[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3627988B2 - Dephosphorization material and dephosphorization method using the same - Google Patents

Dephosphorization material and dephosphorization method using the same Download PDF

Info

Publication number
JP3627988B2
JP3627988B2 JP34110494A JP34110494A JP3627988B2 JP 3627988 B2 JP3627988 B2 JP 3627988B2 JP 34110494 A JP34110494 A JP 34110494A JP 34110494 A JP34110494 A JP 34110494A JP 3627988 B2 JP3627988 B2 JP 3627988B2
Authority
JP
Japan
Prior art keywords
dephosphorization
phosphorus
sewage
silicate hydrate
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34110494A
Other languages
Japanese (ja)
Other versions
JPH08182993A (en
Inventor
一幸 羽田野
清之 中川
Original Assignee
クリオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クリオン株式会社 filed Critical クリオン株式会社
Priority to JP34110494A priority Critical patent/JP3627988B2/en
Publication of JPH08182993A publication Critical patent/JPH08182993A/en
Application granted granted Critical
Publication of JP3627988B2 publication Critical patent/JP3627988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、特定の成分から構成される汚水処理用の脱リン材及びそれを利用する汚水の脱リン方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来から、汚水の脱リン材として、珪酸カルシウム水和物が公知である(特公平2−20315号公報)。この脱リン材は、脱リン材として相当優れた効果を発揮しているが、汚水中のオルトリン酸イオン濃度が低くなるにつれて、珪酸カルシウム水和物とオルトリン酸イオンの反応が遅くなり、その結果、単位時間当りのリンの除去量が低下するという問題があった。本発明の課題は、汚水中のオルトリン酸イオンの濃度が低くてもリンの除去率を向上させ得る汚水処理用脱リン材及び汚水の脱リン方法を提供することにある。
【0003】
【課題を解決するための手段】
本請求項1の発明は、前記の課題を解決するために、少なくとも難水溶性のリン酸カルシウム化合物と珪酸カルシウム水和物とを含有する脱リン材とする。本請求項5の発明は、まずオルトリン酸塩含有汚水を珪酸カルシウム水和物の充填層を通して浄化処理した後、その浄化処理された処理水を、難水溶性のリン酸カルシウム化合物と珪酸カルシウム水和物とを含有する脱リン材が充填させた充填層に通すという手段を採用する。
【0004】
【作用】
請求項1の発明の脱リン材においては、まず、その脱リン材中の珪酸カルシウム水和物のカルシウムが汚水に徐々に溶出する。そして前記カルシウムイオンが汚水中のオルトリン酸イオンと反応して脱リン材表面に難水溶性のリン酸カルシウム化合物として晶析する。しかしながら、この反応系の中にはまだ種結晶の存在しない状態下での反応であるためカルシウムイオンとオルトリン酸イオンとの反応はゆっくり進む。
【0005】
しかしながら、この反応系に難水溶性のリン酸カルシウム化合物とともに脱リン材が存在するので、この難水溶性のリン酸カルシウム化合物が種結晶の働きをし、この結晶の上に前記カルシウムイオンとオルトリン酸イオンとが反応した難水溶性のリン酸カルシウムが本発明の脱リン材の表面で晶析する。従って、汚水中のオルトリン酸塩の濃度が低くてもリンの除去が従来技術より促進される。
【0006】
請求項5の発明においては前段の反応過程で、オルトリン酸塩を含有する汚水が予め珪酸カルシウム水和物が充填されている層に通されるので、そのとき、珪酸カルシウム水和物から溶出したカルシウムイオンがオルトリン酸イオンと反応し、珪酸カルシウム水和物の表面に難水溶性リン酸カルシウム化合物として晶析するが、一部過飽和状態で溶存する。次に汚水が後段の過程で供給されるので、過飽和状態で溶存する難水溶性のリン酸カルシウム化合物と本発明に係る脱リン材からさらに溶出してくるカルシウムイオンと汚水中に残存するオルトリン酸イオンとの反応物が本発明の脱リン材の表面に析出する。要するに、前段の過程で析出が不十分である難水溶性リン酸イオンカルシウム化合物を前段の過程で過剰に溶出したカルシウムイオンと本発明の脱リン材から溶出するカルシウムイオンを利用して予め生成している難水溶性リン酸カルシウム化合物の結晶の上に晶析させる。ちなみに、重炭酸イオンを含む汚水の場合、重炭酸イオンのほとんどは前段の珪酸カルシウム水和物に炭酸カルシウムとして沈着し、後段での晶析反応を妨害しにくくなる。
【0007】
【実施例1及び2、並びに比較実験1及び2】
(脱リン材の製造)
リン酸溶液を消石灰で凝集沈澱処理した後、その処理物が脱水処理された、いわゆる石灰処理汚泥を、この実施例の脱リン材のリン酸質原料として準備した。この石灰処理汚泥は、水分を66重量%含有しているとともに、主成分としてCaHPO・2HO(ブラッシャイト)を、そして副成分として炭酸カルシウムをそれぞれ含んでいた。また、この石灰処理汚泥は乾燥ベースで18.5重量%のリンを含有していた。さらに、この汚泥を100重量部の水に1重量部を溶解させると、6.9のpH値を示し、0.59%のオルトリン酸態リンを溶出した。
【0008】
この実施例の脱リン材の他の構成成分である珪酸カルシウム水和物として、周知の方法で製造した高温高圧蒸気養生された含水率30重量%の軽量気泡コンクリートを破砕することによって準備した。
さらに、早強セメント、フライアッシュ粉末及び前記軽量気泡コンクリート製造過程の途中に副生する軽量気泡コンクリート未養生物(以下、単に未養生物という)をそれぞれ準備した。
【0009】
前記各種の原料、すなわち石灰処理汚泥:珪酸カルシウム水和物:セメント:フライアッシュ:未養生物を10:40:4:4:42の重量割合で混合して、得られた混合物は、表面積を大きくして蒸気養生し易くするために加圧プレス機で外径80mm、内径30mm、及び高さ80mmのラッシヒリング状に成形された。得られた成形物をオートクレーブ中で1.0MPa×180℃の条件下で蒸気養生して、この実施例の脱リン材を製造した。
【0010】
(人工汚水)
HPO及びKHPOをそれぞれ2.812g及び2.197g、水1lに溶解し、得られた溶液をさらに水で希釈してこの実験に使用する人工汚水として調合した。
【0011】
(脱リン試験)
前記脱リン材を一旦微粉砕し、その微粉砕された脱リン材を、1lの汚水中にオルトリン酸態リンを5.12mg含有する人工汚水100mlに対して種々の量添加して、脱リン材混合人工汚水を1分間に30回振盪する振盪器に1時間かけた後に、どれくらいのオルトリン酸態リンが除去されるかを実験した(実施例1)。実験後、得られた懸濁液を▲ろ▼過し、▲ろ▼液のpH及びオルトリン酸態リンの残存量を測定した結果を表1に示す。
【0012】
【表1】

Figure 0003627988
【0013】
比較のために、従来技術の脱リン材として多孔質珪酸カルシウム水和物だけを前記同様に添加した実験を行った(比較例1)。
その結果を表2に示す。本実施例は比較例に比べて同じ添加量でオルトリン酸の除去率が高いことが判明した。
【0014】
【表2】
Figure 0003627988
【0015】
1lの汚水中にオルトリン酸態リンを5.12mg含有する人工汚水100mlに対して前記実施例1で使用した脱リン材500mgを添加して脱リン材混合人工汚水とし、これを1分間に30回振盪する振盪器に種々の時間かけて脱リン実験を行った。実験後得られた懸濁液を▲ろ▼過し、▲ろ▼液のpH及びオルトリン酸態リンの残存量を測定した(実施例2)。その実験結果を表3に示す。
【0016】
【表3】
Figure 0003627988
【0017】
比較のために、従来技術の脱リン材として多孔質珪酸カルシウム水和物だけ前記同様に添加した実験を行った(比較例2)。その結果を表4に示す。本実施例は比較例に比べて短時間でオルトリン酸態リンを除去することが判った。
【0018】
【表4】
Figure 0003627988
【0019】
【実施例3】
(脱リン材の製造)
前記実施例1及び2に使用した石灰処理汚泥85重量部と早強セメント15重量部の割合からなる混合物を撹拌機で十分撹拌した後、前記と同様の装置及び条件で養生した。得られた養生物を粉砕してこの実施例の脱リン材を製造した。この粉末をX線回折で分析したところ、その主成分は水酸アパタイトであり、他に炭酸カルシウムが含まれていることが確認された。そのX線回折チャートを図1に示す。
次に、前記養生物と多孔質珪酸カルシウム水和物とを種々の割合で混合して、この実施例の脱リン材を製造した。
【0020】
(人工汚水及び脱リン実験)
オルトリン酸態リンを水1lに4.68mg含有する人工汚水100mlを調合し、それに前記で製造した脱リン材を300mg添加して、その懸濁物を1時間前記と同様に振盪させた。この実験に用いた実験水準の脱リン材の組成割合及び全リンの含有率を表5に示す。
【0021】
【表5】
Figure 0003627988
【0022】
また、前記懸濁液を▲ろ▼過してその▲ろ▼液のpH、それに含まれているオルトリン酸態リン及びカルシウムイオンの濃度を測定し表6の結果を得た。
【0023】
【表6】
Figure 0003627988
【0024】
脱リン材中の全リンの含有率(表5参照)とリンの除去率(表6)との関係を図2に示す。図2から明白な通り本発明の脱リン材中には所定量のリンが含有されているとリンの除去率は高くなる。好ましくは、全リンとして2〜7重量%含有している本発明の脱リン材の方が脱リン効果が大きい。
【0025】
【実施例4】
直径50mm、長さ300mmのカラムに平均粒径5〜10mmの多孔質珪酸カルシウム水和物を500ml充填した。そしてこのカラムにそれと同じ大きさのカラムを直列に接続するとともに、後者のカラムに次の脱リン材を500ml充填した。すなわち、この脱リン材は、まず、実施例1及び実施例2の製造方法に準じて、構成成分の配合割合を変化させてラッシヒリング形状の脱リン材を4種製造し、それらをジョウクラッシャで粗破砕して平均粒径5〜10mmの脱リン材に篩分けしたものである。なお、前記4種の脱リン材の組成は表7の通りである。またこの脱リン材の粉末をX線回折で分析した結果を図3に示す。全リンの含有率の分析結果を表8に示す。
【0026】
【表7】
Figure 0003627988
【0027】
【表8】
Figure 0003627988
【0028】
上記のように設置された実験装置にオルトリン酸態リン濃度が4.74mg/lの人工汚水を1,000ml/hrの速度で通水して1週間後処理水の特性を測定した。それらの結果を表9に示す。なお、比較のため多孔質珪酸カルシウムのみに同様に通水させた結果も併せて表9に示した(比較例3)。
表9から判るように、本実施例は、比較例に比べてオルトリン酸態リンの除去率が高い。
【0029】
【表9】
Figure 0003627988
【0030】
本発明は、その根本的技術思想を踏襲してその効果を著しく損なわない限度において前記実施の態様の一部を、例えば次のように変更することができる。
(1)リン酸質原料として、リン酸カルシウム、リン酸水素カルシウム、水酸アパタイト等、いずれのオルトリン酸塩を使用することができる。
(2)脱リン材の形状、脱リン材を充填するカラムの容積比、カラムへの通水速度も被処理水である汚水の性状に合わせて効率的に脱リンできるよう種々変更できる。
【0031】
(3)有機物や窒素化合物をオルトリン酸塩とともに含有する被処理水を処理する場合、前段の過程で微生物を担持した珪酸カルシウム水和物を使用することができる。
(4)本発明に係る脱リン材は、他の汚水処理方法、例えば活性汚泥法が採用されている過程において曝気槽に添加して汚水処理に利用することができる。オルトリン酸塩を含有する水が入っている池や湖の脱リンを行う場合、それらに直接本発明の脱リン材を散布することも可能である。
【0032】
【発明の効果】
以上詳述したように、本発明は、比較的低濃度のリンを含有する廃水の処理においてもリンの除去を可能にするという優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の実施例3に使用した脱リン材のX線回折チャートである。
【図2】脱リン材中の全リンの含有率とリンの除去率との関係を示す線図である。
【図3】前記と同じく実施例4に使用した前記同様のチャートである。[0001]
[Industrial application fields]
The present invention relates to a dephosphorization material for sewage treatment composed of specific components and a sewage dephosphorization method using the dephosphorization material.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, calcium silicate hydrate has been known as a dephosphorizing material for wastewater (Japanese Patent Publication No. 2-20315). Although this dephosphorizing material exhibits a considerably excellent effect as a dephosphorizing material, the reaction between calcium silicate hydrate and orthophosphoric acid ions becomes slower as the concentration of orthophosphoric acid ions in the sewage becomes lower. There has been a problem that the amount of phosphorus removed per unit time decreases. An object of the present invention is to provide a dephosphorization material for sewage treatment and a dephosphorization method for sewage that can improve the removal rate of phosphorus even if the concentration of orthophosphate ions in the sewage is low.
[0003]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention of claim 1 is a dephosphorization material containing at least a poorly water-soluble calcium phosphate compound and calcium silicate hydrate. The invention of claim 5 first purifies orthophosphate-containing sewage through a packed bed of calcium silicate hydrate, and then converts the treated water into a slightly water-soluble calcium phosphate compound and calcium silicate hydrate. A means of passing through a packed bed filled with a dephosphorizing material containing is adopted.
[0004]
[Action]
In the dephosphorizing material of the invention of claim 1, first, calcium of the calcium silicate hydrate in the dephosphorizing material is gradually eluted into the sewage. And the said calcium ion reacts with the orthophosphate ion in waste water, and it crystallizes on the surface of a dephosphorization material as a poorly water-soluble calcium phosphate compound. However, the reaction between the calcium ion and the orthophosphate ion proceeds slowly because it is a reaction in the absence of seed crystals in this reaction system.
[0005]
However, since a dephosphorizing material is present together with the poorly water-soluble calcium phosphate compound in this reaction system, the poorly water-soluble calcium phosphate compound functions as a seed crystal, and the calcium ions and orthophosphate ions are formed on the crystals. The reacted poorly water-soluble calcium phosphate crystallizes on the surface of the dephosphorization material of the present invention. Therefore, even if the concentration of orthophosphate in the sewage is low, removal of phosphorus is promoted over the prior art.
[0006]
In the invention of claim 5, since the sewage containing orthophosphate is passed through the layer previously filled with calcium silicate hydrate in the previous reaction process, it was eluted from the calcium silicate hydrate at that time. Calcium ions react with orthophosphate ions and crystallize as a poorly water-soluble calcium phosphate compound on the surface of calcium silicate hydrate, but partially dissolve in a supersaturated state. Next, since sewage is supplied in the subsequent stage, the slightly water-soluble calcium phosphate compound dissolved in the supersaturated state, calcium ions further eluted from the dephosphorization material according to the present invention, and orthophosphate ions remaining in the sewage The reaction product is deposited on the surface of the dephosphorization material of the present invention. In short, the poorly water-soluble phosphate ion calcium compound, which is insufficiently precipitated in the previous step, is preliminarily produced using the calcium ion eluted excessively in the previous step and the calcium ion eluted from the dephosphorization material of the present invention. It is crystallized on the crystal of the poorly water-soluble calcium phosphate compound. By the way, in the case of sewage containing bicarbonate ions, most of the bicarbonate ions are deposited as calcium carbonate in the preceding calcium silicate hydrate, making it difficult to interfere with the crystallization reaction in the latter stage.
[0007]
Examples 1 and 2 and Comparative Experiments 1 and 2
(Manufacture of phosphorus removal material)
After the phosphoric acid solution was coagulated and precipitated with slaked lime, a so-called lime-treated sludge in which the treated product was dehydrated was prepared as a phosphate material for the dephosphorizing material of this example. The lime-treated sludge, with contains moisture 66 wt%, a CaHPO 4 · 2H 2 O (brushite) as the main component, and calcium carbonate contained respectively as an auxiliary component. The lime-treated sludge contained 18.5% by weight phosphorus on a dry basis. Further, when 1 part by weight of this sludge was dissolved in 100 parts by weight of water, it showed a pH value of 6.9 and eluted 0.59% orthophosphoric phosphorus.
[0008]
As calcium silicate hydrate, which is another component of the dephosphorizing material of this example, it was prepared by crushing a lightweight cellular concrete with a water content of 30% by weight, which was cured by a high-temperature and high-pressure steam and was produced by a well-known method.
Furthermore, early-strength cement, fly ash powder, and lightweight aerated concrete uncultivated organisms (hereinafter, simply referred to as uncultivated organisms) by-produced during the lightweight aerated concrete production process were prepared.
[0009]
The above-mentioned various raw materials, that is, lime-treated sludge: calcium silicate hydrate: cement: fly ash: uncultivated organisms are mixed at a weight ratio of 10: 40: 4: 4: 42, and the resulting mixture has a surface area. In order to increase the size and facilitate steam curing, it was molded into a Raschig ring with an outer diameter of 80 mm, an inner diameter of 30 mm, and a height of 80 mm with a pressure press. The obtained molded product was steam-cured in an autoclave under conditions of 1.0 MPa × 180 ° C. to produce a dephosphorization material of this example.
[0010]
(Artificial sewage)
K 2 HPO 4 and KH 2 PO 4 were dissolved in 2.812 g and 2.197 g, respectively, in 1 l of water, and the resulting solution was further diluted with water to prepare artificial sewage for use in this experiment.
[0011]
(Dephosphorization test)
The dephosphorizing material is once finely pulverized, and various amounts of the finely pulverized dephosphorizing material are added to 100 ml of artificial sewage containing 5.12 mg of orthophosphoric acid in 1 liter of sewage. Experiments were carried out to determine how much orthophosphoric phosphorus is removed after 1 hour of shaking the material-mixed artificial sewage on a shaker that is shaken 30 times per minute (Example 1). After the experiment, the obtained suspension was filtered, and the pH of the filtered solution and the residual amount of orthophosphoric phosphorus were measured.
[0012]
[Table 1]
Figure 0003627988
[0013]
For comparison, an experiment was performed in which only porous calcium silicate hydrate was added in the same manner as described above as a dephosphorizing material of the prior art (Comparative Example 1).
The results are shown in Table 2. In this example, it was found that the removal rate of orthophosphoric acid was higher with the same addition amount than in the comparative example.
[0014]
[Table 2]
Figure 0003627988
[0015]
To 100 ml of artificial sewage containing 5.12 mg of orthophosphoric phosphorus in 1 liter of sewage, 500 mg of the dephosphorization material used in Example 1 above was added to obtain a dephosphorization material-mixed artificial sewage, which was 30 per minute. The dephosphorization experiment was performed for various times on a shaking shaker. The suspension obtained after the experiment was filtered, and the pH of the filtered solution and the residual amount of orthophosphoric acid phosphorus were measured (Example 2). The experimental results are shown in Table 3.
[0016]
[Table 3]
Figure 0003627988
[0017]
For comparison, an experiment was performed in which only porous calcium silicate hydrate was added in the same manner as described above as a conventional phosphorus removal material (Comparative Example 2). The results are shown in Table 4. This example was found to remove orthophosphoric phosphorus in a shorter time than the comparative example.
[0018]
[Table 4]
Figure 0003627988
[0019]
[Example 3]
(Manufacture of phosphorus removal material)
The mixture consisting of 85 parts by weight of lime-treated sludge and 15 parts by weight of early strong cement used in Examples 1 and 2 was sufficiently stirred with a stirrer and then cured under the same apparatus and conditions as described above. The obtained aquaculture was pulverized to produce a dephosphorizing material of this example. When this powder was analyzed by X-ray diffraction, it was confirmed that its main component was hydroxyapatite and that calcium carbonate was contained in addition. The X-ray diffraction chart is shown in FIG.
Next, the above-mentioned nourishing organism and porous calcium silicate hydrate were mixed at various ratios to produce a dephosphorization material of this example.
[0020]
(Artificial sewage and dephosphorization experiments)
100 ml of artificial sewage containing 4.68 mg of orthophosphoric phosphorus in 1 liter of water was added, 300 mg of the dephosphorizing material produced above was added thereto, and the suspension was shaken for 1 hour as above. Table 5 shows the composition ratio of the dephosphorization material at the experimental level used in this experiment and the total phosphorus content.
[0021]
[Table 5]
Figure 0003627988
[0022]
Further, the suspension was filtered, and the pH of the filtered solution and the concentrations of orthophosphoric phosphorus and calcium ions contained therein were measured, and the results shown in Table 6 were obtained.
[0023]
[Table 6]
Figure 0003627988
[0024]
FIG. 2 shows the relationship between the total phosphorus content (see Table 5) in the phosphorus removal material and the phosphorus removal rate (Table 6). As is apparent from FIG. 2, the phosphorus removal rate increases when a predetermined amount of phosphorus is contained in the dephosphorization material of the present invention. Preferably, the dephosphorization material of the present invention containing 2 to 7% by weight of total phosphorus has a larger dephosphorization effect.
[0025]
[Example 4]
A column having a diameter of 50 mm and a length of 300 mm was packed with 500 ml of porous calcium silicate hydrate having an average particle diameter of 5 to 10 mm. A column of the same size was connected in series to this column, and the latter column was filled with 500 ml of the next dephosphorizing material. That is, this dephosphorizing material is manufactured in accordance with the manufacturing method of Example 1 and Example 2 by changing the blending ratio of the constituent components to produce four types of Rashig ring-shaped dephosphorizing materials. It is roughly crushed and sieved to a dephosphorization material having an average particle size of 5 to 10 mm. The composition of the four types of phosphorous removal materials is as shown in Table 7. Moreover, the result of having analyzed the powder of this phosphorus removal material by X-ray diffraction is shown in FIG. The analysis results of the total phosphorus content are shown in Table 8.
[0026]
[Table 7]
Figure 0003627988
[0027]
[Table 8]
Figure 0003627988
[0028]
Artificial sewage having an orthophosphoric phosphorus concentration of 4.74 mg / l was passed through the experimental apparatus installed as described above at a rate of 1,000 ml / hr, and the characteristics of the treated water after one week were measured. The results are shown in Table 9. For comparison, the result of passing water through only porous calcium silicate in the same manner is also shown in Table 9 (Comparative Example 3).
As can be seen from Table 9, this example has a higher removal rate of orthophosphoric phosphorus than the comparative example.
[0029]
[Table 9]
Figure 0003627988
[0030]
In the present invention, a part of the embodiment can be changed as follows, for example, as long as the fundamental technical idea is followed and the effect is not significantly impaired.
(1) Any orthophosphate such as calcium phosphate, calcium hydrogen phosphate, or hydroxyapatite can be used as the phosphate material.
(2) The shape of the dephosphorizing material, the volume ratio of the column filled with the dephosphorizing material, and the water flow rate to the column can be variously changed so as to be efficiently dephosphorable according to the property of the sewage that is the water to be treated.
[0031]
(3) When treating the water to be treated containing an organic substance or a nitrogen compound together with an orthophosphate, calcium silicate hydrate carrying a microorganism in the previous stage can be used.
(4) The dephosphorizing material according to the present invention can be added to an aeration tank and used for sewage treatment in the process of adopting another sewage treatment method, for example, activated sludge method. When dephosphorizing ponds and lakes containing water containing orthophosphate, it is possible to spray the dephosphorizing material of the present invention directly on them.
[0032]
【The invention's effect】
As described above in detail, the present invention exhibits an excellent effect of enabling removal of phosphorus even in the treatment of wastewater containing a relatively low concentration of phosphorus.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction chart of a dephosphorization material used in Example 3 of the present invention.
FIG. 2 is a diagram showing the relationship between the total phosphorus content and the phosphorus removal rate in the dephosphorization material.
FIG. 3 is the same chart as used in Example 4 as described above.

Claims (5)

少なくとも難水溶性のリン酸カルシウム化合物と珪酸カルシウム水和物とを含有する脱リン材。A dephosphorization material containing at least a poorly water-soluble calcium phosphate compound and calcium silicate hydrate. 前記リン酸カルシウム化合物が水酸アパタイトである請求項1記載の脱リン材。The dephosphorization material according to claim 1, wherein the calcium phosphate compound is hydroxyapatite. リン酸カルシウム化合物が全リンとして1〜7重量%含有されている請求項1記載の脱リン材。The dephosphorization material according to claim 1, wherein the calcium phosphate compound is contained in an amount of 1 to 7% by weight as total phosphorus. 前記珪酸カルシウム水和物が、トバモライトからなる請求項1記載の脱リン材。The dephosphorization material according to claim 1, wherein the calcium silicate hydrate is made of tobermorite. オルトリン酸塩含有汚水を珪酸カルシウム水和物の充填層を通した後、難水溶性のリン酸カルシウム化合物と珪酸カルシウム水和物とを含有する脱リン材の充填層に通すことを特徴とする脱リン方法。Dephosphorization characterized by passing orthophosphate-containing sewage through a packed bed of calcium silicate hydrate and then passed through a packed bed of a dephosphorizing material containing a poorly water-soluble calcium phosphate compound and calcium silicate hydrate Method.
JP34110494A 1994-12-28 1994-12-28 Dephosphorization material and dephosphorization method using the same Expired - Fee Related JP3627988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34110494A JP3627988B2 (en) 1994-12-28 1994-12-28 Dephosphorization material and dephosphorization method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34110494A JP3627988B2 (en) 1994-12-28 1994-12-28 Dephosphorization material and dephosphorization method using the same

Publications (2)

Publication Number Publication Date
JPH08182993A JPH08182993A (en) 1996-07-16
JP3627988B2 true JP3627988B2 (en) 2005-03-09

Family

ID=18343301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34110494A Expired - Fee Related JP3627988B2 (en) 1994-12-28 1994-12-28 Dephosphorization material and dephosphorization method using the same

Country Status (1)

Country Link
JP (1) JP3627988B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3809087B2 (en) * 2001-01-29 2006-08-16 積水化学工業株式会社 Manufacturing method of dephosphorization material
JP3809088B2 (en) * 2001-10-17 2006-08-16 積水化学工業株式会社 Dephosphorization material
JP4649596B2 (en) * 2006-03-31 2011-03-09 長崎県 Phosphorus removal method and phosphorus removal apparatus
MY174928A (en) * 2013-07-16 2020-05-22 Taiheiyo Cement Corp Method for purifying water quality of fish and shellfish farm

Also Published As

Publication number Publication date
JPH08182993A (en) 1996-07-16

Similar Documents

Publication Publication Date Title
US4917802A (en) Method for treating waste water
JP4032199B2 (en) Nitrate nitrogen denitrification substrate
JPH0220315B2 (en)
US4507207A (en) Process for the chemical removal of phosphorus compounds from waste water
JP3627988B2 (en) Dephosphorization material and dephosphorization method using the same
Kalyuzhnyi et al. Integrated mechanical, biological and physico-chemical treatment of liquid manure streams
Yigit et al. Phosphate recovery potential from wastewater by chemical precipitation at batch conditions
JPH07115979B2 (en) Manufacturing method of sludge fertilizer
JPH0620542B2 (en) Method for manufacturing wastewater treatment agent
JPS63159207A (en) Production of hydroxyapatite
JP2004089931A (en) Dephosphorization and ammonia-removal method, manufacturing method for ammonia fertilizer and manufacturing method for molten solidified matter
KR100418997B1 (en) An absorbant of eliminating posphorus and It's manufacturing method
JPH0665635B2 (en) Molding material
JP2664649B2 (en) Pellet for water treatment and method for producing the same
KR101203691B1 (en) Preparation method of complex media for water treatment and complex media thereby
JP2004249263A (en) Phosphorus recovering material and its production method
JPH0753204A (en) Calcium phosphate-based self-hardenable composition
JP2007054732A (en) Sewage treatment material and its production method
JPH0260709B2 (en)
WO1990005705A1 (en) A process of removing phosphate from water, and a system for use in the process
JP2003290783A (en) Phosphoric acid removing agent and method for manufacturing the same, and method for removing phosphoric acid
JP3559904B2 (en) Environmental purification composition
JP2001300549A (en) Dephosphorizing method
JP2016203107A (en) Phosphorous recovery material, production method thereof, and phosphorous recovery method from wastewater containing phosphorous
JPH01104397A (en) Purifying process of polluted water

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees