステップS308)。次に、検査セグメントを示す変数jに1を加算してメモリに格納し(ステップS309)、ステップS305に進む。変数jが検査セグメント数以下の間は、S305→S306→S307→S308→S309が繰り返し実行され、配管9の軸方向の複数の検査セグメントに対して、各検査セグメント毎に作成した送信波形によるガイド波を送信して、全ての受信波形をデジタル信号としてメモリに格納していく。変数jが検査セグメント数を超えたときに、変数iに1を加算する(ステップS310)。
【0070】
次に、変数iがチャンネル数以下かどうか判定を行うが、変数iがチャンネル数以下の間は、S302→S303→S304→(S305〜S309の繰り返しループ)→S310が繰り返し実行され、配管9の周方向に配列されたすべてのガイド波送受信素子に対して、S305〜S309の繰り返しループを実行する。変数iが検査セグメント数を超えた場合、動作を終了する。
【0071】
次に、検査情報である検査結果を解析・表示する(ステップS4)。この内容を図21を用いて説明する。初めに、波形作成・解析手段5は、メモリ中に格納されたチャンネルを示す変数iに1を代入する(ステップS411)。次に、変数iがチャンネル数以下かどうか判定を行う(ステップS412)。i=1のときはYesの判定となるので、ステップS413に進むが、このときNoの判定であればステップS415に進む。
【0072】
次に、波形作成・解析手段5は、チャンネルiで収録した全検査セグメントの受信波形を読み出して連結する(ステップS413)。この処理の内容は、本発明の第2の実施における検査情報である検査結果の解析・表示処理(図12)からステップS406を除いた処理に等しいので、説明は省略する。
【0073】
次に、検査セグメントを示す変数jに1を加算してメモリに格納し、ステップS412に進む(ステップS414)。変数jが検査セグメント数以下の間は、S412→S413→S414が繰り返し実行されることで、すべてのチャンネルの全セグメントの受信波形を読み出して連結する。ステップS412で、変数iがチャンネル数を超えた場合、波形作成・解析手段5は、全てのチャンネルの連結波形を用いて、配管の周方向を平面に展開した検査画像の情報を作成する(ステップS415)。この検査画像の情報の作成過程は、通常の超音波探傷におけるBスコープの映像化処理と同じであるので詳細は省略する。
【0074】
次に、波形作成・解析手段5は、検査画像の情報の映像信号を表示手段7に出力し、表示手段7は、映像信号を受信し、図22(d)に示すような検査画像を表示する(ステップS416)。
【0075】
次に、本発明の第4の実施形態により、欠陥のある配管を検査した結果の例を、図23と図24を用いて説明する。図23(a)は、検査体系を模式的に示したもので、外径114mm,厚さ6mm,長さ5500mmの配管9に、ガイド波送受信素子1が端部から100mmの位置に円周方向に32個配置され、送受信素子リング2によって把持されている。
【0076】
D1,D2,D4,D5はすり鉢状の減肉欠陥であり、D1は最大で80%(4.8mm)が減肉した欠陥、D2は最大で50%(3.0mm)が減肉した欠陥、D4は最大で40%(2.4mm)が減肉した欠陥、D5は最大で20%(1.2mm)が減肉した欠陥である。D3は直径4mmの貫通ドリルホールである。
【0077】
各欠陥の周方向位置は、D1が0°、D2が180°、D3が0°、D4が90°、D5が−90°である。R1,R2,R3,R4,R5,R6は、いずれも検査セグメントで、R1が0から250mm、R2が250mmから750mm、R3が750mmから1250mm、R4が1250mmから1750mm、R5が1750mmから2250mm、R6が2250mmから5500mmである。送信波形を生成するための基準波形は、500kHzのトーンバースト波4サイクルである。図23(b)は、検査結果(全チャンネルの合成映像)である。信号W1,W2,W3,W4,W5が示すように、すべての模擬欠陥を検出できている。
【0078】
図24は、比較のために測定した従来の送信方法を用いた試験結果であり、送信波形を500kHzのトーンバースト4サイクルとした場合である。信号W6,W7,W8,W9は、各々欠陥D1,D2,D3,D4からの反射波形であり、比較的大きな欠陥は検出できているが、最も小さい欠陥D5を検出するまでには至っていない。
【0079】
前述した本発明の第4の実施形態によれば、本発明の第2の実施形態で説明した配管の軸方向を複数の検査セグメントに分割して、各検査セグメント毎に異なる送信信号で送受信した受信信号を連結する機能に加え、さらに周方向に複数のガイド波送受信素子を配置して、切り替えて送受信して、各信号を合成して検査画像とするので、欠陥の周方向の位置が測定できるとともに、視覚的に容易に認識しやすい検査結果を得ることができる。
【0080】
次に、本発明の第5の実施形態を図25を用いて説明する。図25は、本発明の第5の実施形態による配管検査装置のブロック図であり、同図において、11は走査機構、12はスキャナ制御手段であり、その他の構成は本発明の第1の実施形態と同じである。本実施形態により、配管に発生した減肉を検出する手順は、本発明の第3の実施形態に準じるので説明は省略する。第3の実施形態との違いは、ガイド波送受信素子1が単一である代わりに、ガイド波送受信素子1を把持した走査機構11を有することで、走査機構が配管の周方向に走査することで、円周方向の複数セグメントを測定できる点にある。
【0081】
前述した本発明の第5の実施形態によれば、複数の円周セグメントで同じガイド波送受信素子1を利用するので、検査結果のばらつきを抑えることが可能で、さらに、ガイド波送受信素子のコストを抑える効果がある。特に、円周セグメントの数を多くしたいときに有用である。
【0082】
【発明の効果】
以上のように、本発明の非破壊検査装置及び非破壊検査方法によれば、ガイド波の群速度が一定にならない高い周波数域を利用する場合においても、長距離区間を一括して感度良く検査することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態による配管検査装置のブロック図である。
【図2】ガイド波送受信素子の構造の例を説明する図である。
【図3】本発明の第1の実施形態におけるガイド波送受信手段とガイド波送受信素子の接続図である。
【図4】本発明の第1の実施形態における検査条件設定ウインドウと基準波形選択/表示ウインドウの表示例である。
【図5】本発明の第1の実施形態における送信波形表示ウインドウの表示例である。
【図6】本発明の第1の実施形態により、配管を検査するときの波形作成・解析手段の内部処理のフローチャートである。
【図7】送信波形を演算する過程を説明する図である。
【図8】特定の検査領域からの反射波形を受信する際に、信号の持続時間が短くなるようにガイド波を励起する場合の送信波形の例を示す図である。
【図9】特定の検査領域からの反射波形を受信する際に、信号の持続時間が短くなるようにガイド波を励起した場合に、特定の検査領域にある欠陥に対する感度が向上する試験結果を示す図である。
【図10】本発明の第2の実施形態における送信波形表示ウインドウの表示例である。
【図11】本発明の第2の実施形態により、送信波形を自動作成するときの波形作成・解析手段の内部処理のフローチャートである。
【図12】本発明の第2の実施形態により、検査結果を解析・表示するときの波形作成・解析手段の内部処理のフローチャートである。
【図13】受信波形を連結して検査結果を得る過程を説明する図である。
【図14】特定の検査セグメントからの反射波形を受信する際に、信号の持続時間が短くなるようにガイド波を励起する場合の送信波形の例を示す図である。
【図15】特定の検査セグメントからの反射波形を受信する際に、信号の持続時間が短くなるようにガイド波を励起した場合に、特定の検査セグメントにある欠陥に対する感度が向上する試験結果を示す図である。
【図16】特定の距離で分散による振幅低下を補償するようにガイド波を励起した場合に、特定の距離にある反射源で反射したガイド波を受信した信号の例を示す図である。
【図17】本発明の第3の実施形態により、ガイド波送受信素子からの距離によって、受信波形の振幅を補正する方法を説明する図である。
【図18】本発明の第4の実施形態による配管検査装置のブロック図である。
【図19】本発明の第4の実施形態における素子切替手段とガイド波送受信素子の接続図である。
【図20】本発明の第4の実施形態により、ガイド波を送受信するときの波形作成・解析手段の内部処理のフローチャートである。
【図21】本発明の第4の実施形態により、検査結果を解析・表示するときの波形作成・解析手段の内部処理のフローチャートである。
【図22】本発明の第4の実施形態において、受信波形を合成して合成映像を得る過程を説明する図である。
【図23】本発明の第4の実施形態を用いて、中心周波数500kHzのL(0,2)モードのガイド波で、欠陥を付与した外径114.3mm、肉厚6mmの配管を検査したときの反射波形位置を、配管を展開した平面上に表示した結果を説明する図である。
【図24】従来の技術を用いて、中心周波数500kHzのL(0,2)モードのガイド波で、欠陥を付与した外径114.3mm ,肉厚6mmの配管を検査したときの反射波形の位置を、配管を展開した平面上に表示した結果を説明する図である。
【図25】本発明の第5の実施形態による配管検査装置のブロック図である。
【図26】ガイド波送受信素子に印加する波形の一例であるトーンバースト波を説明する図である。
【図27】ガイド波の複数の振動モードでのガイド波の速度(群速度)が周波数に依存して変化する分散特性を有し、かつ、各モードの群速度が肉厚と周波数との積によって一意に決まることを説明する図である。
【図28】ガイド波が伝播するときの弾性変形の様子を、振動モード毎に模式的に説明する図である。
【図29】欠陥を施した外径114.3mm,肉厚6mmの配管を、500kHzのトーンバースト波4サイクルで駆動したL(0,2)モードのガイド波で検査したときに、反射波形の振幅と持続時間が距離によって変化することを説明する図である。
【符号の説明】
1…ガイド波送受信素子、2…送受信素子リング、3…ガイド波送受信手段、4…A/D変換器、5…波形作成・解析手段、6…入力手段、7…表示手段、8…ガイド波、9…配管、10…素子切替手段。
Claims (18)
- 非破壊検査装置の送信波形に基づいて被検査体内にガイド波を発生させる送信素子と、
前記被検査体の検査領域から前記ガイド波の反射波を受信する受信素子と、
前記送信波形の基準となる基準波形が、前記被検査体内にガイド波として伝播した後の波形を計算で求め、その計算で求めた計算波形を時間反転させて前記送信波形を作成する波形作成手段と、
前記受信素子で受信した前記反射波の受信波形に基づいて得た検査情報を出力する解析手段と、
前記検査情報を表示する表示手段とを備えたガイド波を用いた非破壊検査装置。 - 前記波形作成手段は、前記基準波形が、前記被検査体内に前記送信素子と前記検査領域の間、及び前記検査領域と前記受信素子の間の合計距離を、前記ガイド波として伝播した後の波形を計算で求め、その計算で求めた計算波形を時間反転させて前記送信波形を作成する波形作成手段である請求項1に記載のガイド波を用いた非破壊検査装置。
- 前記送信素子と前記受信素子とは、前記ガイド波の発生時と前記反射波の受信時に用いられる同一の素子である請求項1又は請求項2に記載のガイド波を用いた非破壊検査装置。
- 前記基準波形は、受信素子に受信したい波形とした請求項1又は請求項2に記載のガイド波を用いた非破壊検査装置。
- 前記表示手段が、基準波形を表示する手段を備える請求項1又は請求項2に記載のガイド波を用いた非破壊検査装置。
- 前記表示手段が、前記送信波形を表示する手段を備える請求項1又は請求項2に記載のガイド波を用いた非破壊検査装置。
- 前記波形作成手段が、前記被検査体の検査領域を前記ガイド波の伝播方向に複数の検査セグメントに分割したそれら各検査セグメント毎に少なくとも一つの前記送信波形を作成する手段を備えた請求項1又は請求項2に記載のガイド波を用いた非破壊検査装置。
- 前記解析手段は、前記受信波形から、前記検査セグメントのある距離に相当する時間領域の受信波形部分を抽出し、前記抽出した受信波形部分を連結することで、前記検査領域の全域の受信波形を形成する手段を備えた請求項7に記載のガイド波を用いた非破壊検査装置。
- 前記被検査体は配管であって、且つ前記送信素子と前記受信素子とが前記配管の周囲に円環状に複数配列され、前記ガイド波送信手段及び前記ガイド波受信手段に対して前記送信素子及び前記受信素子の接続を切り替える素子切替手段を有する請求項1又は請求項2に記載のガイド波を用いた非破壊検査装置。
- 前記被検査体は配管であって、前記送信素子と前記受信素子を前記配管の円周方向に機械的に走査するスキャナを有する請求項1又は請求項2に記載のガイド波を用いた非破壊検査装置。
- 前記被検査体は配管であり、前記解析手段は、前記検査結果を前記配管の周方向を平面に展開した面で表示する検査画像の情報を作成して、前記情報の映像信号を出力する構成を備え、前記表示手段は、前記情報を受信して、前記検査画像を表示する構成を備えている請求項1又は請求項2に記載のガイド波を用いた非破壊検査装置。
- 非破壊検査装置の送信波形の基準となる基準波形が、被検査体内にガイド波として伝播した後の波形を計算で求め、その計算で求めた計算波形を時間反転させて前記送信波形を作成するステップと、
前記送信波形に基づいて被検査体内にガイド波を発生させるステップと、
前記被検査体の前記検査領域から前記ガイド波の反射波を受信素子で受信するステップと、
前記受信素子で受信した前記反射波の受信波形に基づいて得た検査情報を得るステップと、
前記検査情報を表示するステップと、
を備えているガイド波を用いた非破壊検査方法。 - 前記基準波形が、前記非破壊検査装置の送信素子と前記被検査体の検査領域の間、及び前記検査領域と前記非破壊検査装置の受信素子の間の合計距離を、前記被検査体内にガイド波として伝播した後の波形を計算で求め、その計算で求めた計算波形を時間反転させて前記送信波形を作成するステップを備えている請求項12に記載のガイド波を用いた非破壊検査方法。
- 前記被検査体の検査領域を前記ガイド波の伝播方向に複数の検査セグメントに分割するステップと、
前記検査セグメント毎に、前記検査セグメントを検査領域とする前記送信波形を作成して少なくとも1つの前記検査セグメントに一つの前記送信波形を割り当てるステップと、
前記割り当てられた前記送信波を用いて前記検査セグメント毎に反射波形を受信するステップと、
前記受信した反射波形から、前記検査セグメントに該当する位置からの受信波形部分を抽出するステップを含む請求項12又は請求項13に記載のガイド波を用いた非破壊検査方法。 - 前記抽出した受信波形部分を連結することで連結受信波形を得るステップを含む請求項14に記載のガイド波を用いた非破壊検査方法。
- 前記被検査体は配管であって、前記配管の検査領域を円周方向に複数の円周セグメントに分割するステップと、
前記円周セグメント毎に、前記受信波を得るステップと、
前記円周セグメント毎に、前記連結受信波形を得るステップと、
を含む請求項15に記載のガイド波を用いた非破壊検査方法。 - 前記円周セグメント毎に得た前記連結受信波形を用いた検査結果を、前記配管の平面展開図上に表示するステップを含む請求項16に記載のガイド波を用いた非破壊検査方法。
- 前記送信波形の周波数と前記被検査体の肉厚との関係が、周波数(MHz)×肉厚 (mm) ≧0 . 5、かつ周波数(MHz)×肉厚( mm )≦4 . 0を満足するようにされている請求項12乃至請求項17のいずれかに記載のガイド波を用いた非破壊検査方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003175683A JP3747921B2 (ja) | 2003-06-20 | 2003-06-20 | ガイド波を用いた非破壊検査装置及び非破壊検査方法 |
TW092130531A TWI254130B (en) | 2003-06-20 | 2003-10-31 | Nondestructive inspection apparatus and nondestructive inspection method using elastic guided wave |
CNB2003101230479A CN100394174C (zh) | 2003-06-20 | 2003-12-23 | 使用导波的非破坏性检查装置及非破坏性检查方法 |
KR1020040010914A KR100589748B1 (ko) | 2003-06-20 | 2004-02-19 | 가이드파를 사용한 비파괴검사장치 및 비파괴검사방법 |
GB0403732A GB2403009B (en) | 2003-06-20 | 2004-02-19 | Nondestructive inspection apparatus and nondestructive inspection method using elastic guided wave |
US10/780,751 US7171854B2 (en) | 2003-06-20 | 2004-02-19 | Nondestructive inspection apparatus and nondestructive inspection method using elastic guided wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003175683A JP3747921B2 (ja) | 2003-06-20 | 2003-06-20 | ガイド波を用いた非破壊検査装置及び非破壊検査方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005010055A JP2005010055A (ja) | 2005-01-13 |
JP3747921B2 true JP3747921B2 (ja) | 2006-02-22 |
Family
ID=32040897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003175683A Expired - Lifetime JP3747921B2 (ja) | 2003-06-20 | 2003-06-20 | ガイド波を用いた非破壊検査装置及び非破壊検査方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US7171854B2 (ja) |
JP (1) | JP3747921B2 (ja) |
KR (1) | KR100589748B1 (ja) |
CN (1) | CN100394174C (ja) |
GB (1) | GB2403009B (ja) |
TW (1) | TWI254130B (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009004829A1 (ja) * | 2007-06-29 | 2009-01-08 | Hiroshima Prefecture | 構造物の非破壊診断方法 |
US8091427B2 (en) | 2007-07-31 | 2012-01-10 | Hitachi-Ge Nuclear Energy, Ltd. | Nondestructive inspection apparatus and nondestructive inspection method using guided wave |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1611969B2 (en) * | 2003-03-14 | 2014-07-30 | Nippon Steel & Sumitomo Metal Corporation | Method and apparatus for producing pipe, wall thickness variation-obtaining device, and computer program |
JP4583898B2 (ja) * | 2004-12-06 | 2010-11-17 | 三菱電機株式会社 | 超音波探傷装置 |
GB0504500D0 (en) * | 2005-03-04 | 2005-04-13 | Guided Ultrasonics Ltd | Signal processing arrangement |
JP4674753B2 (ja) * | 2005-06-27 | 2011-04-20 | バブコック日立株式会社 | 管群検査装置 |
JP4625747B2 (ja) * | 2005-10-11 | 2011-02-02 | 株式会社日立製作所 | 配管検査装置及び配管検査方法 |
NO327139B1 (no) * | 2006-05-30 | 2009-05-04 | Clampon As | Fremgangsmate og system for bestemmelse av tap i materialtykkelse i en fast struktur |
JP4994736B2 (ja) * | 2006-07-27 | 2012-08-08 | 三菱重工業株式会社 | 配管あるいは板の状態検知方法及びその装置 |
JP4589280B2 (ja) * | 2006-09-06 | 2010-12-01 | 株式会社日立製作所 | ガイド波を用いた配管検査方法及びその配管検査装置 |
JP4926628B2 (ja) * | 2006-09-22 | 2012-05-09 | 九州電力株式会社 | 超音波探傷装置およびローレンツ力を用いた超音波探傷方法 |
CN101126742B (zh) * | 2007-09-13 | 2010-05-19 | 华中科技大学 | 一种测定磁致伸缩导波传播距离的方法 |
DE102008024394A1 (de) * | 2008-05-15 | 2009-12-03 | V&M Deutschland Gmbh | Verfahren zur zerstörungsfreien Prüfung von Rohren |
JP5127574B2 (ja) * | 2008-06-03 | 2013-01-23 | 株式会社日立エンジニアリング・アンド・サービス | ガイド波を用いた検査方法 |
US8590383B2 (en) * | 2008-06-24 | 2013-11-26 | Alstom Technology Ltd | Ultrasonic inspection probe carrier system for performing non-destructive testing |
WO2010007830A1 (ja) * | 2008-07-18 | 2010-01-21 | 国立大学法人東北大学 | 構造物欠陥の映像化方法、構造物欠陥の映像化装置、気泡や病変部の映像化方法および気泡や病変部の映像化装置 |
US9026376B2 (en) | 2008-07-22 | 2015-05-05 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Corrosion monitoring |
US8532940B2 (en) * | 2009-02-18 | 2013-09-10 | Fbs, Inc. | Systems and methods for the inspection of structures having unknown properties |
CN101509899B (zh) * | 2009-03-18 | 2011-01-12 | 天津市电力公司 | 针对电力铁塔角钢的超声导波检测方法 |
JP5143111B2 (ja) * | 2009-11-30 | 2013-02-13 | 日立Geニュークリア・エナジー株式会社 | ガイド波を用いた非破壊検査装置及び非破壊検査方法 |
US8671761B2 (en) * | 2009-12-14 | 2014-03-18 | New Mexico Technical Research Foundation | Method of assessing bolted joint integrity |
JP4526046B1 (ja) * | 2010-01-21 | 2010-08-18 | 株式会社Ihi検査計測 | ガイド波を用いた検査方法 |
JP4475477B1 (ja) * | 2010-01-22 | 2010-06-09 | 株式会社Ihi検査計測 | ガイド波を用いた検査方法 |
WO2011112715A1 (en) * | 2010-03-09 | 2011-09-15 | Cidra Corporate Services Inc. | Method and apparatus for using cepstrum and wavelet based algorithms for wall thickness measurement |
US9267636B2 (en) | 2010-05-07 | 2016-02-23 | 1876255 Ontario Limited | Protective liner with wear detection |
CA3116787C (en) | 2010-06-16 | 2023-07-11 | Mueller International, Llc | Infrastructure monitoring devices, systems, and methods |
US9335299B2 (en) * | 2010-06-23 | 2016-05-10 | Acousticeye Ltd | Method and system for testing a bundle of tubular objects guided by a computing device |
GB2482300A (en) * | 2010-07-28 | 2012-02-01 | Guided Ultrasonics Ltd | Processing signals acquired during guided wave testing |
US8499632B1 (en) * | 2010-08-23 | 2013-08-06 | The Boeing Company | Characterizing anomalies in a laminate structure |
JP5663319B2 (ja) * | 2011-01-19 | 2015-02-04 | 株式会社日立パワーソリューションズ | ガイド波検査方法及び装置 |
US10175135B2 (en) | 2011-08-12 | 2019-01-08 | Mueller International, Llc | Leak detector |
JP5893889B2 (ja) * | 2011-10-17 | 2016-03-23 | 株式会社Ihi検査計測 | ガイド波のlモード・tモード併用検査方法 |
DK2912416T3 (en) | 2012-10-26 | 2018-09-10 | Mueller Int Llc | Detecting Leaks in a Fluid Distribution System |
KR101386593B1 (ko) * | 2012-11-28 | 2014-04-17 | 한국과학기술원 | 배관 손상 영상화 방법 |
FR2999677B1 (fr) * | 2012-12-18 | 2015-01-16 | V & M France | Element de conduite equipe |
US9228888B2 (en) | 2013-01-23 | 2016-01-05 | General Electric Company | Sensor positioning with non-dispersive guided waves for pipeline corrosion monitoring |
JP6034259B2 (ja) * | 2013-01-25 | 2016-11-30 | 日本電信電話株式会社 | 検査方法および検査装置 |
EP2843401A1 (en) * | 2013-08-30 | 2015-03-04 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | System and method for defect monitoring |
JP5884993B2 (ja) | 2013-09-12 | 2016-03-15 | 横河電機株式会社 | 超音波配管測定装置 |
JP6467131B2 (ja) * | 2013-11-01 | 2019-02-06 | 東日本旅客鉄道株式会社 | 超音波探触子、腐食検知装置及び腐食検知方法 |
US9528903B2 (en) | 2014-10-01 | 2016-12-27 | Mueller International, Llc | Piezoelectric vibration sensor for fluid leak detection |
US10809232B2 (en) | 2014-10-17 | 2020-10-20 | Kabushiki Kaisha Toshiba | Optical fiber electromagnetic acoustic transducer pipe inspecting appartus and method |
JP6489798B2 (ja) * | 2014-11-06 | 2019-03-27 | 神鋼検査サービス株式会社 | 欠陥評価方法および欠陥評価装置 |
JP6463962B2 (ja) * | 2014-12-15 | 2019-02-06 | 株式会社日立製作所 | 超音波探傷システム及び検査方法 |
US10036733B2 (en) * | 2015-04-13 | 2018-07-31 | Zf Friedrichshafen Ag | Hardness verification utilizing ultrasonic velocities |
CA2999489C (en) | 2015-09-21 | 2021-09-28 | AMI Investments, LLC | Remote monitoring of water distribution system |
US11988656B2 (en) | 2015-09-21 | 2024-05-21 | Mcwane, Inc. | Remote monitoring of water distribution system |
JP2017091258A (ja) * | 2015-11-11 | 2017-05-25 | 横河電機株式会社 | フィールド機器、フィールド機器システム、および診断方法 |
JP6557125B2 (ja) * | 2015-11-27 | 2019-08-07 | 日立Geニュークリア・エナジー株式会社 | 超音波減肉検査方法および検査装置 |
KR101703749B1 (ko) | 2016-01-11 | 2017-02-07 | 두산중공업 주식회사 | 워터레벨 측정장치 및 측정방법. |
US10283857B2 (en) | 2016-02-12 | 2019-05-07 | Mueller International, Llc | Nozzle cap multi-band antenna assembly |
US10305178B2 (en) | 2016-02-12 | 2019-05-28 | Mueller International, Llc | Nozzle cap multi-band antenna assembly |
KR101826917B1 (ko) * | 2016-07-22 | 2018-02-08 | 나우 주식회사 | 다중 채널 초음파를 이용한 장거리 배관 진단 방법 |
CN106370734A (zh) * | 2016-08-21 | 2017-02-01 | 安徽科技学院 | 管道超声导波检测中端面反射信号的提取方法 |
CN106680380A (zh) * | 2016-12-12 | 2017-05-17 | 西北工业大学 | 超声导波无损检测预应力钢绞线缺陷的系统及其检测方法 |
US10620166B1 (en) * | 2017-01-24 | 2020-04-14 | Government Of The United States, As Represented By The Secretary Of The Air Force | In-plane modulus testing of materials by an ultrasonic same-side method |
US20180328890A1 (en) * | 2017-05-10 | 2018-11-15 | Corestar International Corporation | Non-Destructive Test System with Smart Glasses and Method of Use Thereof |
CN107576726B (zh) * | 2017-08-14 | 2020-05-22 | 东莞理工学院 | 用于导波检测的损伤判别和损伤扩展识别方法 |
KR101994443B1 (ko) * | 2017-12-21 | 2019-09-30 | 한국원자력연구원 | 플렉시블 배관 두께 모니터링 장치 및 시스템 |
CN108896661A (zh) * | 2018-08-10 | 2018-11-27 | 扬州市紫麓信息技术有限公司 | 特种车辆传动轴损伤检测成像系统及损伤检测方法 |
CN109085241A (zh) * | 2018-08-10 | 2018-12-25 | 扬州市紫麓信息技术有限公司 | 特种车辆传动轴损伤检测装置及损伤检测方法 |
US10859462B2 (en) | 2018-09-04 | 2020-12-08 | Mueller International, Llc | Hydrant cap leak detector with oriented sensor |
GB2577276A (en) * | 2018-09-19 | 2020-03-25 | Guided Ultrasonics Ltd | Signal processing |
US20210348919A1 (en) * | 2018-09-24 | 2021-11-11 | Molex, Llc | A system for monitoring a thickness of one or more assets using an ultrasonic measurement system, a multiplexer switch module and a two-conductor connection, and a method of performing the same |
GB2577920A (en) * | 2018-10-10 | 2020-04-15 | Guided Ultrasonics Ltd | Determining thickness of an elongate or extended structure |
US11342656B2 (en) | 2018-12-28 | 2022-05-24 | Mueller International, Llc | Nozzle cap encapsulated antenna system |
US11473993B2 (en) | 2019-05-31 | 2022-10-18 | Mueller International, Llc | Hydrant nozzle cap |
US20240036011A1 (en) * | 2020-02-28 | 2024-02-01 | Molex, Llc | System and method for corrosion and erosion monitoring of pipes and vessels |
US11542690B2 (en) | 2020-05-14 | 2023-01-03 | Mueller International, Llc | Hydrant nozzle cap adapter |
JPWO2021245838A1 (ja) * | 2020-06-03 | 2021-12-09 | ||
CN112147225B (zh) * | 2020-08-10 | 2024-06-28 | 东南大学 | 一种水下闸门的非线性波检测方法 |
JP2023008629A (ja) * | 2021-07-06 | 2023-01-19 | 株式会社日立パワーソリューションズ | 超音波検査装置及び超音波検査方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5269485A (en) * | 1992-09-04 | 1993-12-14 | Dwinell Robert R | Adhesive fastening device |
FR2698170B1 (fr) * | 1992-11-18 | 1994-12-16 | Snecma | Procédé et dispositif de contrôle ultrasonore industriel de pièces par retournement temporel. |
GB9517794D0 (en) | 1994-10-20 | 1995-11-01 | Imperial College | Inspection of pipes |
US5629485A (en) * | 1994-12-13 | 1997-05-13 | The B.F. Goodrich Company | Contaminant detection sytem |
AU4899196A (en) * | 1995-01-17 | 1996-08-07 | Penn State Research Foundation, The | Bore probe for tube inspection with guided waves and method therefor |
JP3573584B2 (ja) | 1996-12-25 | 2004-10-06 | 東京瓦斯株式会社 | 音波式管路調査システム |
JPH11223622A (ja) | 1998-02-06 | 1999-08-17 | Hitachi Constr Mach Co Ltd | 超音波探査映像装置 |
US6367328B1 (en) * | 1999-07-12 | 2002-04-09 | Digital Wave Corporation | Noninvasive detection of corrosion, MIC, and foreign objects in fluid-filled containers using leaky guided ultrasonic waves |
US6363788B1 (en) * | 2000-06-07 | 2002-04-02 | Digital Wave Corporation | Noninvasive detection of corrosion, mic, and foreign objects in containers, using guided ultrasonic waves |
US6253618B1 (en) * | 1999-12-08 | 2001-07-03 | Massachusetts Intitute Of Technology | Apparatus and method for synthetic phase tuning of acoustic guided waves |
US6581014B2 (en) * | 2000-07-20 | 2003-06-17 | Southwest Research Institute | Apparatus and method for analysis of guided ultrasonic waves |
JP2002236113A (ja) | 2001-02-07 | 2002-08-23 | Japan Energy Corp | 配管の検査装置及び方法並びに配管の検査システム |
US6578422B2 (en) * | 2001-08-14 | 2003-06-17 | Varco I/P, Inc. | Ultrasonic detection of flaws in tubular members |
JP3704070B2 (ja) | 2001-08-17 | 2005-10-05 | 三菱電機株式会社 | 超音波探傷装置 |
-
2003
- 2003-06-20 JP JP2003175683A patent/JP3747921B2/ja not_active Expired - Lifetime
- 2003-10-31 TW TW092130531A patent/TWI254130B/zh not_active IP Right Cessation
- 2003-12-23 CN CNB2003101230479A patent/CN100394174C/zh not_active Expired - Lifetime
-
2004
- 2004-02-19 KR KR1020040010914A patent/KR100589748B1/ko active IP Right Grant
- 2004-02-19 GB GB0403732A patent/GB2403009B/en not_active Expired - Lifetime
- 2004-02-19 US US10/780,751 patent/US7171854B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009004829A1 (ja) * | 2007-06-29 | 2009-01-08 | Hiroshima Prefecture | 構造物の非破壊診断方法 |
JP2009014345A (ja) * | 2007-06-29 | 2009-01-22 | Hiroshima Pref Gov | 構造物の非破壊診断方法 |
US8091427B2 (en) | 2007-07-31 | 2012-01-10 | Hitachi-Ge Nuclear Energy, Ltd. | Nondestructive inspection apparatus and nondestructive inspection method using guided wave |
US8820163B2 (en) | 2007-07-31 | 2014-09-02 | Hitachi-Ge Nuclear Energy, Ltd. | Nondestructive inspection apparatus and nondestructive inspection method using guided wave |
Also Published As
Publication number | Publication date |
---|---|
KR100589748B1 (ko) | 2006-06-15 |
TWI254130B (en) | 2006-05-01 |
TW200500605A (en) | 2005-01-01 |
US7171854B2 (en) | 2007-02-06 |
GB2403009A (en) | 2004-12-22 |
GB2403009B (en) | 2005-12-28 |
CN100394174C (zh) | 2008-06-11 |
KR20040110076A (ko) | 2004-12-29 |
US20040255678A1 (en) | 2004-12-23 |
JP2005010055A (ja) | 2005-01-13 |
CN1573328A (zh) | 2005-02-02 |
GB0403732D0 (en) | 2004-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3747921B2 (ja) | ガイド波を用いた非破壊検査装置及び非破壊検査方法 | |
JP4589280B2 (ja) | ガイド波を用いた配管検査方法及びその配管検査装置 | |
KR101641014B1 (ko) | 결함 검출 장치, 결함 검출 방법 및 기억 매체 | |
CN110118822B (zh) | 超声波探伤装置及超声波探伤方法 | |
JP4686378B2 (ja) | 配管検査装置 | |
JP4012237B2 (ja) | 配管検査方法及び装置 | |
JP3913144B2 (ja) | 配管検査方法及び装置 | |
US6823737B2 (en) | Non-contact inspection system for large concrete structures | |
JP2013024817A (ja) | 非破壊検査方法および非破壊検査装置 | |
JP5893538B2 (ja) | ガイド波を用いた非破壊検査方法及び装置 | |
JP4625747B2 (ja) | 配管検査装置及び配管検査方法 | |
JP2009236620A (ja) | 超音波探傷方法 | |
JP4633268B2 (ja) | 超音波探傷装置 | |
JP2016027321A (ja) | 超音波検査方法および探触子設置治具 | |
JP2016042043A (ja) | 外面腐食検査装置及び外面腐食検査方法 | |
JPH0619341B2 (ja) | 電子走査型超音波探傷装置 | |
JPS59151057A (ja) | 超音波探傷装置 | |
JP2004101422A (ja) | 超音波検査装置 | |
JP2005098768A (ja) | 超音波探傷画像表示方法及び装置 | |
JPH09133657A (ja) | 超音波探傷方法及びその装置 | |
JP5750066B2 (ja) | ガイド波を用いた非破壊検査方法 | |
JPH11133006A (ja) | 超音波探傷装置とその方法 | |
JPS6014167A (ja) | 超音波検査装置 | |
JPS6228862B2 (ja) | ||
JP2015190954A (ja) | 外面腐食検査装置及び外面腐食検査方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041028 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051011 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051121 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3747921 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081209 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091209 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111209 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111209 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121209 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131209 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |