[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3632241B2 - 位置検出装置 - Google Patents

位置検出装置 Download PDF

Info

Publication number
JP3632241B2
JP3632241B2 JP13678395A JP13678395A JP3632241B2 JP 3632241 B2 JP3632241 B2 JP 3632241B2 JP 13678395 A JP13678395 A JP 13678395A JP 13678395 A JP13678395 A JP 13678395A JP 3632241 B2 JP3632241 B2 JP 3632241B2
Authority
JP
Japan
Prior art keywords
position detection
light
detection mark
illumination
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13678395A
Other languages
English (en)
Other versions
JPH08327318A (ja
Inventor
直正 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP13678395A priority Critical patent/JP3632241B2/ja
Priority to US08/639,099 priority patent/US5706091A/en
Priority to KR1019960014150A priority patent/KR960038503A/ko
Publication of JPH08327318A publication Critical patent/JPH08327318A/ja
Priority to US08/937,523 priority patent/US5903356A/en
Priority to US09/224,359 priority patent/US6421123B1/en
Application granted granted Critical
Publication of JP3632241B2 publication Critical patent/JP3632241B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、例えば半導体素子等を製造する際にマスクパターンを感光性の基板上に露光するフォトリソグラフィ工程で使用される露光装置に適用されるマスクパターンと感光性基板の相対的な位置合わせ技術に関し、特に感光基板上のマークパターンの検出技術に関するものである。
【0002】
【従来の技術】
例えば半導体素子、液晶表示素子、薄膜磁気ヘッド、撮像素子(CCD)、又は光磁気ディスク等を製造するためのフォトリソグラフィ工程では、転写用のパターンが形成されたフォトマスク又はレチクル(以下、まとめて「レチクル」という)の像を、投影光学系を介した投影露光法、あるいはプロキシミティ露光法により、フォトレジストが塗布されたウエハ、又はガラスプレート等の感光基板上に転写する露光装置が使用されている。
【0003】
このような露光装置においては、露光に先立ってレチクルとウエハとの位置合わせ(アライメント)を高精度に行う必要がある。このアライメントを行うために、ウエハ上には以前の工程で形成(露光転写)された位置検出マーク(アライメントマ−ク)が形成されており、このアライメントマ−クの位置を検出することで、ウエハ(ウエハ上の回路パターン)の正確な位置を検出することができる。
【0004】
アライメントマークの検出方法としては、例えばレーザビームスキャン方式、レーザ干渉式等のレーザ光の散乱、回折光を検出するものがある。しかしながら、レーザ光は単色性が強く、フォトレジスト表面とマーク表面との多重干渉等の悪影響により、位置検出精度が悪化する恐れがある。
これに対して、ランプ等を光源としてアライメントマークをブロードバンドな光束で照明し、その像を結像光学系を介して撮像し、その画像信号に基づいて位置検出を行なう方式(以後「結像式位置検出」と称す)は、フォトレジスト等の悪影響を受けにくいというメリットがある。
【0005】
【発明が解決しようとする課題】
近年、半導体集積回路等の微細化に伴い、成膜工程後であってフォトリソグラフィ工程前に、ウエハ表面を平坦化する工程が導入されるようになった。これには、回路パターンが形成される生成膜の厚さを均一化して素子特性を改善する効果と、フォトリソグラフィ工程においてウエハ表面の凹凸が転写パターンの線幅誤差に与える悪影響を改善する効果がある。
【0006】
しかしながら、ウエハ表面のアライメントマーク部での凹凸変化や反射率変化を基に位置検出を行なう方式においては、平坦化工程によりアライメントマーク部での凹凸変化が著しく減少するため、アライメントマークを検出できなくなる恐れがある。特に不透明な生成膜(金属や半導体膜)に対する工程では、アライメントマークは一様な反射率の不透明膜で被われる。このため、位置検出はマークの凹凸変化のみに頼ることになり、不透明な生成膜は平坦化が最も問題となる工程である。
【0007】
本発明は上述の問題点を鑑みてなされたもので、凹凸変化(段差)の極めて小さい位置検出マークであっても精度良く確実にその位置を検出できる位置検出装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、所定の波長域の照明光(例えば広帯域光、又は多波長光)で基板上の位置検出マークを照射する照明光学系と、その位置検出マークから発生する光を入射して撮像素子上にその位置検出マークの像を形成する結像光学系とを備え、撮像素子から出力される画像信号に基づいてその位置検出マークの位置を検出する装置に適用されるものである。
【0009】
そして本発明では、位置検出マークに対して実質的に光学的フーリエ変換の関係となる照明光学系中の第1面(瞳面)上での照明光を、照明光学系の光軸を中心とするほぼ輪帯状の第1領域内に制限する光束制限部材と、位置検出マークに対して実質的に光学的フーリエ変換の関係となる結像光学系中の第2面(瞳面)上の、第1領域と結像関係となるほぼ輪帯状の第2領域とそれ以外の領域とにそれぞれ分布する結像光束の位相を異ならせる位相差部材とを設ける。
【0010】
または、照明光学系中の第1面上での照明光を、その光軸を中心とするほぼ輪帯状の第1領域内に制限する光束制限部材と、結像光学系中の第2面上に分布する、位置検出マークからの0次光とそれ以外の光の位相を異ならせる位相差部材とを設けるようにしてもよい。
あるいは、照明光学系中の第1面上での照明光、又は2次光源(面光源)の強度分布を、輪帯状の第1領域で他の領域よりも高める光学部材と、結像光学系中の第2面上の、第1領域と結像関係となるほぼ輪帯状の第2領域とそれ以外の領域とにそれぞれ分布する結像光束の位相を異ならせる位相差部材とを設けるようにしてもよい。
【0011】
もしくは、照明光学系の実質的な瞳面上の、輪帯状の第1領域内に分布する照明光束を透過せしめる絞り部材と、結像光学系中の第2面上の、第1領域と結像関係となるほぼ輪帯状の第2領域とそれ以外の領域とにそれぞれ分布する結像光束の位相を異ならせる位相差部材とを設けるようにしてもよい。
または、照明光学系の実質的な瞳面上に、その光軸を中心とするほぼ輪帯状の2次光源(もしくは、その瞳面上の光軸を中心とするほぼ輪帯状の領域内に複数の光源像)を形成する部材と、結像光学系の実質的な瞳面上の、その2次光源と結像関係となるほぼ輪帯状の領域とそれ以外の領域とにそれぞれ分布する結像光束の位相を異ならせる位相差部材とを設けるようにしてもよい。
【0012】
あるいは、照明光学系の実質的な瞳面上での光強度分布を、照明光学系の光軸を中心とするほぼ輪帯状の領域でその内側の領域よりも高める光学部材と、結像光学系の実質的な瞳面上の、その内側領域と結像関係となるほぼ円形の領域とそれ以外の領域とにそれぞれ分布する結像光束の位相を異ならせる位相差部材とを設けるようにしてもよい。
【0013】
また、結像光学系中の第2面上の輪帯状の領域内に分布する結像光束、即ちその第2面上に分布する0次光を減光する部材を有することが望ましい。この減光部材は、位相差部材と一体に形成してもよいし、位相差部材に近接して配置しても、あるいは位相差部材とほぼ共役な面(瞳共役面)内に配置してもよい。
さらに位相差部材は、第2領域内に分布する結像光束とそれ以外の領域内に分布する結像光束との間に、ほぼ(2m+1)π/2±π/4 [rad](mは整数)の位相差を与えることが望ましい。このとき、第2領域内に分布する結像光束の位相とそれ以外の領域内に分布する結像光束の位相のどちらをシフトさせてもよい。また、両光束の位相シフト量をそれぞれ異ならせて前述の位相差を与えるようにしてもよい。
【0014】
また、照明光のうち画像信号の形成に寄与する光束の波長域中の最短波長をλ1、最長波長をλ2、位置検出マークの周期をPとすると、輪帯状の第1領域の外半径ro 、及び内半径ri は、
ri≧λ2/(2×P)
ro−ri≦λ1/P
の関係を満たすことが望ましい。また、結像光学系の開口数NAoは、
NAo≧ro+λ2/P
の関係を満たすことが望ましい。
【0015】
さらに、結像光学系の光路に対して位相差部材を挿脱可能に保持する部材を設けると良い。さらにこのとき、照明光学系の光路に対して光束制限部材(又は光学部材、絞り部材、2次光源(光源像)形成部材)を挿脱可能に保持する部材も設けると良い。
また、撮像素子上に指標マークの像を形成する像形成手段を設け、撮像素子から出力される画像信号に基づいて位置検出マークの像と指標マークの像との位置ずれを検出するようにしても良い。この像形成手段は、指標マークを有する指標板と、基板上に照射される照明光とは異なる光ビームで指標板を照射する照明系と、指標マークから発生した光を入射してその像を撮像素子上に形成する結像系とを有することが望ましい。特に指標板を、結像光学系中の基板と実質的に共役な面に配置し、結像光学系によって、位置検出マークの像を指標板上に形成するとともに、この位置検出マークの像と指標マークの像とを撮像素子上に形成するようにしても良い。
【0016】
さらに、例えば照明光学系の光路に対する光束制限部材(又は光学部材等)の挿脱、又は交換に伴う、撮像素子に入射する位置検出マークからの結像光束の光量変化に応じて、指標マークを照明する光ビームの強度の調整する部材を設けることが望ましい。一例としては、照明光路からの光束制限部材の退出に連動して、その光ビームの強度を高くする。この調整部材は、光ビームを射出する光源に供給する電力(電流、電圧)を変化させるもの、あるいは透過率が異なる複数の減光フィルターをそれぞれ交換してビーム光路に配置するもの等でよい。
【0017】
また、照明光学系中の第1面上での照明光(又は2次光源)の強度分布を、輪帯状の第1領域で他の領域よりも高める光学部材は、他の領域での光強度をほぼ零にするように、他の領域をほぼ覆う遮光部を持つ絞り部材でも良い。
さらに光学部材は、輪帯状の第1領域の外半径と内半径の少なくとも一方を変化させる強度分布変更部材を有することが望ましい。この強度分布変更部材は、輪帯状の開口の外半径と内半径の少なくとも一方が異なる複数の絞り部材と、この複数の絞り部材の1つを照明光学系の光路中に配置するように複数の絞り部材を保持する部材とを持つようにしても良い。さらに位相差部材は、第1領域の外半径と内半径の少なくとも一方の変化に応じて、輪帯状の第2領域の半径方向の幅と位置との少なくとも一方を変化させることが望ましい。
【0018】
また、前述した輪帯状の第1領域(2次光源)の外半径や内半径(即ち半径方向の幅や位置)、照明光の強度分布の変更は、例えば液晶素子、又はエレクトロクロミック素子で作られた開口絞りを瞳面に配置する、あるいは開口部の外半径と内半径の少なくとも一方が異なる複数の絞り部材をそれぞれ交換して光路中に配置可能に構成することで実現できる。あるいは、可変開口絞りを瞳面に配置してその開口径を任意に変更可能(又は開口径が異なる複数の開口絞りをそれぞれ交換して光路中に配置可能)として外半径を変更するようにし、かつ互いに直径が異なる複数の円形の遮光板をそれぞれ交換して光路中に配置可能に構成して内半径を変更するようにしてもよい。
【0019】
さらに、前述した輪帯状の第2領域の外半径や内半径(即ち半径方向の位置や幅)の変更は、例えば輪帯状の位相シフター(誘電体膜等)、あるいは輪帯状の凹部(又は凸部)の半径方向の位置と幅の少なくとも一方が異なる複数の透明基板をそれぞれ交換して光路中に配置可能に構成することで実現できる。尚、輪帯状の位相シフターを設ける代わりに、輪帯状の第2領域以外に位相シフターを設けるようにしてもよい。または、光学的な厚さはほぼ同一で、直径が異なる複数の円形透明板をそれぞれ交換して光路中に配置可能に構成するだけでもよい。但し、前述した第1領域の外半径を変更するときは、その変更された第1領域と結像関係となる第2領域内の結像光束とその外側の結像光束との間に位相差を付与できないが、その変更により像コントラストや忠実性が、所望の位置検出精度を得られない程度に劣化しなければ何ら問題ない。尚、像コントラストや忠実性の劣化が問題になるときは、例えば可変開口絞りによって第2領域の外側に分布する結像光束を遮光するようにしてもよい。
【0020】
【作用】
ほぼ平坦な被検物上の「段差」部のみを検出する光学系としては、「暗視野顕微鏡」や「位相差顕微鏡」が知られている。暗視野顕微鏡は、結像光学系の瞳面(被検物に対するフーリエ変換面)に遮光領域を設け、被検物(例えばウエハ上の位置検出マーク)への照明光の照射によってその被検物から発生する反射回折光のうち、0次回折光(正反射光)を遮光し、高次回折光(及び散乱光)のみによる像を形成するものである。このうち0次回折光は、被検物の凹凸や反射率変化に関する情報をほとんど含まないが、高次(1次以上)の回折光はこれらの情報を含んでいる。従って暗視野顕微鏡では、0次回折光が遮光され、高次回折光のみにより像が形成されるため、通常の(明視野の)顕微鏡よりも明瞭に(高コントラストで)段差を可視化することが可能となる。
【0021】
これに対して位相差顕微鏡は、結像光学系の瞳面に、0次回折光と他の次数の回折光(及び散乱光)との間に位相差を与えて透過せしめる位相差フィルターを設けたものである。低段差のマークパターンから発生する高次(1次以上)回折光の光量は極めて僅かであるが、位相差顕微鏡では光量の多い0次回折光も像形成に寄与させることができるため、暗視野顕微鏡よりも明るい(強度の大きい)像を得ることができる。尚、0次回折光と他の次数の回折光との強度比が極端に大きいと像コントラストが低下するため、0次回折光を減光することもある。
【0022】
しかしながら、従来の位相差顕微鏡をウエハ上の位置検出マークの検出に用いると、像形成に不要な0次回折光だけでなく、他の次数の回折光(像形成に寄与する有益な回折光)に対しても位相差の付加や減光効果が及んでしまい、像のコントラストや忠実性が劣化するという問題がある。
そこで本発明では、ウエハ等の基板上の位置検出マークには通常、その位置検出方向にある一定の周期性(周期P)があることに着目し、その周期性により生じる0次以外の回折光が極力、位相差部材の影響を受けないように、その位相差部材、及び照明光学系の2次光源(照明光学系の瞳面での照明光束分布、又は照明光の強度分布)の形状を設定したので、0次回折光のみに対して重点的に位相差を付加する、さらには減光することができる。
【0023】
即ち本発明では、位置検出マークに対して実質的に光学的フーリエ変換の関係となる照明光学系中の第1面(瞳面)での照明光束を、光軸を中心とするほぼ輪帯状の第1領域内に制限し、かつ位置検出マークに対して実質的に光学的フーリエ変換の関係となる結像光学系中の第2面(瞳面)上の、第1領域と結像関係となるほぼ輪帯状の第2領域とそれ以外の領域とにそれぞれ分布する結像光束の位相を異ならせる、換言すればその第2面上に分布する位置検出マークからの0次光とそれ以外の光とでその位相を異ならせるようにした。
【0024】
または、照明光学系中の第1面上での照明光(又は2次光源、面光源)の強度分布を、輪帯状の第1領域で他の領域よりも高める、あるいは照明光学系の実質的な瞳面上の、輪帯状の第1領域内に分布する照明光束を透過せしめる、もしくは照明光学系の実質的な瞳面上に、その光軸を中心とするほぼ輪帯状の2次光源(面光源)を形成する、または照明光学系の実質的な瞳面上の、その光軸を中心とするほぼ輪帯状の領域内に複数の光源像を形成するようにしてもよい。また、照明光学系の実質的な瞳面上での光強度分布を、照明光学系の光軸を中心とするほぼ輪帯状の領域でその内側の領域よりも高め、かつ結像光学系の実質的な瞳面上の、その内側領域と結像関係となるほぼ円形の領域とそれ以外の領域とにそれぞれ分布する結像光束の位相を異ならせるようにしてもよい。
【0025】
このため、凹凸変化(段差)の極めて小さい位置検出マークに対しても、確実に(高コントラストな像で)位置検出を行なうことが可能となる。尚、前述の第1及び第2領域や2次光源(面光源)の形状は輪帯(円環)状であるとしたが、例えば矩形、正方形、又は多角形(特に正多角形)としても良い。さらに、照明光学系中の第1面(瞳面)上の第1領域を部分的に遮光(又は減光)する、即ち第1領域を複数の部分領域(その形状は任意で良く、例えば円弧、円形、又は直線状等として構わない)から構成しても良い。これに対応して結像光学系中の第2面(瞳面)上の第2領域を、その第1領域と同一の形状としても良いし、あるいはその第1領域と結像関係となる複数の部分領域をほぼ含む輪帯、矩形、又は多角形状等としても良い。
【0026】
また、結像光学系中の第2面上の輪帯状の領域内に分布する結像光束、即ちその第2面上に分布する0次回折光を減光する部材を設ける。これにより、位置検出マークからの0次回折光と他の次数の回折光との強度比を小さくすることができ、位置検出マークの像をより高いコントラストで検出することができる。
さらに、照明光のうち画像信号の形成に寄与する光束の波長域中の最短波長をλ1、最長波長をλ2、位置検出マークの周期をPとすると、輪帯状の第1領域の外半径ro 、及び内半径ri を、
ri≧λ2/(2×P)
ro−ri≦λ1/P
なる関係を満足するように設定する。また、結像光学系の開口数NAoを、
NAo≧ro+λ2/P
なる関係を満足するように設定する。このため、低段差の位置検出マークの像をより高いコントラストで検出することができる。
【0027】
さらに、結像光学系内の第2面(瞳面)、又はその共役面に、結像光学系の開口数NAoを変化させるための可変開口絞り(NA絞り)を、位相差部材と機械的に干渉しないように設けると良い。これにより、位置検出マークの周期が変化しても、前述の条件を満足するように、結像光学系の開口数をその周期に対応した値に設定することができ、常にそのマーク像を高いコントラストで検出できる。尚、可変開口絞りは結像光学系の瞳面、又はその共役面から光軸方向にずらして配置しても構わない。
【0028】
また、結像光学系の光路に対して位相差部材を挿脱可能に保持する部材を設ける。このため、明視野検出との切り替えを行うことができ、位置検出マークの段差量に応じて位相差部材の有無を選択してそのマーク像を検出できる。従って、位置検出マークの段差量に依らず、常に高いコントラストのマーク像を得ることができ、位置検出精度を向上させることができる。
【0029】
さらに、照明光学系の光路に対して光束制限部材(又は光学部材、絞り部材、2次光源形成部材)を挿脱可能に保持する部材も設ける。このため、輪帯照明と通常照明とを切り替えることができ、位置検出マークが低段差でない場合にはその反射率が低くても、通常照明によってそのマーク像を確実に検出することができる。
【0030】
また、照明光学系中の第1面上での照明光(2次光源、面光源)の強度分布を、輪帯状の第1領域で他の領域よりも高める光学部材は、輪帯状の第1領域の外半径と内半径の少なくとも一方を変化させる強度分布変更部材を有する。このため、位置検出マークの周期が変化しても、前述の条件式を満足するように、輪帯状の第1領域の外半径と内半径の少なくとも一方をその周期に対応した値に設定することができる。従って、位置検出マークの周期に依らず、常に高いコントラストのマーク像を得ることができる。尚、輪帯状の第1領域の外半径や内半径は、位置検出マークの周期の変化に連動して変更する必要はなく、その変化により像コントラストや忠実性が、所望の位置検出精度を得られない程度に劣化したときのみ、その外半径や内半径を変更するようにしても良い。
【0031】
さらに位相差部材は、第1領域の外半径と内半径の少なくとも一方の変化に応じて、輪帯状の第2領域の半径方向の幅と位置の少なくとも一方を変化させる。このため、位置検出マークの周期に応じて輪帯状の第1領域の外半径と内半径の少なくとも一方が変化しても、常に0次回折光のみに対して位相差を付与して撮像素子に入射させることができる。尚、結像光学系の輪帯状の第2領域の幅や位置は、輪帯状の第1領域の外半径や内半径(位置検出マークの周期)の変化に連動して変更する必要はなく、その変化により像コントラストや忠実性が、所望の位置検出精度を得られない程度に劣化したときのみ、その位相シフト部の幅や位置を変更するだけでも良い。また、第1領域の外半径及び内半径の変化に連動して第2領域の外半径と内半径の両方を変更する必要はなく、例えば第2領域の内半径のみを変更するだけでもよい。
【0032】
【実施例】
図1〜図6を参照して本発明の実施例について説明する。図1は、本実施例の位置検出装置の概略的な全体構成を示す。図1において、ハロゲンランプ等の光源1を発したブロードバンドな照明光束(広帯域光)はコンデンサーレンズ2、及び波長選択素子(シャープカットフィルター、又は干渉フィルター等)3を経て照明視野絞り4に入射する。
【0033】
波長選択素子3は、後述するウエハ10上に塗布されたフォトレジスト(露光波長は例えば365nm、又は248nm)に対して、非感光な波長域(例えば波長550nm〜750nm)の光束のみを透過させる。ただし本発明を、フォトレジストで覆われていない基板の位置検出装置、例えば露光、現像処理後のウエハ上の、回路パターンと転写したレジストパターンとの重ね合わせ位置検出装置に適用するのであれば、フォトレジストの感光を防ぐ必要はないので、より短波長の(露光波長に近い)光束も使用することができる。
【0034】
照明視野絞り4を透過した光束は、リレーレンズ5を経て本発明の照明光束制限部材(開口絞り)6に入射する。さらに照明光は、ビームスプリッター8、及び対物レンズ群9を介して、位置検出マーク11が形成されたウエハ10に入射する。照明光束制限部材6は、ウエハ10の表面(位置検出マーク11)に対して、対物レンズ群9とビームスプリッター8を介して、光学的にフーリエ変換の関係となっている面(以後「照明系瞳面」と略す)に配置されている。すなわち、照明光束制限部材6内の所定点の、照明光学系(1〜5、8、9)の光軸AXIからの位置ずれ量は、その所定点を通過する照明光束の、ウエハ10の表面に対する入射角の正弦に比例する。
【0035】
ここで、照明光束制限部材6は輪帯開口を有し、その輪帯開口の中心が照明光学系の光軸AXIと一致するように可動部材7に保持されている。この可動部材7は、例えばターレット板、又はスライダーであり、照明光学系の光路に対して照明光束制限部材6を挿脱可能としている。従って、本実施例では可動部材7によって輪帯照明と通常照明とを切り替えることができ、位置検出マーク11の段差量(及び/又は微細度(周期、線幅等))に応じていずれか一方を選択できるようになっている。例えば、低段差の位置検出マーク、及び高段差の微細な位置検出マークでは輪帯照明が選択されて照明光束制限部材6が光路中に挿入され、高段差の粗い位置検出マークでは通常照明が選択されて照明光束制限部材6が光路外に待避される。
【0036】
また、照明視野絞り4は一連の光学系5〜9を介して、ウエハ10の表面(位置検出マーク11)と実質的に共役(結像関係)となっており、照明視野絞り4の透過部の形状、大きさに応じて、ウエハ10上での照明範囲を制限することができる。照明視野絞り4は、例えば複数の可動ブレードからなり、位置検出マーク11の大きさや形状に応じて、その複数の可動ブレードによって規定される開口部の大きさや形状を変化させることでウエハ10上での照明範囲を変更することができる。
【0037】
ウエハ10は、2次元移動可能なウエハステージ12に載置され、このウエハステージ12の端部にはレーザ干渉計15からのレーザビームを反射するミラー14が固定されている。ウエハステージ12(ウエハ10)のX、Y方向の位置はレーザ干渉計15によって、例えば0.01μm程度の分解能で常時検出される。さらにウエハステージ12には、ベースライン計測等に用いられる基準マークが形成された基準板13が設けられている。
【0038】
さて、ウエハ10(位置検出マーク11)で反射した光束は、対物レンズ群9、及びビームスプリッター8を介して、本発明の位相差部材(位相差フィルター)16に至る。位相差フィルター16は、ウエハ10の表面(位置検出マーク11)に対して、対物レンズ群9とビームスプリッター8を介して、光学的にフーリエ変換の関係となっている面(以後「結像系瞳面」と略す)に配置されている。即ち、位相差フィルター16内の所定点の、結像光学系の光軸AXからの位置ずれ量は、その所定点を通過する光束(結像光束)の、ウエハ10の表面に対する射出角の正弦に比例する。
【0039】
位相差フィルター16の具体的な構成については後で詳しく説明するが、位相差フィルター16はその中心が結像光学系の光軸AXと一致するように可動部材17に保持されている。この可動部材17は、例えばターレット板、又はスライダーであり、結像光学系の光路に対して位相差フィルター16を挿脱可能としている。従って、本実施例では可動部材17によって明視野検出との切り替えを行うことができ、位置検出マーク11の段差量に応じていずれか一方を選択できるようになっている。例えば、低段差の位置検出マークでは位相差フィルター16が光路中に挿入され、高段差の位置検出マークでは明視野検出が選択されて位相差フィルター16が光路外に待避される。
【0040】
ここで、光学的なフーリエ変換の関係を図2を用いて説明するが、図2では1枚のレンズ9’で表される対物レンズ群9(焦点距離をfとする)の一方の焦点面に、ウエハ10を配置すれば、他方の焦点面が「光学的なフーリエ変換面(瞳面)」FPとなる。そして、ウエハ10上での入射、及び射出角度がθである光束はそれぞれフーリエ変換面(瞳面)FP上の、光軸AXからf・ sinθだけ離れた位置を通ることになる。
【0041】
図2では、対物レンズ群9を1枚のレンズ9’で表しているが、これが複数枚から成るレンズ系であっても本質的には何ら変わりはなく、複数枚のレンズの合成焦点面にウエハ10を配置すれば、他方の焦点面がフーリエ変換面(瞳面)となる。そして、対物レンズ群9と瞳面との間にビームスプリッター8を配することで、送光側(照明系)瞳面と受光側(結像系)瞳面とを分離することが可能となる。また、この分離された2つの瞳面は共にウエハ10に対するフーリエ変換面である、即ち照明系瞳面と結像系瞳面とはウエハ10、対物レンズ群9、及びビームスプリッター8を介して実質的に共役(結像関係)となっている。
【0042】
位相差フィルター16を通過した結像光束は、レンズ系18、及びビームスプリッター19を経て、指標板24上に位置検出マーク11の像を形成する。一方、指標板24は、指標板照明用光学系20〜23によっても照明される。この指標板照明用光学系は、発光ダイオード等の光源20、コンデンサーレンズ21、指標板照明視野絞り22、及びリレーレンズ23からなる。指標板照明視野絞り22は、リレーレンズ23、及びビームスプリッター19を介して指標板24と共役、ひいてはウエハ10の表面と共役になっている。さらに指標板24には、後述するように位置検出マーク11の検出に際して使用される基準指標(指標マーク)が形成されている。指標板照明視野絞り22は、指標板24上の基準指標のみが光源20からの照明光で照射されるように、その基準指標と結像関係になる領域に開口を有する。
【0043】
指標板照明用光学系20〜23はこの基準指標を照明するためのものであるので、光源20からの照明光は、位置検出マーク11を照射する光源1からの照明光と異なり、単色光でもよい。また、光源20からの照明光はウエハ10上に照射されないため、その波長がフォトレジストの感光波長であっても構わない。そこで、本実施例では発光ダイオードである光源20の波長を500nm程度とし、ビームスプリッター19の反射面をダイクロイックミラーとすることで、ウエハ10からの結像光束及び指標用照明光の利用効率を高める(即ち光量損失を抑える)ことができる。尚、本実施例では照明視野絞り4によってウエハ10上での照明範囲が制限されるので、位置検出マーク11の像が基準指標に重畳して形成されることはない。
【0044】
指標板24上に形成される位置検出マーク11の像と基準指標の像はそれぞれリレーレンズ25、27によってCCD等の撮像素子28上に結像される。画像処理系29は、撮像素子28からの出力信号を基に、前述の基準指標像と位置検出マーク11の像との位置関係(位置ずれ量)を算出する。位置検出マーク11の像位置は、当然ながらレーザ干渉計15によって規定される直交座標系XY上での位置検出マーク11の位置を反映したものであるから、これにより位置検出マーク11の位置検出が可能となる。即ち、画像処理系29で算出される位置ずれ量と干渉計15から出力される座標位置とによって位置検出マーク11の位置が求められる。
【0045】
ここで、例えば可動部材7による照明光束制限部材6の挿脱、又は交換に伴い、撮像素子28に入射する、位置検出マーク11からの結像光束の光量が変化する。このため、撮像素子28上でそのマーク像と基準指標像の各強度(明るさ)が異なることになり、その強度差が大きくなると、画像処理系29での位置ずれ検出精度が悪化する恐れがある。そこで本実施例では、撮像素子28上に結像される位置検出マーク11の像と基準指標の像の各強度が常にほぼ等しくなるように、その結像光束の光量変化に応じて、基準指標を照明する、光源20からの照明光の強度を調整可能に構成する。本実施例では、光源(発光ダイオード)20への注入電流を調節してその発光強度を調整するものとし、例えば照明光学系の光路から照明光束制限部材6を退出させたときは、光源20の発光強度を高くする。尚、光源20と指標板24との間に、透過率が異なる複数の減光フィルターを保持する部材(ターレット板、スライダー等)に設け、この保持部材を駆動して、複数の減光フィルターをそれぞれ交換してその光路中に配置するように構成してもよい。図示していないが、照明光束制限部材6や位相差フィルター16の挿脱、又は交換は、入力装置(キーボード等)からの情報(位置検出マーク11の周期や段差量等)に基づいて、図1の装置全体を統括制御するコントローラが自動的に行うようになっている。さらにコントローラは、照明光束制限部材6や位相差フィルター16の種類や有無に応じて光源20の発光強度を調整する。
【0046】
ところで、開口絞り26はウエハ10に対して実質的に光学的なフーリエ変換の関係となる結像光学系(9〜27)中の面(位相差フィルター16と共役(結像関係)の面)に配置され、結像光学系の開口数を制限するものである。本実施例では、開口絞り26によって結像光学系の開口数を任意に変更できるものとする。また、図1では指標板24を結像光学系の光路中に配置したが、指標板24をその光路外に配置し、結像系を介して撮像素子28上に基準指標の像を形成するように構成してもよい。例えば、指標板24の代わりに撮像素子28を配置し、かつ指標板照明視野絞り22の代わりに指標板24を配置すれば、リレーレンズ25、27が不要となって装置全体を小型化できる。このとき、基準指標以外からの光が撮像素子28に入射しないように、指標板24上の、基準指標以外の領域は遮光しておくと良い。また、開口絞り26は位相差フィルター16と機械的に干渉しないようにそれに近接して配置すれば良い。
【0047】
ここで、位置検出マーク11の形状、指標板24、指標板照明視野絞り22、及び照明視野絞り4の各透過部の形状、及び撮像素子28上に形成される像の強度分布の一例を、図3、図4を用いて説明する。図4(A)は位置検出マーク11の上面図を示し、図4(B)はその位置計測方向(図4(A)中のX方向)の断面図を示す。即ち、本実施例ではウエハ10の表面に、X方向に周期Pで配列される3本の帯状凹部からなる位置検出マーク11を形成している。また、ウエハ10の表面には図4(B)に示すようにフォトレジスト10’が塗布されている。
【0048】
照明視野絞り4は、図3(A)に示すように、ウエハ10上での照明領域を制限する四角形の透過部4M以外は、全て遮光部(斜線部)となっている。そして、この透過部4Mがウエハ10上に投影され、位置検出マーク11を含む部分領域のみを照明する。この照明領域は、図4(B)中のマーク領域M(X方向の幅W)に相当し、図3(C)に示す指標板24上のマーク像領域MIにも相当する。すなわち、指標板24上のマーク像領域MI内に位置検出マーク11の像が形成される。
【0049】
一方、指標板照明視野絞り22も図3(B)に示すように、2つの四角形の透過部4L、4R以外は、全て遮光部(斜線部)となっている。この透過部4L、4Rからの透過光は、図3(C)に示す指標板24上の矩形領域(透過部)LI、RIを照明する。そしてこの矩形領域LI、RI内にはそれぞれ遮光部である前述の基準指標(バーマーク)24L、24Rが形成されている。
【0050】
以上のことから、撮像素子28上に形成される像強度分布は図4(C)のようになる。即ち、光源(ハロゲンランプ)1からの照明光で照射された位置検出マーク11の像IMを中心として、その左右に光源(発光ダイオード)20からの照明光で照射された基準指標24L、24Rの像(暗像)IL、IRが形成される。前述したように、位置検出マーク11の像IMと基準指標24L、24Rの像IL、IR上との明るさがあまり異なると、両像の位置ずれの検出精度が悪化する恐れがあるので、光源(発光ダイオード)20への注入電流を調節して、両像がほぼ等しい強度となるように調整する機構(不図示)が設けられている。
【0051】
また、図4(B)の断面図において、位置検出マーク11の左右の領域L、Rを平坦な領域としたが、この領域L、Rの状態は位置検出マーク11の位置検出には全く影響を与えない(照明光で照明されていない)ので、ここに回路パターン等が存在しても全く問題はない。
画像処理系29は、撮像素子28からの出力される図4(C)の如き光量信号を基に、位置検出マーク11の像IMと基準指標24L、24Rの像IL、IRとの位置関係を算出する。この算出過程は、従来の結像式位置検出で一般に行なわれている処理と全く同様である。例えば、所定のスライスレベルSLでの光量信号のスライス位置(Lo、Li、M〜Mn 、Ri、Ro)に基づいて位置検出を行なってもよいし、あるテンプレート信号とマーク部の光量信号の相関を基に位置検出を行なってもよい。
【0052】
また、これらの位置検出に先立ち、検出位置の基準となる基準指標24L、24Rの、ウエハ10(ウエハステージ12)に対する位置関係を計測しておく必要がある。これも従来から知られているベースラインチェックと呼ばれる処理であり、本実施例に於ても従来と基本的に同様である。即ち、ウエハステージ12上に固設される基準板13の表面に、位置検出マーク11と同一形状の基準マークを形成しておき、位置検出マーク11の検出に先立ち、ウエハステージ12を駆動してこの基準マークを対物レンズ群9の下に移動し、この基準マークと基準指標24L、24Rとの位置関係を検出する。同時に、このときのウエハステージ12の位置(ウエハステージ12上のミラー14の位置)をレーザ干渉計15で計測する。この干渉計15の出力値と上記検出値(画像処理系29で検出される位置関係)の和を「ベースライン量」として記憶する。そして、位置検出マーク11の計測時の干渉計15の出力値と、前述の光量信号から求めた位置検出マーク11と基準指標24L、24Rとの位置関係との和から「ベースライン量」を差し引いた値が、位置検出マーク11の基準マークに対する位置となるわけである。
【0053】
また、本発明を投影露光装置の位置検出系(アライメント系)に適用する場合には、以上の位置検出値と、投影露光装置内に記憶された露光ショットの配列データとを基に、ウエハ上の各ショット領域を不図示の投影光学系の下に移動し、重ね合わせ露光を行なう。
次に、本実施例の照明光束制限部材6、及び位相差フィルター16について、周期8μmの位置検出マーク11を波長域550〜750nmの照明光束で照射してその位置検出することを前提として説明する。
【0054】
図5(A)、(B)はそれぞれこの条件に適した照明光束制限部材6、位相差フィルター16の構成の一例を示す。各図中のU軸、V軸方向は、それぞれ図4(A)に示した位置検出マーク11のX軸、Y軸方向に等しいが、照明光束制限部材6、及び位相差フィルター16はそれぞれ位置検出マーク11に対する光学的なフーリエ変換面(瞳面)に配置されるので、慣例に従ってU軸、V軸と表す。
【0055】
図5(A)に示すように照明光束制限部材6は、遮光性基板上に、照明光学系(1〜9)の光軸(U軸とV軸の交点)を中心として内半径riが0.16(単位は開口数、即ち半径riの円上の所定点を通過した光束の位置検出マーク11への入射角の正弦、以下も同様)、外半径roが0.20である円環(輪帯)状の透過部Iが形成されたものである。照明光束制限部材6としては、金属遮光板上の特定個所に輪帯開口を開けたもの、又はガラス等の透明基板上に金属等で遮光膜を形成し、特定個所の遮光膜を除去したものを使用する。
【0056】
一方、位相差フィルター16は、照明光束制限部材6上の輪帯透光部Iと共役な位置に、その輪帯透光部Iと結像関係となる輪帯形状の位相差付加部S(図中斜線部)が形成されたものとなっている。図6は、図5(B)のU軸での断面図である。図6に示すように位相差フィルター16は、ガラス等の透明基板16Aの表面に、金属薄膜So及び誘電体膜S1を積層して形成したものであり、金属薄膜Soによって透過光を減光し、かつ誘電体膜S1によってその透過光の位相をシフトさせる。従って、位相差付加部Sとそれ以外の領域とにそれぞれ分布する位置検出マーク11からの結像光束の位相が互いに異なる、即ち両光束の間に所定の位相差が与えられることになる。このような構成は、従来の位相差顕微鏡での位相差フィルター、あるいは最近フォトリソグラフィ工程で使用され始めた「ハーフトーン位相シフトレチクル」と同様であり、それらの各種製法を用いて製造することができる。
【0057】
また、金属薄膜So及び誘電体膜S1により透過光に与えられる位相差(他の部分の透過光との位相差)はπ/2[rad](即ち1/4波長)程度が最適であるので、誘電体膜S1の厚さはその屈折率をnとしてλ/(4(n−1))程度とする。このとき、λは照明光のうち結像に寄与する光束の中心波長(図6の例では650nm)である。但し、位相差付加部Sの位相差量(位相シフト量)に多少の誤差があっても位置検出マーク11の像コントラストは急激には低下しないので、位相差付加部Sの透過光に与えるべき位相差はπ/2±π/4[rad] の範囲であれば、精度良く位置検出可能な、比較的良好なコントラストの像を得ることができる。また、特にこの位相差がπ/2±π/6[rad] 程度に抑えられれば、より良好なコントラストの像を得ることができる。
【0058】
ここで、結像に寄与する光束の波長域が狭い(即ち照明光が実質的に単色に近い)場合には、誘電体膜S1の厚さは(2k+1)λ/(4(n−1))(位相差は(2k+1)π/4[rad])(但しkは自然数)であってもよい。これに対して結像に寄与する光束の波長域が広い場合、中心波長以外の波長に対しては、kが大きいほど位相差が(2k+1)π/4[rad](最適条件)からずれるので、誘電体膜S1の厚さはλ/(4(n−1))とするのが良い。このような条件の位相差フィルター16を使用すると、位置検出マーク11の凹部が明るく凸部が暗い、明瞭なコントラストを持ったマーク像を得ることができる。
【0059】
また、位相差フィルターとして、位相差付加部Sに金属薄膜Soのみを形成し、他の部分に誘電体膜S1を形成する構成としてもしても良い。この場合、0次光の位相は他の次数の回折光に対してπ/2[rad] 進んだものとなるので、位置検出マーク11の像は図6の位相差フィルター16の使用時とは異なり、位置検出マーク11の凹部が暗く凸部が明るい像となる。但し、像のコントラストはいずれの場合にも同等で、かつ高いことは勿論である。
【0060】
さらに、位相差付加部Sは必ずしも減光作用を有している必要はなく、この場合には金属薄膜Soを付加しなくてもよい。また、位相差を付加するために誘電体膜S1を形成する代わりに、透明基板16Aをエッチングにより掘り込んでも良い。
また、位相差付加部Sの大きさは、照明光束制限部材6上の輪帯透過部Iよりも多少大きくなるように、内半径ri’を0.15、外半径ro’を0.21とした。これは、位置検出マーク11からの0次回折光が位相差フィルター16上で若干広がることを考慮して、より確実に0次回折光に前述の位相差を付加するためである。また、結像光学系の開口数NAo(結像系瞳面の半径)は0.30であるものとした。尚、図1では実際の開口数を規定する開口絞り26が、位相差フィルター16と同一位置ではなく、その共役位置に配置されているが、ここでの開口数NAoは、開口絞り26の開口数が対物レンズ群9の開口数よりも小さく絞られている場合には、開口絞り26の開口数(実効的な開口数)を表すことになる。また、照明光束制限部材6の外周の半径は照明光学系の開口数(照明系瞳面の半径)に比べて十分に大きく、輪帯透光部Iの外側に分布する透過光は当然ながら位置検出マーク11には達しない。
【0061】
図5(B)に、図5(A)の照明光束制限部材6上の輪帯透光部Iを透過した照明光の照射により、位置検出マーク11から発生した1つの1次回折光の、位相差フィルター16上での分布(図中の2つの破線円で囲まれた領域D)を示す。尚、位置検出マーク11からの回折光のうち0次回折光は、輪帯透光部Iと共役な(かつそれよりも一回り大きい)位相差付加部S上に分布し、金属薄膜Soによって減光され、かつ誘電体膜S1によって位相差が付加される。もちろん実際には、これ以外の次数の回折光も分布しているが、ここでは位置検出マーク11の像の形成に支配的な0次及び1次の回折光についてのみ考察する。
【0062】
ところで、図5(B)に示すように1次回折光の一部は位相差付加部Sで減光されることになるが、本実施例では図5(A)に示したように輪帯透過部Iの内半径ri、及び外半径roが適切に定められているので、位相差付加部Sによる1次回折光の減光、及び位相差の付加は最小限に抑えられている。以下、この理由を説明する。
【0063】
まず、位相差付加部Sの内周及び外周とU軸との交点のU座標はそれぞれri’、ro’(及び−ri’、−ro’)となる。一方、1次回折光が分布する領域Dの境界(2つの破線円)とU軸との交点のU座標をDpi、Dpo,Dmi、Dmoと定めると、これらの値は、
Dpi=λ/P+ri 、 Dpo=λ/P+ro
Dmi=λ/P−ri 、 Dmo=λ/P−ro
となる。
【0064】
このとき、特にDpiの値がro’よりも小さい、あるいはDmoの値が−ri’よりも小さいと、位相差付加部Sによる1次回折光の減光の度合いが大きくなることは図5(B)から明らかである。また、Dmiの値がri’よりも大きくても、同様に減光の度合いが大きくなる。
図5(A)の例においては、位置検出マーク11の周期Pは8μm、輪帯透過部Iの内半径riが0.16、外半径roが0.20であり、照明光の波長λの範囲は最短波長λ1が550nm、最長波長λ2が750nmであるので、Dpiの最小値はλ=λ1のときに、
Dpi=λ1/P+ri=0.23 (1)
となってro’(=0.21)より大きく、Dmoの最小値はλ=λ1のときに、
Dmo=λ1/P−ro=−0.13 (2)
となって−ri’(=−0.15)より大きい。
【0065】
さらに、Dmiの最大値はλ=λ2のときに、
Dmi=λ2/P−ri=−0.07 (3)
となってri’(=0.15)より小さい。
従って、位相差付加部Sによる1次回折光の減光の度合いは小さくなるが、このための条件を一般化すると、
Dpi=λ1/P+ri≧ro’ (4)
Dmo=λ1/P−ro≧−ri’ (5)
Dmi=λ2/P−ri≦ri’ (6)
となる。
【0066】
また、位相差付加部Sの外半径ro’は輪帯透過部Iの外半径roよりも大きく、位相差付加部Sの内半径ri’は輪帯透過部Iの内半径riよりも小さいので、上記不等式(4)〜(6)は、
Dpi=λ1/P+ri≧ro (7)
Dmo=λ1/P−ro≧−ri (8)
Dmi=λ2/P−ri≦ri (9)
としても良い。特に不等式(7)、(8)は共に、
ro−ri≦λ1/P (10)
と等価であり、不等式(9)は、
ri≧λ2/(2×P) (11)
と等価である。
【0067】
従って、一般に輪帯透過部Iの内半径ri 及び外半径ro が不等式(10)、(11)を満たすとき、位相差付加部Sによる1次回折光の減光の度合いを極めて小さくできることになる。
ところで、結像光学系の開口数NAoの値によっては、位相差付加部Sによる減光のみでなく、開口数NAoによる制限によって1次回折光が遮光されてしまう恐れもある。これを避けるためには、Dpo=λ/P+roの値が前述した開口数NAo以下であることが望ましい。Dpoの最大値は、λ=λ2のときにλ2/P+roとなるので、開口数NAoは、
NAo≧λ2/P+ro (12)
の関係を満たすことが望ましい。
【0068】
以上の説明では、0次回折光に対して片側(+U方向)に発生する1次回折光のみに着目して説明したが、反対方向(−U方向)に発生する1次回折光についても全く同様であり、上記条件(不等式)に変わりはない。また、位置検出マーク11の周期Pや照明光束の波長域(λ1、λ2)も、上記の値に限らず、他の条件であってもこれらの条件(不等式)が成立する。
【0069】
次に、本実施例の位置検出装置の効果について、凹凸変化(段差)が極めて小さい位置検出マークの像のシミュレーション結果を基に説明する。
図7は、本実施例の位置検出装置により得られる、段差5nmの位置検出マーク像のシミュレーション結果を示す。マーク形成条件は、周期が12μmで、凹部幅と凸部幅が等しく、マーク表面の材質は一様で(屈折率は3.55)、その上に屈折率が1.68であるフォトレジストが厚さ1μmで塗布されているものとした。尚、照明光の波長域は550nm(=λ1)から750nm(=λ2)であり、照明光束制限部材6上の輪帯透過部Iの内半径、外半径はそれぞれ前述の条件(不等式)に従い、
ri=0.10≧λ2/(2×P)=0.750/24=0.031
ro=0.14
(ro−ri=0.04≦λ1/P=0.550/12=0.046)
とした。
【0070】
また、位相差フィルター16の構成は図6の通りであり、その位相差付加部Sの内半径、外半径はそれぞれ輪帯透過部Iの内半径ri、外半径roと等しくし、結像光学系の開口数NAoは前述の条件(不等式)に従い、
NAo=0.22≧λ2/P+ro=0.750/12+0.14=0.203とした。
【0071】
さらに、位相差付加部Sの透過率は1%とし、誘電体膜S1は、照明光の中心波長650nmに対してπ/2[rad] の位相差を付加するように、屈折率を1.5、厚さを325nmとした。
図7に示した像強度分布は、位置検出マーク11の1周期分であり、横軸の位置0はマーク(凹部)の中心を示し、±P/4の破線はマークのエッジ(凹部と凸部の境界)を示す。また、縦軸の強度分布は一周期の像強度の最大値が1となるように規格化してある。
【0072】
さらに図8には、図7とほぼ同一の条件で、開口数NAoのみを0.18とし、前述した開口数NAoの条件式(12)を満たさない場合のシミュレーション結果を示す。この図8のマーク像は、図7に示した像に比べてやや暗部(マークのエッジ部分)のシャープさが劣るものの、エッジ位置、即ちマーク位置を検出するのに十分なコントラストを有している。従って、本実施例による前述の条件式(10)〜(12)のうち、開口数NAoの条件式(12)については必ずしもこれを厳密に満たす必要はないことが分かる。
【0073】
同様に図9には、図7の条件とほぼ同一の条件で、輪帯透過部Iの外半径roのみを0.18とし、前述した外半径roの条件式(10)を満たさない場合のシミュレーション結果を示す。この場合、図7、図8に示した像に比べて像コントラストの劣化が顕著であり、従ってこのような像に基づいた位置検出では良好な検出精度を得ることができないことが分かる。
【0074】
さらに図10には、図7の条件とほぼ同一の条件で、輪帯透過部Iの内半径riを0.02、外半径roを0.06とし、前述した外半径roの条件式(10)は満たすものの、内半径riの条件式(11)は満たさない場合のシミュレーション結果を示す。この場合、像のコントラストは高いものの、マークエッジだけでなく凹部の中心にも若干の暗部が生じて像の忠実度が低下し、これが位置検出に悪影響を及ぼす恐れがあるので、位置検出に使用することは難しい。
【0075】
図11には、図7〜図10と異なり、照明光束制限部材6上の輪帯透過部Iが光軸を中心とする円形(通常のσ絞り)であり、位相差フィルター16上の位相差付加部Sも光軸を中心とする円形である場合のシミュレーション結果を示す。尚、このときの透過部I、位相差付加部Sの半径は共に0.66(σ値としては0.3)とした。波長域、開口数、その他の条件は、図7の条件と同一である。この場合の像も、図10と同様に像の忠実度が低下したものとなり、位置検出に使用することは難しい。
【0076】
図12には、比較のために、照明光束制限部材6の輪帯透過部I、及び位相差フィルター16上の位相差付加部Sの形状が、本発明の条件を満たす図7の例と同一であるが、位相差付加部Sの透過率が0%(位相差付加部Sが遮光部)である、即ち暗視野顕微鏡によるマーク像を示す。尚、図12だけは比較が容易なように、縦軸のスケールを図7と同一に設定してある。このような暗視野顕微鏡によっても、低段差の位置検出マークの像に明暗変化(コントラスト)が生じるものの、その強度は本発明の位置検出装置での像強度(図7)の1/5程度であってそのマーク像は暗く、従って撮像素子28から出力される画像信号もS/N比の悪いものとなる。
【0077】
さらに図13には、通常(明視野)の顕微鏡による像を示す。σ絞りの半径は0.176(σ値としては0.8)であり、当然ながら位相差付加部Sは設けない。その他の条件は図7の条件と同一である。図13から明らかなように、低段差(5nm)の位置検出マークに対して明視野顕微鏡を使用すると、像に明暗変化(コントラスト)が殆どなく、位置検出は不可能なことがわかる。
【0078】
以上のように、図9〜図13に示した各像に比べて図7、図8に示した本発明の位置検出装置による像は、コントラストが十分であるばかりでなく、その明暗部がそれぞれマークの凹部、凸部と一致しているため、このようなマーク像を用いて確実な位置検出を行なうことができる。
尚、前述の実施例における照明光束制限部材6及び位相差フィルター16は、段差の小さな位置検出マークの検出に極めて有効であることは前述の通りであるが、段差の大きな(例えば100nm以上)の位置検出マークに対しては、従来の位置検出装置でも十分な検出精度が得られるので、段差の大きなマークを検出する際には、照明光束制限部材6及び位相差フィルター16を、交換機構(可動部材)7及び17を用いて光路外へ待避させるようにしてもよい。また、ガラス基板からなる位相差フィルター16(又は照明光束制限部材6)の待避により、光学系の収差状態が変動する恐れがある場合は、その待避時に、位相差フィルター16(又は照明光束制限部材6)の代わりにそれと同等な光学的厚さを有する透明部材を挿入する必要がある。これは、交換機構7、17にそれぞれその透明部材を保持させておけば、簡単に交換を行なうことができる。
【0079】
また、前述のシミュレーションでは段差5nmの位置検出マークを想定したが、これ程には低段差でないマーク、例えば数十nm程度の段差を持つマークに対しては、図6に示した、減光及び位相差の付加を行う位相差フィルター以外にも、位相差のみを付加して減光を行わない位相差フィルターを用いることができる。図14は、段差40nmの位置検出マークに対してこのような位相差フィルターを用いた場合のシミュレーション結果を示す。なおこのときの、照明光束制限部材6上の輪帯透過部I、及び位相差フィルター16上の位相差付加部Sの形状は、図7の例と同一である。図14から明らかなように、段差がある程度大きい位置検出マークに対しては、位相差付加部Sの透過率が高くとも(さほど減光しなくても)十分にコントラストの高い像が得られる。
【0080】
従って、図6の位相差フィルター16と位相差の付加のみを行なう位相差フィルター(ないしは比較的高い透過率を有する位相差フィルター)とを交換機構17に保持させておき、位置検出マークの段差量に応じて、その2つの位相差フィルターを交換して結像光路中に配置するようにしてもよい。尚、より低段差のマークに対しては、透過率の低い位相差フィルターを選択して装填する。
【0081】
図15には、比較のために、図13と同一条件の明視野顕微鏡を用いて段差40nmの位置検出マークを検出した場合のシミュレーション結果を示す。図15から明らかなように、段差が40nmであっても明視野顕微鏡ではまだ十分なコントラストを得ることができず、図14に示した本発明による像とのコントラストの差は明らかである。
【0082】
ところで、前述の実施例では、照明光束制限部材6が形成する輪帯状の2次光源、即ち輪帯透過部Iの内半径や外半径、その輪帯透過部Iと共役な位相差フィルター16上の位相差付加部Sの内半径や外半径、及び結像光学系の開口数は、照明光束の波長域(λ1〜λ2)により決定されるとしたが、例えば位置検出マーク11と撮像素子28との間にシャープカットフィルター等の波長選択素子を挿入する場合、または撮像素子28の分光感度が照明光束の波長域よりも狭い場合などは、これらを考慮して、すなわち位置検出マーク11の画像信号の形成に実際に寄与する波長域に基づいて、各値を決定することになる。
【0083】
また、前述の実施例で用いた照明光束制限部材6は、照明系瞳面上に分布する光束のうち輪帯透過部I内の光束のみを透過し、それ以外は遮光して輪帯状の2次光源を形成するものであったが、照明系瞳面上の輪帯領域に、例えば光ファイバー、又は凹型円錐プリズムと凸型円錐プリズムとを組み合わせたもの等を用いて照明光束を集光させて2次光源を形成するようにしても良い。この場合、光量損失が大幅に低減されるという利点が得られる。
【0084】
さらに、光源1からの光を入射して、照明系瞳面上に複数の光源像を形成するオプチカルインテグレータ(例えばフライアイレンズ)を設けるようにしてもよい。この場合、位置検出マーク11上での照明光の照度均一性が大幅に向上するという利点が得られる。但し、照明系瞳面上に輪帯状の2次光源を形成するために、例えばフライアイレンズの射出側面、又は入射側面近傍に、輪帯開口を持つ開口絞り(図5(A))を配置することになる。また、光量損失を最小限に抑えるために、光源1とフライアイレンズとの間に、前述の凹型及び凸型円錐プリズム、又は輪帯状の射出端を持つ光ファイバーを配置する、あるいは光源1とフライアイレンズとの間に配置されるインプットレンズの収差を利用することにより、フライアイレンズの入射面上での照明光の強度分布を、光軸を中心とする輪帯領域で他の領域よりも高くすることが好ましい。
【0085】
さらに、輪帯透過部Iの外半径と内半径の少なくとも一方が異なる、換言すれば輪帯透過部Iの半径方向の幅(輪帯比)と位置の少なくとも一方が異なる複数の開口絞りを交換機構7に設け、この複数の開口絞りをそれぞれ交換して照明光路中に配置するように構成しても良い。この場合、位置検出マーク11の微細度(周期P)の変化に応じて、前述の条件式(10)、(11)を満足する、その周期に最適な開口絞りを選択して照明光路に配置することができる。従って、位置検出マーク11の周期に依らず、常に高いコントラストのマーク像を得ることができる。また、直径が異なる複数の円形遮光板、及び円形開口の直径が異なる複数の絞り部材(σ絞り)を交換機構7に設け、円形遮光板によって輪帯透過部Iの内半径を、σ絞りによってその外半径を規定するように構成し、円形遮光板とσ絞りとの組み合わせによって照明系瞳面上での輪帯状の2次光源(照明光束分布、又は光強度分布)の半径方向の幅や位置を変更するようにしてもよい。ここで、複数のσ絞りを交換機構7に設ける代わりに、光源1と交換機構7との間にズームレンズ系を配置する、または円形遮光板に近接して可変開口絞り(虹彩絞り)を配置し、このズームレンズ系、または虹彩絞りによって照明光の光束径(大きさ)、即ち輪帯透過部Iの外半径を任意に変更するように構成してもよい。
【0086】
また、複数の開口絞りを有する交換機構7の代わりに、例えば液晶素子、又はエレクトロクロミック素子で作られた開口絞りを照明系瞳面に配置するようにしても良い。この場合、照明系瞳面上の透過部Iの形状、大きさ、及び位置を任意に変更することが可能となる。さらに、凹状円錐プリズムと凸型円錐プリズムとを組み合わせて、照明系瞳面上に前述の条件式(10)、(11)を満足する輪帯状の照明光束分布(又は光強度分布)を形成するようにしても良い。このとき、この2つのプリズムを光軸方向に相対移動可能に構成して、その輪帯状の照明光束分布(光強度分布)の半径方向の位置を変更するようにしてもよい。また、光源1とこの2つのプリズムとの間にズームレンズ系を配置して、光源側の円錐プリズムに入射する照明光束の径(大きさ)を変化させるようにし、その輪帯状の照明光束分布(光強度分布)の半径方向の幅を変更するようにしても良い。
【0087】
尚、輪帯透過部I(2次光源)の外半径や内半径は、位置検出マーク11の周期の変化に連動して変更する必要はなく、その変化により像コントラストや忠実性が、所望の位置検出精度を得られない程度に劣化したときのみ、その外半径や内半径を変更するようにしても良い。
また、像コントラストや忠実性を多少劣化させても所望の位置検出精度が得られるのであれば、照明系瞳面上の輪帯透過部I以外の領域に分布する照明光束を完全に遮光しなくてもよい。即ち、照明系瞳面上での輪帯領域以外の領域を減光部としてもよく、要は照明系瞳面上の照明光(2次光源)の強度分布を、光軸を中心とする輪帯領域で他の領域よりも高くすればよい。一例としては、照明系瞳面上での光強度分布が輪帯領域で他の領域よりも高くなるように、光源1と照明系瞳面との間に配置される少なくとも1つのレンズ系、例えば図1のリレーレンズ5の収差を調整すればよい。このとき、収差の補正量が異なる複数のリレーレンズをそれぞれ交換して照明光路中に配置して、照明系瞳面上での光強度分布を変更するようにしてもよい。
【0088】
さらに照明光源1として、半導体レーザ等のレーザを用いてもよい。この場合も照明光束としてはある程度の波長域を有することが望ましいので、多波長で発振するレーザ、例えば色素レーザを使用するか、異なる波長で発振する複数個のレーザを使用すると良い。
また、位相差フィルター16はその位相差付加部Sに、結像光束(0次光)を減光する部材(金属薄膜So)が一体に形成されるものとしたが、例えば輪帯状の金属薄膜(減光部)を持つ透明基板を、位相差フィルター16に近接して配置する、あるいは位相差フィルター16とほぼ共役な面(瞳共役面)に配置するようにしてもよい。
【0089】
さらに、照明系瞳面上の輪帯透過部Iの外半径と内半径の少なくとも一方の変化に連動して、結像系瞳面上の位相差付加部Sの外半径と内半径の少なくとも一方を変化させるように構成してもよい。例えば、位相差付加部Sの外半径と内半径の少なくとも一方が異なる、換言すれば位相差付加部Sの半径方向の幅(輪帯比)と位置の少なくとも一方が異なる複数の位相差フィルターを交換機構17に設け、この複数の位相差フィルターをそれぞれ交換して結像光路中に配置するように構成すればよい。この場合、前述の如く位置検出マーク11の周期に応じて輪帯透過部Iの外半径と内半径の少なくとも一方が変化しても、この変化後の輪帯透過部Iに最適な位相差フィルターを選択して結像光路に配置することができる。従って、常に0次回折光のみに位相差を付加して撮像素子28に入射させることができる。尚、結像系瞳面上の位相差付加部Sの幅や位置は、照明系瞳面上の輪帯透過部Iの外半径や内半径の変化に連動して変更する必要はなく、その変化により像コントラストや忠実性が、所望の位置検出精度を得られない程度に劣化したときのみ、その遮光幅や位置を変更するだけでも良い。
【0090】
また、前述の如く外半径及び/又は内半径が異なる位相差付加部を持つ、複数の位相差フィルターの代わりに、例えば光学的な厚さはほぼ同一で、直径が異なる複数の円形透明板を交換機構17に設け、この複数の円形透明板をそれぞれ交換して結像光路中に配置可能に構成するだけでもよい。但し、照明系瞳面上の輪帯透過部Iの外半径を変更するときは、その変更された輪帯透過部と結像関係となる輪帯領域内の結像光束とその外側の結像光束との間に位相差を付加できないが、その変更により像コントラストや忠実性が、所望の位置検出精度を得られない程度に劣化しなければ何ら問題ない。尚、像コントラストや忠実性の劣化が問題になるときは、例えば開口絞り26によってその輪帯領域の外側に分布する結像光束の少なくとも一部を遮光するようにしてもよい。このとき、前述の不等式(12)をほぼ満足する(結像光学系の開口数NAoの変更に伴う像コントラストや忠実性の劣化が実用上問題とならない)範囲内で開口絞り26の開口径を変更することが望ましい。
【0091】
また、前述の輪帯透過部I及び位相差付加部Sは共にその形状が輪帯(円環)状であるとしたが、例えば矩形、正方形、又は多角形(特に正多角形)としても良い。さらに、照明系瞳面上の輪帯透過部Sを部分的に遮光(又は減光)する、即ち輪帯透過部Iを複数の部分透光部(その形状は任意で良く、例えば円弧、円形、又は直線状等として構わない)から構成しても良い。これに対応して結像系瞳面上の位相差付加部Sを、その輪帯透過部Iと同一の形状としても良いし、あるいはその部分透光部と結像関係となる複数の部分領域をほぼ含む輪帯、矩形、又は多角形状等としても良い。尚、照明系瞳面上の輪帯透過部Iを正方形とする場合は、その正方形透過部の内側エッジと光軸との距離を前述の内半径ri、その外側エッジと光軸との距離を前述の外半径roと見做して、前述の条件式(10)、(11)を満足するように各値を決定すれば良い。但し、結像光学系の開口数NAoについては前述の条件式(12)から決定される開口数よりも大きくしておくことが望ましい。
【0092】
尚、以上の実施例では半導体基板上のマークの位置を検出する装置を前提に説明を行ったが、本発明はフォトリソグラフィ工程で使用される各種装置(露光装置等)以外に、他の用途の光学装置に対しても応用することが可能である。例えば、目視検査、観察に使用される一般の光学顕微鏡に対して本発明を適用すれば、上記と同様に低段差パターンに対して高コントラストな像を得ることができる。さらには、生物顕微鏡のように透過照明を使用する顕微鏡に対しても本発明を適用して同様の効果を得ることができる。
【0093】
【発明の効果】
以上のように本発明によれば、平坦化工程等により凹凸変化(段差)が極めて小さくなる位置検出マークであっても、十分にコントラストの高いマーク像を得ることができる。従って、高いコントラストの像強度分布を用いてそのマーク位置の検出を高精度に行なうことができる。
【0094】
また、表面段差、又は光束の位相変化が少ない各種パターンの像を従来よりも高いコントラストで検出可能な光学装置(光学顕微鏡等)を実現できる。
【図面の簡単な説明】
【図1】本発明の実施例による位置検出装置の概略的な全体構成を示す図。
【図2】本発明における光学的なフーリエ変換の関係の説明に供する図。
【図3】(A)は照明視野絞りの構成を示す図、(B)は指標板用照明視野絞りの構成を示す図、(C)は指標板の構成を示す図。
【図4】(A)、(B)は位置検出マークの具体的な構成を示す図、(C)は撮像素子上に形成される像強度分布を示す図。
【図5】(A)は照明光束制限部材の具体的な構成を示す図、(B)は位相差フィルターの具体的な構成を示す図。
【図6】本発明の一実施例による位相差フィルターの断面図。
【図7】本発明の実施例による位置検出装置で得られる低段差の位置検出マークの像のシミュレーション結果を示す図。
【図8】図7のシミュレーション条件のうち結像光学系の開口数のみを変更して得られる低段差の位置検出マークの像のシミュレーション結果を示す図。
【図9】図7のシミュレーション条件のうち照明系瞳面上の輪帯透過部の外半径のみを変更して得られる低段差の位置検出マークの像のシミュレーション結果を示す図。
【図10】図7のシミュレーション条件のうち照明系瞳面上の輪帯透過部の内半径のみを変更して得られる低段差の位置検出マークの像のシミュレーション結果を示す図。
【図11】照明系瞳面上の透過部、及び結像系瞳面上の位相差付加部をそれぞれ円形としたときに得られる低段差の位置検出マークの像のシミュレーション結果を示す図。
【図12】図7のシミュレーション条件のうち結像系瞳面上の位相差付加部の透過率のみを変更して0%とした、所謂暗視野顕微鏡で得られる低段差の位置検出マークの像のシミュレーション結果を示す図。
【図13】明視野顕微鏡で得られる低段差の位置検出マークの像のシミュレーション結果を示す図。
【図14】結像系瞳面上の位相差付加部の透過率が100%であるときに得られる低段差の位置検出マークの像のシミュレーション結果を示す図。
【図15】明視野顕微鏡で得られる比較的高段差の位置検出マークの像のシミュレーション結果を示す図。
【符号の説明】
4 照明視野絞り
6 照明光束制限部材
16 位相差フィルター
22 指標板照明視野絞り
24 指標板
28 撮像素子
29 画像処理系

Claims (29)

  1. 所定の波長域の照明光で基板上の位置検出マークを照射する照明光学系と、該位置検出マークから発生する光を入射して撮像素子上に該位置検出マークの像を形成する結像光学系とを備え、前記撮像素子から出力される画像信号に基づいて前記位置検出マークの位置を検出する装置において、
    前記位置検出マークに対して実質的に光学的フーリエ変換の関係となる前記照明光学系中の第1面での照明光束を、前記照明光学系の光軸を中心とするほぼ輪帯状の第1領域内に制限する光束制限部材と;
    前記位置検出マークに対して実質的に光学的フーリエ変換の関係となる前記結像光学系中の第2面上の、前記第1領域と結像関係となるほぼ輪帯状の第2領域とそれ以外の領域とにそれぞれ分布する結像光束の位相を異ならせる位相差部材とを備えたことを特徴とする位置検出装置。
  2. 前記第2領域内に分布する結像光束を減光する部材を有することを特徴とする請求項1に記載の装置。
  3. 前記位相差部材は、前記結像光学系中の第2面に配置され、前記第2領域とそれ以外の領域とにそれぞれ分布する結像光束の間にほぼ(2m+1)π/2±π/4 [rad](mは整数)の位相差を与える光学フィルターであることを特徴とする請求項1、又は2に記載の装置。
  4. 前記照明光のうち前記画像信号の形成に寄与する光束の波長域中の最短波長をλ1、最長波長をλ2、前記位置検出マークの周期をPとすると、前記輪帯状の第1領域の外半径ro 、及び内半径ri は、
    ri≧λ2/(2×P)
    ro−ri≦λ1/P
    の関係を満たすことを特徴とする請求項1〜3のいずれかに記載の装置。
  5. 前記輪帯状の第1領域の外半径をro 、前記位置検出マークの周期をP、前記照明光のうち前記画像信号の形成に寄与する光束の波長域中の最長波長をλ2とすると、前記結像光学系の開口数NAoは、
    NAo≧ro+λ2/P
    の関係を満たすことを特徴とする請求項1〜4のいずれかに記載の装置。
  6. 前記結像光学系の光路に対して前記位相差部材を挿脱可能に保持する部材を有することを特徴とする請求項1〜5のいずれかに記載の装置。
  7. 前記照明光学系の光路に対して前記光束制限部材を挿脱可能に保持する部材を有することを特徴とする請求項6に記載の装置。
  8. 前記撮像素子上に指標マークの像を形成する像形成手段を有し、前記撮像素子から出力される画像信号に基づいて前記位置検出マークの像と前記指標マークの像との位置ずれを検出することを特徴とする請求項1〜7のいずれかに記載の装置。
  9. 前記像形成手段は、前記指標マークを有する指標板と、該指標板を前記照明光と異なる光ビームで照射する照明系と、前記指標マークから発生した光を入射してその像を前記撮像素子上に形成する結像系とを含むことを特徴とする請求項8に記載の装置。
  10. 前記指標板は、前記結像光学系中の前記基板と実質的に共役な面に配置され、前記結像光学系は、前記位置検出マークの像を前記指標板上に形成するとともに、該位置検出マークの像と前記指標マークの像とを前記撮像素子上に形成することを特徴とする請求項9に記載の装置。
  11. 前記照明系は、前記撮像素子に入射する、前記位置検出マークからの結像光束の光量変化に応じて、前記指標マークを照明する光ビームの強度を調整する部材を有することを特徴とする請求項9、又は10に記載の装置。
  12. 所定の波長域の照明光で基板上の周期性を持つ位置検出マークを照射する照明光学系と、該位置検出マークから発生する光を入射して撮像素子上に該位置検出マークの像を形成する結像光学系とを備え、前記撮像素子から出力される画像信号に基づいて前記位置検出マークの位置を検出する装置において、
    前記位置検出マークに対して実質的に光学的フーリエ変換の関係となる前記照明光学系中の第1面での照明光束を、前記照明光学系の光軸を中心とするほぼ輪帯状の領域内に制限する光束制限部材と;
    前記位置検出マークに対して実質的に光学的フーリエ変換の関係となる前記結像光学系中の第2面上に分布する前記位置検出マークからの0次光とそれ以外の光の位相を異ならせる位相差部材とを備えたことを特徴とする位置検出装置。
  13. 前記位置検出マークからの0次光を減光する部材を有することを特徴とする請求項12に記載の装置。
  14. 前記位相差部材は、前記結像光学系中の第2面に配置され、前記位置検出マークからの0次光とそれ以外の光との間にほぼ(2m+1)π/2±π/4 [rad](mは整数)の位相差を与える光学フィルターであることを特徴とする請求項12、又は13に記載の装置。
  15. 前記照明光のうち前記画像信号の形成に寄与する光束の波長域中の最短波長をλ1、最長波長をλ2、前記位置検出マークの周期をPとすると、前記輪帯状の領域の外半径ro 、及び内半径ri は、
    ri≧λ2/(2×P)
    ro−ri≦λ1/P
    の関係を満たすことを特徴とする請求項12〜14のいずれかに記載の装置。
  16. 前記輪帯状の領域の外半径をro 、前記位置検出マークの周期をP、前記照明光のうち前記画像信号の形成に寄与する光束の波長域中の最長波長をλ2とすると、前記結像光学系の開口数NAoは、
    NAo≧ro+λ2/P
    の関係を満たすことを特徴とする請求項12〜15のいずれかに記載の装置。
  17. 所定の波長域の照明光で基板上の位置検出マークを照射する照明光学系と、該位置検出マークから発生する光を入射して撮像素子上に該位置検出マークの像を形成する結像光学系とを備え、前記撮像素子から出力される画像信号に基づいて前記位置検出マークの位置を検出する装置において、
    前記位置検出マークに対して実質的に光学的フーリエ変換の関係となる前記照明光学系中の第1面上での前記照明光の強度分布を、前記照明光学系の光軸を中心とするほぼ輪帯状の第1領域で他の領域よりも高める光学部材と;
    前記位置検出マークに対して実質的に光学的フーリエ変換の関係となる前記結像光学系中の第2面上の、前記第1領域と結像関係となるほぼ輪帯状の第2領域とそれ以外の領域とにそれぞれ分布する結像光束の位相を異ならせる位相差部材とを備えたことを特徴とする位置検出装置。
  18. 前記第2領域内に分布する結像光束を減光する部材を有することを特徴とする請求項17に記載の装置。
  19. 前記位相差部材は、前記結像光学系中の第2面に配置され、前記第2領域とそれ以外の領域とにそれぞれ分布する結像光束の間にほぼ(2m+1)π/2±π/4 [rad](mは整数)の位相差を与える光学フィルターであることを特徴とする請求項17、又は18に記載の装置。
  20. 前記照明光のうち前記画像信号の形成に寄与する光束の波長域中の最短波長をλ1、最長波長をλ2、前記位置検出マークの周期をPとすると、前記輪帯状の第1領域の外半径ro 、及び内半径ri は、
    ri≧λ2/(2×P)
    ro−ri≦λ1/P
    の関係を満たすことを特徴とする請求項17〜19のいずれかに記載の装置。
  21. 前記輪帯状の第1領域の外半径をro 、前記位置検出マークの周期をP、前記照明光のうち前記画像信号の形成に寄与する光束の波長域中の最長波長をλ2とすると、前記結像光学系の開口数NAoは、
    NAo≧ro+λ2/P
    の関係を満たすことを特徴とする請求項17〜20のいずれかに記載の装置。
  22. 前記光学部材は、前記第1面上の前記他の領域での光強度をほぼ零にするように、前記他の領域をほぼ覆う遮光部を持つ絞り部材を有することを特徴とする請求項17〜21のいずれかに記載の装置。
  23. 前記光学部材は、前記輪帯状の第1領域の外半径と内半径の少なくとも一方を変化させる強度分布変更部材を有することを特徴とする請求項17〜22のいずれかに記載の装置。
  24. 前記強度分布変更部材は、輪帯状の開口の外半径と内半径の少なくとも一方が異なる複数の絞り部材と、該複数の絞り部材の1つを前記照明光学系の光路中に配置するように該複数の絞り部材を保持する部材とを有することを特徴とする請求項23に記載の装置。
  25. 前記位相差部材は、前記第1領域の外半径と内半径との少なくとも一方の変化に応じて、前記輪帯状の第2領域の半径方向の幅と位置との少なくとも一方を変化させることを特徴とする請求項17〜24のいずれかに記載の装置。
  26. 所定の波長域の照明光で基板上の位置検出マークを照射する照明光学系と、該位置検出マークから発生する光を入射して撮像素子上に該位置検出マークの像を形成する結像光学系とを備え、前記撮像素子から出力される画像信号に基づいて前記位置検出マークの位置を検出する装置において、
    前記照明光学系の実質的な瞳面上の、前記照明光学系の光軸を中心とするほぼ輪帯状の第1領域内に分布する照明光束を透過せしめる絞り部材と;
    前記結像光学系の実質的な瞳面上の、前記第1領域と結像関係となるほぼ輪帯状の第2領域とそれ以外の領域とにそれぞれ分布する結像光束の位相を異ならせる位相差部材とを備えたことを特徴とする位置検出装置。
  27. 所定の波長域の照明光で基板上の位置検出マークを照射する照明光学系と、該位置検出マークから発生する光を入射して撮像素子上に該位置検出マークの像を形成する結像光学系とを備え、前記撮像素子から出力される画像信号に基づいて前記位置検出マークの位置を検出する装置において、
    前記照明光学系の実質的な瞳面上に、前記照明光学系の光軸を中心とするほぼ輪帯状の2次光源を形成する2次光源形成部材と;
    前記結像光学系の実質的な瞳面上の、前記2次光源と結像関係となるほぼ輪帯状の領域とそれ以外の領域とにそれぞれ分布する結像光束の位相を異ならせる位相差部材とを備えたことを特徴とする位置検出装置。
  28. 所定の波長域の照明光で基板上の位置検出マークを照射する照明光学系と、該位置検出マークから発生する光を入射して撮像素子上に該位置検出マークの像を形成する結像光学系とを備え、前記撮像素子から出力される画像信号に基づいて前記位置検出マークの位置を検出する装置において、
    前記照明光学系の実質的な瞳面上での光強度分布を、前記照明光学系の光軸を中心とするほぼ輪帯状の領域でその内側の領域よりも高める光学部材と;
    前記結像光学系の実質的な瞳面上の、前記内側領域と結像関係となるほぼ円形の領域とそれ以外の領域とにそれぞれ分布する結像光束の位相を異ならせる位相差部材とを備えたことを特徴とする位置検出装置。
  29. 前記照明光学系は、前記照明光として広帯域光、又は多波長光を射出する光源を含むことを特徴とする請求項1〜28のいずれかに記載の装置。
JP13678395A 1995-02-06 1995-06-02 位置検出装置 Expired - Fee Related JP3632241B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13678395A JP3632241B2 (ja) 1995-06-02 1995-06-02 位置検出装置
US08/639,099 US5706091A (en) 1995-04-28 1996-04-26 Apparatus for detecting a mark pattern on a substrate
KR1019960014150A KR960038503A (ko) 1995-04-28 1996-04-27 위치 검출장치
US08/937,523 US5903356A (en) 1995-04-28 1997-09-25 Position detecting apparatus
US09/224,359 US6421123B1 (en) 1995-02-06 1999-01-04 Position detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13678395A JP3632241B2 (ja) 1995-06-02 1995-06-02 位置検出装置

Publications (2)

Publication Number Publication Date
JPH08327318A JPH08327318A (ja) 1996-12-13
JP3632241B2 true JP3632241B2 (ja) 2005-03-23

Family

ID=15183422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13678395A Expired - Fee Related JP3632241B2 (ja) 1995-02-06 1995-06-02 位置検出装置

Country Status (1)

Country Link
JP (1) JP3632241B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1689499A (en) 1997-12-26 1999-07-19 Nikon Corporation Projection exposure apparatus and exposure method
JP4352614B2 (ja) 1998-02-09 2009-10-28 株式会社ニコン 位置検出装置の調整方法
US6750968B2 (en) 2000-10-03 2004-06-15 Accent Optical Technologies, Inc. Differential numerical aperture methods and device
DE102004023739A1 (de) * 2004-05-12 2005-12-15 Leica Microsystems Semiconductor Gmbh Messgerät und Verfahren zum Betreiben eines Messgeräts zur optischen Inspektion eines Objekts
JP5016202B2 (ja) * 2005-05-23 2012-09-05 株式会社ミツトヨ 照明装置および画像処理装置
US7528941B2 (en) * 2006-06-01 2009-05-05 Kla-Tencor Technolgies Corporation Order selected overlay metrology
JP5607392B2 (ja) 2010-03-12 2014-10-15 株式会社ミツトヨ 光干渉測定装置
JP6926403B2 (ja) * 2016-05-31 2021-08-25 株式会社ニコン 位置検出装置及び位置検出方法、露光装置及び露光方法、並びに、デバイス製造方法
CN114068379B (zh) * 2022-01-17 2022-03-29 广州粤芯半导体技术有限公司 对准标记形成方法及半导体器件的制造方法

Also Published As

Publication number Publication date
JPH08327318A (ja) 1996-12-13

Similar Documents

Publication Publication Date Title
US5706091A (en) Apparatus for detecting a mark pattern on a substrate
JP3927774B2 (ja) 計測方法及びそれを用いた投影露光装置
JP6812536B2 (ja) 検査システムにおける合焦のための方法及びデバイス
US4834540A (en) Projection exposure apparatus
JP3302926B2 (ja) 露光装置の検査方法
KR20040111530A (ko) 레티클 및 광학특성 계측방법
JP2000021742A (ja) 露光方法および露光装置
JP4962006B2 (ja) 計測方法、計測装置、露光方法及び露光装置
US20040219441A1 (en) Photomask for focus monitoring, method of focus monitoring, unit for focus monitoring and manufacturing method for a unit
JP3632241B2 (ja) 位置検出装置
KR20030014336A (ko) 포커스 모니터 방법 및 포커스 모니터용 장치 및 장치의제조 방법
US7676078B2 (en) Inspection method, processor and method for manufacturing a semiconductor device
JP2024095727A (ja) 光源装置、計測装置、露光装置、および計測方法
JP2006090728A (ja) 光検査方法及び光検査装置並びに光検査システム
KR19980063768A (ko) 관찰 장치, 위치 검출 장치 및 그 위치 검출 장치를 구비한 노광 장치
JP3647272B2 (ja) 露光方法及び露光装置
JP3600920B2 (ja) 位置検出装置、それを用いた露光装置、その露光装置を用いた素子製造方法。
JPH09189520A (ja) 位置検出装置
JP3647270B2 (ja) 露光方法及び露光装置
JP2004327769A (ja) 観察装置、位置検出装置、露光装置、および露光方法
JPH11297615A (ja) 投影露光装置および該装置を用いた半導体デバイスの製造方法
JP2004119663A (ja) 位置検出装置、位置検出方法、露光装置、および露光方法
JPH0949784A (ja) 投影光学系の検査方法及びその検査に用いられる 照明光学系
JPH04267536A (ja) 位置検出装置
JPH0547627A (ja) 半導体デバイスの製造方法及びそれを用いた投影露光装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees