[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3634281B2 - Magneto-impedance effect sensor - Google Patents

Magneto-impedance effect sensor Download PDF

Info

Publication number
JP3634281B2
JP3634281B2 JP2001092229A JP2001092229A JP3634281B2 JP 3634281 B2 JP3634281 B2 JP 3634281B2 JP 2001092229 A JP2001092229 A JP 2001092229A JP 2001092229 A JP2001092229 A JP 2001092229A JP 3634281 B2 JP3634281 B2 JP 3634281B2
Authority
JP
Japan
Prior art keywords
magneto
magnetic field
impedance effect
iron core
field generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001092229A
Other languages
Japanese (ja)
Other versions
JP2002289940A (en
Inventor
一実 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2001092229A priority Critical patent/JP3634281B2/en
Publication of JP2002289940A publication Critical patent/JP2002289940A/en
Application granted granted Critical
Publication of JP3634281B2 publication Critical patent/JP3634281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は磁気インピーダンス効果素子を用いた磁界センサーに関するものである。
【0002】
【従来の技術】
アモルファス合金ワイヤとして、自発磁化の方向がワイヤ周方向に対し互いに逆方向の磁区が交互に磁壁で隔てられた構成の外殻部を有する、零磁歪乃至は負磁歪のアモルファス合金ワイヤが開発されている。
【0003】
かかる零磁歪乃至は負磁歪のアモルファス磁性ワイヤに高周波電流を通電したときに発生するワイヤ両端間出力電圧中のインダクタンス電圧分は、ワイヤの横断面内に生じる円周方向磁束によって上記の円周方向に易磁化性の外殻部が円周方向に磁化されることに起因して発生する。従って、周方向透磁率μθは同外殻部の円周方向の磁化に依存する。
而るに、この通電中のアモルファスワイヤに外部磁界を作用させると、上記通電による円周方向磁束と外部磁束との合成により、上記円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれ、それだけ円周方向への磁化が生じ難くなり、上記周方向透磁率μθが変化する。すなわち、外部磁界が作用したときの前記磁束の周方向からのずれをφとすれば、周方向磁束がcosφ倍減少され、この回転磁化により前記μθが減少される。従って、このμθの減少により、上記インダクタンス電圧分が減少されるようになる。
【0004】
更に、上記通電電流の周波数がMHzオ−ダになると、高周波表皮効果が大きく現れ、表皮深さδ=(2ρ/wμθ)1/2(μθは前記した通り、円周方向透磁率、ρは電気抵抗率、wは角周波数)がμθにより変化し、このμθが前記した通り、外部磁界によって変化するので、ワイヤ両端間出力電圧中の抵抗電圧分も外部磁界で変動するようになる。
【0005】
そこで、外部磁界による上記インダクタンス電圧分と抵抗電圧分の双方、すなわち、ワイヤ両端間出力電圧の変動(この外部磁界による出力電圧の変動は磁気インピーダンス効果と称されている)から外部磁界を検出することが提案されている(特開平7−181239号)。
上記磁気インピーダンス効果素子自体の特性は、対称性で、かつ非直線性である。
【0006】
上記磁気インピーダンス効果素子を用いた磁界検出装置は、図2に示すように、基本的には、磁気インピーダンス効果素子13’、磁気インピーダンス効果素子13’に高周波電流またはパルス電流を通電するための発振回路部1’、磁気インピーダンス効果素子13’に加わる外部磁界Hexによる磁気インピーダンス効果素子両端間のインピ−ダンス変化に基づく変調波を復調して外部磁界を検波する検波部2’及び測定部3’とから構成されており、負帰還磁界発生用コイル2a’により負帰還をかけ、検出出力Eoを
【数1】
Eo≒Hex×lR/N (1)
として検出出力Eoを直線性とし(ただし、lは負帰還磁界発生用コイルの長さ、Nは巻数、Rは接地抵抗)、また、バイアス磁界発生用コイル2b’により直流バイアス磁界を加えて極性に無関係に外部磁界を検出できるようにしている。
【0007】
【発明が解決しようとする課題】
上記コイル付の磁気インピーダンス効果素子としては、片面に磁気インピーダンス効果素子を配設した基板をボビンやチューブに挿入し、このボビンやチューブに負帰還磁界発生用コイル及びバイアス磁界発生用コイルを巻装したもの(以下、ボビン式という)や、片面に磁気インピーダンス効果素子を配設した基板の他面に負帰還磁界発生用コイル及びバイアス磁界発生用コイルをプリントしたもの(以下、プリント式という)が知られている。
しかしながら、ボビン式では、寸法が大きくなり、平面寸法の増大のために配線基板上への高密度実装上不利であり、また、磁気インピーダンス効果素子と被磁界検出体との間隔をコイルの介在のために大きくせざるを得ず、検出感度上も不利である。
他方、プリント式では、プリントコイルの平面性のために平面寸法が大きくなり、配線基板上への高密度実装上不利である。
【0008】
本発明の目的は、平面寸法を小さくでき、かつ被検出体に近接させて高感度の検出を可能とする磁気インピーダンス効果センサーを提供することにある。
【課題を解決するための手段】
本発明に係る磁気インピーダンス効果センサーは、基板の片面に磁気インピーダンス効果素子を配設し、鉄芯に負帰還磁界発生用コイルとバイアス磁界発生用コイルとを巻装したコイルを前記基板の他面に、鉄芯と磁気インピーダンス効果素子とで磁気回路を構成するように配設したことを特徴とし、鉄芯にはC形鉄芯を用い、更に、分割式とすることもできる。
【0009】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1の(イ)は本発明に係る磁気インピーダンス効果センサーの一実施例を示す側面図、図1の(ロ)は同じく底面図、図1の(ハ)は図1の(ロ)におけるハ−ハ断面図である。
図1において、11は絶縁基板であり、例えばセラミックス板を使用できる。12,12は絶縁基板の片面に設けた電極であり、素子接続用突部121を備えている。この電極は導電ペースト、例えば、銀ペーストの印刷・焼付けにより設けることができる。13は電極12,12の突部121,121間にはんだ付けや溶接により接続した磁気インピーダンス効果素子であり、通常、零磁歪乃至は負磁歪のアモルファスワイヤ、アモルファスリボン、スパッタ膜等が使用される。14は各電極12にはんだ付けや溶接により取り付けたピン導体である。2はC形鉄芯21に負帰還磁界発生用コイル2aとバイアス磁界発生用コイル2b(何れにも、通常、銅線に絶縁塗料を焼き付けてなるエナメル線が使用される)とを巻装してなるコイルであり、磁気インピーダンス効果素子13とC形鉄芯21とで磁気回路を構成させるように、C形鉄芯21の両端を基板11の他面に接着剤等で固定してある。
前記鉄芯材料としては、磁性体であればよく、例えば、パーマロイ、フェライト、鉄、アモルファス磁性合金の他、磁性体粉末混合プラスチック等を挙げることができる。
【0010】
上記において、C形鉄芯21の長さをla、断面積をSa、透磁率をμaとすれば、C形鉄芯の磁気抵抗Raは
【数2】
Ra=la/(Saμa) (2)
で与えられ、また、磁気回路の構成部分となる磁気インピーダンス効果素子部分の長さをlb、断面積をSb、透磁率をμbとすれば、磁気インピーダンス効果素子部分の磁気抵抗Rbは
【数3】
Rb=lb/(Sbμb) (3)
で与えられ、更に、C形鉄芯両端と磁気インピーダンス効果素子との間の磁気抵抗をRcとすると、磁気回路の磁気抵抗Rmは
【数4】
Rm=Ra+Rb+Rc (4)
で与えられ、
従って、負帰還磁界発生用コイル2aの自己インダクタンスL1は、そのコイル巻数をN1として
【数5】
L1=N1/Rm (5)
で与えられ、バイアス磁界発生用コイル2bの自己インダクタンスL2は、そのコイル巻数をN2として
【数6】
L2=N2/Rm (5)
で与えられる。
【0011】
而るに、前記基板11の厚みが薄くRcを小さくでき、また、C形鉄芯21の脚部の高さを巻線の直径よりやや高くする程度にとどめてC形鉄芯21の長さを短くできるから、前記磁気回路の磁気抵抗Rmを充分に低くでき、それだけ各コイルの巻数Nを少なくできる結果、コイル2自体も小型化できる。
【0012】
本発明に係る磁気インピーダンス効果センサーは、C形鉄芯に負帰還磁界発生用コイル及びバイアス磁界発生用コイル巻装してコイルを製作しておき、片面に磁気インピーダンス効果素子を配設した基板の他面にそのコイルのC形鉄芯脚部を接着剤で固定することにより製造できる。
また、C形鉄芯を脚部と水平部とに分割し、脚部を基板の他面に固着しておき、C形鉄芯水平部に負帰還磁界発生用コイル及びバイアス磁界発生用コイルを巻装したコイルの水平部両端を前記脚部にはんだ付けや溶接で接合することにより製造することもできる。
【0013】
【発明の効果】
本発明に係る磁気インピーダンス効果センサーにおいては、C形鉄芯に負帰還磁界発生用コイルとバイアス磁界発生用コイルとを巻装したコイルを磁気インピーダンス効果素子のベース基板の裏面にそのC形鉄芯と磁気インピーダンス効果素子とで磁気回路を構成するように固設してあり、磁気インピーダンス効果センサーの外郭をベース基板の外郭にとどめることができるから、平面寸法を極めて小さくできる。また、コイルの磁気回路の磁気抵抗を低くできるから、それだけ少ないコイル巻数で所定のインダクタンスを得ることができ、コイルの高さも充分に低くできる。
さらに、磁気インピーダンス効果素子面を被検出体に近接させることができる。
従って、本発明によれば、小型で高感度検出が可能な負帰還磁界発生用コイル及びバイアス磁界発生用コイル付きの磁気インピーダンス効果素子を提供できる。
【図面の簡単な説明】
【図1】本発明に係る磁気インピーダンス効果センサーを示す図面である。
【図2】磁気インピーダンス効果素子を用いた通常の磁界検出装置をを示す回路図である。
【符号の説明】
11 基板
13 磁気インピーダンス効果素子
2 コイル
21 C形鉄芯
2a 負帰還磁界発生用コイル
2b バイアス磁界発生用コイル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic field sensor using a magnetoimpedance effect element.
[0002]
[Prior art]
As an amorphous alloy wire, an amorphous alloy wire having zero magnetostriction or negative magnetostriction has been developed, which has an outer shell portion in which magnetic domains whose spontaneous magnetization directions are opposite to each other in the circumferential direction of the wire are separated by a domain wall. Yes.
[0003]
The inductance voltage component in the output voltage between both ends of the wire generated when a high-frequency current is applied to an amorphous magnetic wire having zero magnetostriction or negative magnetostriction is generated by the circumferential magnetic flux generated in the cross section of the wire. This occurs because the easily magnetizable outer shell is magnetized in the circumferential direction. Accordingly, the circumferential magnetic permeability μθ depends on the circumferential magnetization of the outer shell.
Therefore, when an external magnetic field is applied to the energized amorphous wire, the magnetic flux acting on the outer shell portion having the easily magnetizable property in the circumferential direction is obtained by synthesizing the circumferential magnetic flux and the external magnetic flux by the energization. Is deviated from the circumferential direction and magnetization in the circumferential direction is less likely to occur, and the circumferential magnetic permeability μθ changes. That is, if the deviation of the magnetic flux from the circumferential direction when an external magnetic field is applied is φ, the circumferential magnetic flux is reduced by cos φ and the μθ is reduced by this rotational magnetization. Therefore, the inductance voltage is reduced by the decrease in μθ.
[0004]
Further, when the frequency of the energization current is in the order of MHz, a high-frequency skin effect appears greatly, and the skin depth δ = (2ρ / wμθ) 1/2 (μθ is the circumferential permeability, as described above, and ρ is The electrical resistivity, w is an angular frequency) changes with μθ, and this μθ changes with the external magnetic field as described above. Therefore, the resistance voltage component in the output voltage between both ends of the wire also changes with the external magnetic field.
[0005]
Therefore, the external magnetic field is detected from both the inductance voltage and the resistance voltage due to the external magnetic field, that is, the fluctuation of the output voltage between both ends of the wire (the fluctuation of the output voltage due to the external magnetic field is referred to as the magneto-impedance effect). Has been proposed (Japanese Patent Laid-Open No. 7-181239).
The characteristics of the magneto-impedance effect element itself are symmetric and non-linear.
[0006]
As shown in FIG. 2, the magnetic field detection apparatus using the magneto-impedance effect element basically oscillates for supplying a high-frequency current or a pulse current to the magneto-impedance effect element 13 ′ and the magneto-impedance effect element 13 ′. A circuit unit 1 ′, a detection unit 2 ′ and a measurement unit 3 ′ for detecting an external magnetic field by demodulating a modulation wave based on an impedance change between both ends of the magnetoimpedance effect element due to the external magnetic field Hex applied to the magnetoimpedance effect element 13 ′ The negative feedback magnetic field generating coil 2a ′ applies negative feedback, and the detection output Eo is given by
Eo≈Hex × lR / N (1)
The detection output Eo is linear (where l is the length of the negative feedback magnetic field generating coil, N is the number of turns, and R is the ground resistance), and a polarity is applied by applying a DC bias magnetic field by the bias magnetic field generating coil 2b ′. The external magnetic field can be detected regardless of whether or not.
[0007]
[Problems to be solved by the invention]
As the magneto-impedance effect element with a coil, a substrate having a magneto-impedance effect element disposed on one side is inserted into a bobbin or tube, and a negative feedback magnetic field generating coil and a bias magnetic field generating coil are wound around the bobbin or tube. (Hereinafter referred to as a bobbin type), or a negative feedback magnetic field generating coil and a bias magnetic field generating coil printed on the other side of a substrate having a magneto-impedance effect element disposed on one side (hereinafter referred to as a printed type). Are known.
However, the bobbin type is disadvantageous in high-density mounting on a wiring board due to an increase in dimensions and an increase in planar dimensions, and the distance between the magneto-impedance effect element and the magnetic field detection object is reduced due to the intervention of the coil. Therefore, it must be enlarged, and it is disadvantageous in terms of detection sensitivity.
On the other hand, the printed type has a disadvantage in terms of high-density mounting on a wiring board because of the flatness of the printed coil due to the flatness of the printed coil.
[0008]
An object of the present invention is to provide a magneto-impedance effect sensor that can reduce the plane size and can be detected close to a detection object with high sensitivity.
[Means for Solving the Problems]
A magneto-impedance effect sensor according to the present invention includes a magneto-impedance effect element disposed on one side of a substrate, and a coil in which a negative feedback magnetic field generating coil and a bias magnetic field generating coil are wound around an iron core. The iron core and the magneto-impedance effect element are arranged so as to form a magnetic circuit. A C-shaped iron core is used for the iron core, and a split type can be used.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1A is a side view showing an embodiment of the magneto-impedance effect sensor according to the present invention, FIG. 1B is a bottom view, and FIG. 1C is a cross-sectional view of FIG. -A cross-sectional view.
In FIG. 1, reference numeral 11 denotes an insulating substrate, and for example, a ceramic plate can be used. Reference numerals 12 and 12 denote electrodes provided on one side of the insulating substrate, and each include an element connecting protrusion 121. This electrode can be provided by printing and baking a conductive paste, for example, a silver paste. A magneto-impedance effect element 13 is connected between the protrusions 121 and 121 of the electrodes 12 and 12 by soldering or welding. Usually, zero magnetostrictive or negative magnetostrictive amorphous wires, amorphous ribbons, sputtered films, etc. are used. . Reference numeral 14 denotes a pin conductor attached to each electrode 12 by soldering or welding. In No. 2, a negative feedback magnetic field generating coil 2a and a bias magnetic field generating coil 2b are wound around a C-shaped iron core 21 (both are usually enameled wires made by baking an insulating paint on a copper wire). Both ends of the C-shaped iron core 21 are fixed to the other surface of the substrate 11 with an adhesive or the like so that the magnetic impedance effect element 13 and the C-shaped iron core 21 constitute a magnetic circuit.
The iron core material may be a magnetic material. Examples thereof include permalloy, ferrite, iron, amorphous magnetic alloy, magnetic powder mixed plastic, and the like.
[0010]
In the above, if the length of the C-shaped iron core 21 is la, the cross-sectional area is Sa, and the magnetic permeability is μa, the magnetic resistance Ra of the C-shaped iron core is
Ra = la / (Saμa) (2)
In addition, if the length of the magneto-impedance effect element portion that is a component of the magnetic circuit is lb, the cross-sectional area is Sb, and the magnetic permeability is μb, the magneto-resistance Rb of the magneto-impedance effect element portion is ]
Rb = lb / (Sbμb) (3)
Furthermore, if the magnetic resistance between the both ends of the C-shaped iron core and the magneto-impedance effect element is Rc, the magnetic resistance Rm of the magnetic circuit is given by
Rm = Ra + Rb + Rc (4)
Given in
Therefore, the self-inductance L1 of the negative feedback magnetic field generating coil 2a is expressed as follows:
L1 = N1 2 / Rm (5)
The self-inductance L2 of the bias magnetic field generating coil 2b is expressed by the following equation (6).
L2 = N2 2 / Rm (5)
Given in.
[0011]
Thus, the length of the C-shaped iron core 21 can be reduced by reducing the thickness of the substrate 11 so that Rc can be reduced and the height of the legs of the C-shaped iron core 21 is made slightly higher than the diameter of the winding. Therefore, the magnetic resistance Rm of the magnetic circuit can be made sufficiently low, and the number of turns N of each coil can be reduced accordingly. As a result, the coil 2 itself can be reduced in size.
[0012]
A magneto-impedance effect sensor according to the present invention is a substrate in which a negative feedback magnetic field generating coil and a bias magnetic field generating coil are wound around a C-shaped iron core, and a magnetic impedance effect element is arranged on one side. It can be manufactured by fixing the C-shaped iron core leg of the coil to the other surface with an adhesive.
Further, the C-shaped iron core is divided into a leg portion and a horizontal portion, the leg portion is fixed to the other surface of the substrate, and a negative feedback magnetic field generating coil and a bias magnetic field generating coil are provided on the C-shaped iron core horizontal portion. It can also be manufactured by joining both ends of the coiled horizontal part to the leg part by soldering or welding.
[0013]
【The invention's effect】
In the magneto-impedance effect sensor according to the present invention, a coil in which a negative feedback magnetic field generating coil and a bias magnetic field generating coil are wound around a C-shaped iron core is provided on the back surface of the base substrate of the magneto-impedance effect element. And the magneto-impedance effect element are fixed so as to form a magnetic circuit, and the outline of the magneto-impedance effect sensor can be confined to the outline of the base substrate. In addition, since the magnetic resistance of the magnetic circuit of the coil can be reduced, a predetermined inductance can be obtained with a smaller number of coil turns, and the height of the coil can be sufficiently reduced.
Furthermore, the magneto-impedance effect element surface can be brought close to the detection object.
Therefore, according to the present invention, it is possible to provide a negative feedback magnetic field generating coil and a magneto-impedance effect element with a bias magnetic field generating coil that are small and capable of high sensitivity detection.
[Brief description of the drawings]
FIG. 1 shows a magneto-impedance effect sensor according to the present invention.
FIG. 2 is a circuit diagram showing a normal magnetic field detection device using a magneto-impedance effect element.
[Explanation of symbols]
11 Substrate 13 Magneto-impedance Effect Element 2 Coil 21 C-shaped Iron Core 2a Negative Feedback Magnetic Field Generating Coil 2b Bias Magnetic Field Generating Coil

Claims (3)

基板の片面に磁気インピーダンス効果素子を配設し、鉄芯に負帰還磁界発生用コイルとバイアス磁界発生用コイルとを巻装したコイルを前記基板の他面に、鉄芯と磁気インピーダンス効果素子とで磁気回路を構成するように配設したことを特徴とする磁気インピーダンス効果センサー。A magneto-impedance effect element is disposed on one side of the substrate, and a coil in which a negative feedback magnetic field generating coil and a bias magnetic field generating coil are wound around an iron core is provided on the other side of the substrate. A magneto-impedance effect sensor, which is arranged so as to constitute a magnetic circuit. 鉄芯がC形鉄芯である請求項1記載の磁気インピーダンス効果センサー。2. The magneto-impedance effect sensor according to claim 1, wherein the iron core is a C-shaped iron core. 鉄芯が分割式である請求項1または2記載の磁気インピーダンス効果センサー。3. The magneto-impedance effect sensor according to claim 1, wherein the iron core is a split type.
JP2001092229A 2001-03-28 2001-03-28 Magneto-impedance effect sensor Expired - Fee Related JP3634281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001092229A JP3634281B2 (en) 2001-03-28 2001-03-28 Magneto-impedance effect sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001092229A JP3634281B2 (en) 2001-03-28 2001-03-28 Magneto-impedance effect sensor

Publications (2)

Publication Number Publication Date
JP2002289940A JP2002289940A (en) 2002-10-04
JP3634281B2 true JP3634281B2 (en) 2005-03-30

Family

ID=18946730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001092229A Expired - Fee Related JP3634281B2 (en) 2001-03-28 2001-03-28 Magneto-impedance effect sensor

Country Status (1)

Country Link
JP (1) JP3634281B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004206316A (en) * 2002-12-25 2004-07-22 Fuji Electric Retail Systems Co Ltd Magnetic detection device
JP4520188B2 (en) * 2004-03-15 2010-08-04 内橋エステック株式会社 Method for detecting conductor defects in electric wires
JP2008164310A (en) * 2006-12-27 2008-07-17 Uchihashi Estec Co Ltd Magnetic impedance effect sensor head, sensor and magnetic inspection method
JP5085123B2 (en) * 2006-12-27 2012-11-28 双日マシナリー株式会社 Magnetic detection method for magnetic metal pieces
JP2008203164A (en) * 2007-02-22 2008-09-04 Uchihashi Estec Co Ltd Detection method
JP4986654B2 (en) * 2007-02-22 2012-07-25 双日マシナリー株式会社 Magnetic detection method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3272397B2 (en) * 1992-04-30 2002-04-08 科学技術振興事業団 Magnetic inductance element
JP3197414B2 (en) * 1993-12-22 2001-08-13 科学技術振興事業団 Magnetic impedance effect element
JPH1055517A (en) * 1996-08-14 1998-02-24 Matsushita Electric Ind Co Ltd Magnetic head, production of magnetic head and magnetic recording and reproducing device
JPH11174137A (en) * 1997-12-15 1999-07-02 Maitec Kk Method for applying bias magnetic field of magnetic sensor with magnetic impedance
JP4368965B2 (en) * 1999-03-17 2009-11-18 内橋エステック株式会社 Magnetic sensor mounting structure
JP4220617B2 (en) * 1999-07-01 2009-02-04 アルプス電気株式会社 Magnetic sensor
JP2001343438A (en) * 2000-05-31 2001-12-14 Uchihashi Estec Co Ltd Magnetic sensor
JP4307695B2 (en) * 2000-07-12 2009-08-05 内橋エステック株式会社 Magnetic detection device and magnetic field detection method
JP2002022706A (en) * 2000-07-12 2002-01-23 Uchihashi Estec Co Ltd Magnetic sensor, magnetic leakage flux flaw detection method, and its device
JP2002286822A (en) * 2001-03-26 2002-10-03 Tama Electric Co Ltd Magnetic sensor

Also Published As

Publication number Publication date
JP2002289940A (en) 2002-10-04

Similar Documents

Publication Publication Date Title
JP3096413B2 (en) Magnetic sensing element, magnetic sensor, geomagnetic detection type azimuth sensor, and attitude control sensor
JP4247821B2 (en) Current sensor
TWI259284B (en) Magnet, impedance and sensor device having electromagnetic coil
KR20010096553A (en) Magnetic field detection device
TWI223714B (en) Fluxgate sensor integrated in printed circuit board and method for manufacturing the same
JP2013504059A (en) Sensor for measuring electrical properties
TW556474B (en) Fluxgate sensor integrated in printed circuit board and method for manufacturing the same
US6121770A (en) Magnetic sensor using magnetic impedance of magnetic wire within biasing coil
JP3634281B2 (en) Magneto-impedance effect sensor
JP4307695B2 (en) Magnetic detection device and magnetic field detection method
JP2001004726A (en) Magnetic field sensor
JP4338789B2 (en) Magneto-impedance effect element
JP2002022706A (en) Magnetic sensor, magnetic leakage flux flaw detection method, and its device
JP2001116773A (en) Current sensor and current detector
JP4460188B2 (en) Magnetic sensor
JPH0131591B2 (en)
US6771066B2 (en) Printed circuit fluxgate sensor for magnetic gradient detection device
JP2005055326A (en) Conductor current measurement method and magnetic field sensor for measuring conductor current
JP2002286822A (en) Magnetic sensor
JP4204303B2 (en) Magnetic impedance sensor chip and magnetic sensor element using the same
JP2001343438A (en) Magnetic sensor
JP3752054B2 (en) Magnetic field detection method and magnetic sensor
JP3701080B2 (en) Magneto-impedance effect element
JP4076687B2 (en) Magneto-impedance effect element and circuit board equipped with magneto-impedance effect element
JPH01240867A (en) Current detector

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees