[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3627729B2 - Flow measuring device - Google Patents

Flow measuring device Download PDF

Info

Publication number
JP3627729B2
JP3627729B2 JP2002229737A JP2002229737A JP3627729B2 JP 3627729 B2 JP3627729 B2 JP 3627729B2 JP 2002229737 A JP2002229737 A JP 2002229737A JP 2002229737 A JP2002229737 A JP 2002229737A JP 3627729 B2 JP3627729 B2 JP 3627729B2
Authority
JP
Japan
Prior art keywords
flow
measurement
flow rate
flow velocity
pulsation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002229737A
Other languages
Japanese (ja)
Other versions
JP2004069526A5 (en
JP2004069526A (en
Inventor
茂 岩永
康裕 梅景
行夫 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002229737A priority Critical patent/JP3627729B2/en
Publication of JP2004069526A publication Critical patent/JP2004069526A/en
Publication of JP2004069526A5 publication Critical patent/JP2004069526A5/ja
Application granted granted Critical
Publication of JP3627729B2 publication Critical patent/JP3627729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、気体や液体の流量や流速の計測を行う流量計測装置に関するものである。
【0002】
【従来の技術】
従来この種の流量計測装置として、特開平8−210893号公報などに示す計量膜を備えた膜式ガスメータがある。
【0003】
この種の膜式ガスメータは、図11に示すように被測定流体であるガスが流入する入口1、ガスが流出する出口2、計量膜(図示せず)を備えた一対の計量室(図示せず)を収納する計量部3、および計量部3を通過したガス量を表示する表示部4を有している。
【0004】
このような構成において、膜式ガスメータの計量動作は従来衆知のように、一定容積を持つ一対の計量室の中で計量膜をガス圧で往復動作させ、その動作回数で流量を計測するものである。
【0005】
【発明が解決しようとする課題】
しかしながら従来例では、ガスメータより下流側におけるガス管路あるいはガス器具からのガスの漏洩を検出し報知する保安機能に対して、漏洩の検出にはガスメータに設けた計量室の容積程度のガス量を通過させる必要があり、微少な漏洩(例えば毎時3リットル程度の流量)になるほど漏洩検出まで長時間を要する(例えば計量室の容積3リットルでは1時間)など瞬時計測できないという課題がある。また、圧力脈動などによりガスメータを通過する流体に流速脈動を伴う場合には流量の瞬時値計測は困難なものであった。
【0006】
本発明は上記課題を解決するもので、計測流路を流れる流体が圧力脈動などにより流速脈動を生じている場合でも、瞬時流量計測の実現および計測精度を高めることを目的とする。
【0007】
【課題を解決するための手段】
本発明は上記課題を解決するため、被計測流体が流れる計測流路と、前記計測流路内の流速を検出する流速検出手段と、前記流速検出手段を所定の時間間隔で計測動作させる計測制御部と前記計測制御部からの信号を基に脈動流れ時は計測間隔を定常流れ時と同等以下にして流速または流量を算出する流量演算部と前記流速または流量に流量補正係数を加味して流量を算出する流量補正部を有する計測制御手段を備え、前記流量補正部は、脈動のある時と脈動のない時のいずれにおいても同じ流量補正係数を用い、前記平均値に脈動時において前記流速または流量の平均値を求め、前記平均値に前記流量補正係数を加味して流量を算出することを特徴とした流量計測装置である。
【0008】
上記発明によれば、脈動流れ時は補正係数を脈動の無い定常流れ時と同じとして補正誤差を低減し、脈動流れ時においても精度の高い瞬時流量測定ができ、また検査工数などの低減などにより生産性を向上できる。
【0009】
【発明の実施の形態】
請求項1に記載の発明は、被計測流体が流れる計測流路と、前記計測流路内の流速を所定の時間間隔で検出する流速検出手段と、前記流速検出手段を所定の時間間隔で計測動作させる計測制御部と前記計測制御部からの信号を基に脈動流れ時は計測間隔を定常流れ時と同等以下にして流速または流量を算出する流量演算部と前記流速または流量に流量補正係数を加味して流量を算出する流量補正部を有する計測制御手段を備え、前記流量補正部は、脈動のある時と脈動のない時のいずれにおいても同じ流量補正係数を用い、脈動流れ時において前記流速または流量の平均値を求め、前記流量補正係数を加味して流量を算出することを特徴とした流量計測装置である。これによって、脈動流れ時においても定常流れ時と同様に精度の高い瞬時流量測定ができ、また検査工数などの低減などにより生産性を向上できる。
【0010】
請求項2に記載の発明は、前記計測制御手段は、脈動周期を求め、前記脈動周期の整数倍の計測時間を設定し、前記流速検出手段を前記計測時間で動作させる計測時間設定部を備えた流量計測装置である。これによって、流れの脈動周期を加味し、脈動の一周期あるいは数周期での平均流速を計測してより一層精度を高め信頼性を高めた流量計測ができる。
【0011】
請求項3に記載の発明は、前記計測流路は略矩形断面とし、前記計測流路は略矩形断面とし、前記流速検出手段は略矩形断面の短手側である高さ方向の壁面から一定の距離を離して設置した流量計測装置である。これによって、流速の変化が検出し易く計測精度を向上でき、矩形断面のアスペクト比に関わらず高さ方向の壁面からの距離を規定するため、矩形断面の幅寸法を変えて計測範囲の異なる流路を容易に構成でき、部品の共用化により生産性および低コスト化を向上できる。
【0012】
請求項4に記載の発明は、前記一定の距離は、瞬時流速分布の流速平均値を示す計測流路の高さであるである。これによって、脈動流れの瞬時瞬時における計測流路での平均流速値を計測することにより、脈動流れ時の計測精度を向上できる。
【0013】
請求項5に記載の発明は、前記流速検出手段は計測流路の流れ方向中央に配置した流量計測装置である。これによって、計測流路の順方向および逆方向と流れが反転する脈動流れにおいて、順方向流れと逆方向流れの対称性を高めて脈動流れ時の計測精度を向上できる。
【0014】
請求項6に記載の発明は、前記流速検出手段の上流側および下流側の等距離の位置に流れ安定手段を設けた流量計測装置である。これによって、順逆いずれの方向の流れに対しても計測流路に流入する流れをより一層安定化でき、計測精度をより一層向上できる。
【0015】
請求項7に記載の発明は、前記流速検出手段の上流側および下流側の等距離の位置に、計測流路の入口である導入部および出口である導出部を設けた流量計測装置である。これによって、順逆いずれの方向の流れに対しても計測流路に流入あるいは流出する上流側および下流側の流動条件を均等化して順方向流れと逆方向流れの対称性を高め、脈動流れ時の計測精度を向上できる。
【0016】
請求項8に記載の発明は、前記導入部および導出部は断面を同一形状にし、屈曲部を有する流入部を前記計測流路と交差するように前記導入部に接続し、屈曲部を有する流出部を前記計測流路と交差するように前記導出部に接続した流量計測装置である。これによって、屈曲部を配置することで装置のより一層の小型化が実現でき、入口側あるいは出口側の形状をほぼ同じにすることにより順逆いずれの方向の流れに対しても計測流路での流れの対称性を高めて計測精度を向上できる。
【0017】
請求項9に記載の発明は、前記流速検出手段は計測流路の上流側および下流側に超音波送受信器を設け、前記超音波送受信器間で超音波の送受信を行いその送受信信号に基づいて流速を検出する超音波式とした流量計測装置である。これによって、超音波が伝搬する広い領域の計測流路部の平均流速を計測するため計測精度の信頼性を向上でき、さらに計測流路の高さ方向に幅を持った領域を計測するため流れにバラツキを生じても脈動時における瞬時の平均流速を計測でき測定精度を向上できる。
【0018】
請求項10に記載の発明は、前記計測流路の断面の高さは超音波送受信器の送受信面の寸法より大きくした流量計測装置である。これによって、送信した超音波を計測流路内に有効に送り込むことができ、超音波送受信器への駆動入力を低減して低消費入力化できる。また、コンパクトな超音波送受信器として機器の小型化ができる。
【0019】
請求項11に記載の発明は、前記超音波送受信器は、送信した超音波が平面波のままで超音波伝搬路を伝搬する超音波波長、送信面寸法および設置間距離とした流量計測装置である。これによって、送信された超音波が超音波伝搬路内を広がらずに平面波で伝搬させて計測流路の内壁面による反射波の影響を低減し、直接波による超音波伝搬計測の波形検出精度を高めて計測精度を向上でき、また平面波で超音波を伝搬させることで計測流路の高さ方向の局部的な計測を促進して、脈動時の瞬時平均流速の測定精度を高めて脈動流れの流量計測精度を一層向上できる。
【0020】
請求項12に記載の発明は、所定の時間間隔で計測流路の流れを検出する工程と、前記検出した流れに基づいて脈動流れ時は計測間隔を定常流れ時と同等以下にして流量又は流速を算出する工程と、脈動のある時と脈動のない時のいずれにおいても同じ流量補正係数を用い、かつ脈動流れ時には前記流量又は流速の平均値を求め、前記平均値に前記流量補正係数加味して流量を求める工程とを含む流量計測方法である。
【0021】
【実施例】
以下、本発明の実施例について図面を参照して説明する。
【0022】
(実施例1)
図1は本発明の実施例1を示す流量計測装置の断面図である。図において、5は流路壁6に囲まれた計測流路であり、7は計測流路5に設けた流速検出手段である。この流速検出手段7は計測流路5内の特定の箇所の流速を検出するもので、熱フローセンサなどの小型の検出部を計測流路5内に突出させている。
【0023】
8は流速検出手段7の上流側に設けた流れ安定手段であり、流れ方向を整える格子状の方向規制部8aと流速変動を低減するメッシュなどの網状体で形成した変動抑制部8bを備えている。9は計測流路5の上流側に設け被計測流体の計測流路5への入口となる導入部であり、10は計測流路5の下流側に設け被計測流体の計測流路5からの出口となる導出部である。ここでは、計測流路5は流れ(図中矢印で示す)に直交する断面は矩形あるいは略矩形で構成し、矩形断面の長手方向を幅Wとし、短手方向を高さH(図示せず)としている。
【0024】
11は計測制御手段であり、流速検出手段7に接続され流速検出手段7を所定の時間間隔で計測動作をさせる計測制御部12と、計測制御部12からの信号を基に流速を計算し流量を算出する流量演算部13と、計測した流量値を基に補正係数を加味して計測流路5での実際の流量を算出する流量補正部14を備えている。15は流量演算部13に入る計測制御部12からの流速信号を基に計測流路5を流れる流体の脈動が有るか否かを判定する脈動判定部であり、脈動判定部15で脈動が有ると判定した場合は計測制御部12に信号を送り流速検出手段7による計測間隔を脈動の無い定常流れ時に対して同等以下にする。16は計測時間設定部であり、脈動判定部15で脈動が有ると判定した場合に脈動の周期を求めて脈動周期の整数倍あるいはほぼ整数倍の計測時間を設定し、計測制御部12に対して流速検出手段7を所定の時間間隔で計測動作をさせるだけでなく脈動周期に応じた計測時間にわたり計測動作させるように信号を送る。
【0025】
図2、図3は矩形断面の流路における脈動流れの流速分布を測定した実験結果を示したものである。図2は、流路の高さH=17mm(幅W=17mm)、脈動周波数10Hz、流量25L/h、圧力変動幅±180Paの場合であり、1周期(100ms)の間に流速分布形状が時間経過とともに順次変化することが判る。また、図中「脈動平均」で示した流速分布は脈動する流れの1周期の平均であり、「定常流25L/h」で示した流速分布は脈動の無い定常流れ25L/hでの流速分布であり、この「脈動平均」の流速分布と「定常流25L/h」の流速分布はよく一致していることが判る。図3は、流路の高さH=10mm(幅W=30mm)、脈動周波数10Hz、流量25L/h、圧力変動幅±180Paの場合を同様に示したもので、図2の場合と同様に「脈動平均」の流速分布と「定常流25L/h」の流速分布はよく一致していることが判る。なお、この結果は流量を40、100L/hと増加した場合、脈動周波数を変えた場合、圧力変動幅を変えた場合、いずれの場合においても確認できた。従って、計測流路5を流れる流量を求める時に、脈動流れ時の場合は定常流れ時と同じ流量補正係数を使用できることが判った。
【0026】
次に、図2、図3で示した実験結果をもとにした流量計測装置の動作について説明する。計測流路5の流れを計測制御部12により流速検出手段7を所定の時間間隔で計測動作させ、流量演算部13により計測制御部12からの信号を基に流速(あるいは流量)を算出する。もし、このとき脈動があると脈動判定部15で判定した場合は計測制御部12に信号を送り流速検出手段7による計測間隔を脈動の無い定常流れ時に対して同等以下に短くする。同等以下に短くした計測間隔で計測を継続することで脈動する流れに対しても精度を高めた流速(あるいは流量)計測ができる。さらに、このようにして求めた変化する流速(あるいは流量)に対して平均の流速(あるいは流量)を求めるとともに、流量補正部14で断面形状あるいは測定場所に応じた補正係数を加味して計測流路の流量を算出する。ところが、脈動流れ時と定常流れ時のいずれにおいても同じ流量補正係数を使用できるため、補正値の違いによる誤差がなくなり計測精度が向上するとともに、検査工数などの低減などにより生産性が向上できる。なお、定常流れ時に低消費電力化のために流速検出手段7による計測間隔を長くしている場合は、脈動時には流速検出手段7による計測間隔は明らかに短くなるのは言うまでも無い。
【0027】
また、計測制御手段11に脈動流れを検出すると脈動周期の整数倍あるいはほぼ整数倍の計測時間を設定する計測時間設定部16を加えることで、流速検出手段7を所定の時間間隔で計測動作をさせるだけでなく脈動周期の整数倍の時間長さとした計測時間にわたって計測動作させる。これにより平均流量を算出する基になる時系列流速データの区切りを明確にでき、脈動時の平均流速の計測精度を一層向上できる。
【0028】
このように、流速検出手段7の出力に基づいて脈動流れ時は計測間隔を定常流れ時と同等以下にして流量を算出する流量演算部13と脈動時の流量補正係数は定常流れ時と同じとする流量補正部14とを有する計測制御手段11を備えることにより、脈動流れ時は計測時間間隔を短くするとともに流量補正係数を脈動の無い定常流れ時と同じとして補正誤差を低減し、脈動流れ時においても定常流れ時と同様に精度の高い瞬時流量測定ができ、また検査工数などの低減などにより生産性を向上できる。
【0029】
また、計測制御手段11は脈動流れ時での脈動周期のほぼ整数倍の計測時間を設定する計測時間設定部16を備えることにより、流れの脈動周期を加味し、脈動の一周期あるいは数周期での平均流速を計測してより一層精度を高め信頼性を高めた流量計測ができる。
【0030】
(実施例2)
図4は本発明の実施例2を示す流量計測装置の縦断面図である。図4において、図1の実施例と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
【0031】
図4において、流速検出手段7は矩形断面とした計測流路5の高さH方向の一方の壁面から一定の距離Lh離して設置している。従って、流速検出手段7は計測流路5の高さH方向の壁面から一定の距離離れた領域の流速を検出し流量を計測する。
【0032】
図5、図6は矩形断面の流路における脈動流れの流速分布の測定結果を示し、瞬時の流速分布(図中「瞬時流速分布」で示す)とこの流速分布での平均流速(図中「瞬時平均流速」で示す)を時間経過とともに示したものである。図5は、流路の高さH=17mm(幅W=17mm)、脈動周波数10Hz、流量25L/h、圧力変動幅±50Paの場合であり、流速が最少状態から最大状態に変化する流速増加時(計測時刻0msから52msで示す)を示す。図5で示すように、壁面のごく近傍は流速変化が大きいことが判り、さらに流速が最少状態から最大状態に時間経過とともに流速分布形状は順次変化するが瞬時流速分布の流速平均値は高さ方向Hの壁面からほぼ一定の距離に在ることが判る。いま、H=0mm側の壁面(図中左側)からの位置で見ると、同じ計測時刻の「瞬時流速分布」と「瞬時平均流速」との交点はH=3〜4mmに存在する。すなわち、計測流路5の高さH方向壁面から3〜4mmの位置に流速検出手段7を配置することで、脈動流れの瞬時瞬時の変化する流速分布に対して正しく断面の瞬時の平均流速を測定でき、このため脈動周期にわたる平均流速が一層正確に測定できて計測精度を向上できる。なお、流速が最大状態から最少状態に変化する流速減少時(図示せず)においても、瞬時の断面の平均流速となる位置はほぼ同様に計測流路5の高さH方向壁面から3〜4mmにある。また、壁面のごく近傍では測定位置のバラツキによる計測誤差が大きくなるため、壁面から一定の距離離して流速検出手段を設置することで流速の変化を検出し易くでき計測精度を向上できる。
【0033】
図6は、流路の高さH=10mm(幅W=30mm)、脈動周波数10Hz、流量25L/h、圧力変動幅±180Paの場合であり、流速が最大状態から最少状態に変化する流速減少時(計測時刻50msから0msで示す)を示す。図5で示したと同じように図6でも瞬時の流速分布は順次変化しているが、瞬時流速分布の流速平均値は高さ方向Hの壁面から1〜3mmとほぼ一定の距離に在ることが判る。なお、流速が最少状態から最大状態に変化する流速増加時(図示せず)においても、瞬時の断面の平均流速となる位置はほぼ同様に計測流路5の高さH方向壁面から1〜3mmにある。
【0034】
さらに、脈動時の流量を40、100L/hと増加させた場合や、脈動の周波数を変えた場合などを含めると、計測流路5の高さが10mm以上では瞬時流速分布の流速平均値は高さ方向Hの壁面から1〜5mmにある。また、計測流路5の高さが8mm程度でも同様のことが期待できる。
【0035】
このように、流速検出手段7は略矩形断面の短手側である高さ方向の壁面から一定の距離離して設置することにより、流速の変化が検出し易く計測精度を向上でき、矩形断面のアスペクト比に関わらず高さ方向の壁面からの距離を規定するため、矩形断面の幅寸法を変えて計測範囲の異なる流路を容易に構成でき、部品の共用化により生産性および低コスト化を向上できる。
【0036】
また、流速検出手段の高さ方向壁面からの設置距離は、被計測流体の脈動時の瞬時の流速分布での平均値を示す計測流路の高さ領域に設定することで、脈動流れの瞬時瞬時における計測流路での平均流速値を計測することにより、脈動流れ時の計測精度を向上できる。
【0037】
また、流速検出手段は計測流路の高さが10mm以上で計測流路の高さを規定する壁面からの設置距離は1〜5mmの位置に配置することで、矩形断面のアスペクト比に関わらず脈動流れの瞬時瞬時における計測流路での平均流速値を計測して脈動流れ時の計測精度を向上できる。
【0038】
なお、流速検出手段はピンポイントでなく高さH方向に数mm程度の幅を持って計測することで脈動する流れの計測精度を向上できる。
【0039】
(実施例3)
本発明の実施例3を図7〜図9に示す。図7は流量計測装置の横断面図であり、図8は流量計測装置の縦断面図であり、図9は流量計測装置の局所縦断面図である。図7〜図9において、図1の実施例と同一部材、同一機能は同一符号を付し詳細な説明は省略し、異なるところを中心に説明する。
【0040】
図において、流速検出手段7として、互いに対向するように流路壁6に取付けた上流側および下流側の超音波送受信器7a、7bを設けている。上流側の超音波送受信器7aと下流側の超音波送受信器7bは計測流路5の幅W方向を横切るように距離Lを隔てるとともに計測流路5の流体の流動方向に対して角度θ傾けて設置されている。また、超音波送受信器7a、7bの中心軸は計測流路5の高さH方向の壁面から一定の距離Lh離して設置している。なお、この超音波送受信器7a、7bの中心軸は超音波の送受信特性の中心であり、外形上の中心と一致する場合も一致しない場合もある。
【0041】
17、18は超音波送受信器7a、7bを計測流路5に臨ませる上流側および下流側の開口穴である。19は対向する超音波送受信器7aおよび7b間で送信された超音波が直接相手側に伝搬する超音波伝搬路(二点鎖線で領域を示す)である。流れ安定手段8はこの超音波伝搬路19の上流側および下流側に設けている。20は開口穴17、18への流体の流れ込みを低減する流入抑制体である。この流入抑制体20は流路壁6と面一に設けるとともに超音波は通過できる微細な穴を有しているので、計測流路5内の超音波伝搬路19の長さLdは上流側および下流側の流入抑制体20で区切られて寸法が明確になっている。21は計測流路5の導入部9に接続された流入路であり、22は計測流路5の導出部10に接続された流出路である。この流入路21、流出路22は計測流路5に交差させて上流側および下流側の屈曲部23を形成している。なお、流入路21、流出路22は計測流路5の高さH方向に直角に屈曲している図を示したが、屈曲方向は任意の方向が可能なのは言うまでもなく、屈曲角度も任意に設定して小型化することができる。
【0042】
流速検出手段7としての超音波送受信器7a、7bは超音波伝搬路19の中央の位置Pが計測流路5の流れ方向長さMの中央になるように配置している。このため、計測流路5の順方向および逆方向と流れが反転する脈動流れにおいて、順方向流れと逆方向流れの対称性を高めて脈動流れ時の計測精度を向上できる。
【0043】
また上流側および下流側の流れ安定手段8は流速検出手段7としての超音波送受信器7a、7bの中央の位置Pに対して上流側および下流側のほぼ等距離の位置に配置している。このため、順逆いずれの方向の流れに対しても計測流路5に流入する流れをより一層安定化でき、計測精度をより一層向上できる。
【0044】
さらに、流速検出手段7としての超音波送受信器7a、7bの上流側および下流側のほぼ等距離の位置に計測流路5の入口である導入部9および出口である導出部10を設けている。このため、順逆いずれの方向の流れに対しても計測流路5に流入あるいは流出する上流側および下流側の流動条件を均等化して順方向流れと逆方向流れの対称性を高め、脈動流れ時の計測精度を向上できる。
【0045】
また、この導入部9および導出部10は断面を略同一形状とし、計測流路5と交差する流入路21、流出路22によって導入部9および導出部10に屈曲部23を形成しているている。このため、屈曲部23を配置することで装置のより一層の小型化が実現でき、さらに入口側あるいは出口側の形状をほぼ同じにすることにより順逆いずれの方向の流れに対しても計測流路5での流れの対称性を高めて計測精度を向上できる。
【0046】
また、図9のように計測流路5の断面高さHは超音波送受信器7a、7bの送受信面24の外寸Dよりも大きくしている。従って、送信した超音波を計測流路内に有効に送り込むことができ、超音波送受信器への駆動入力を低減して低消費入力化できる。また、計測流路5を形成する流路壁6に設けた開口穴17、18に挿入し防振および気密封止作用のある支持部材25を介して取付けてもコンパクトに構成でき、コンパクトな超音波送受信器として機器の小型化ができる。
【0047】
次に、この超音波流量計測装置の動作について説明する。導入部9から計測流路5に入った流れは、上流側の流れ安定手段8において流れ方向を整える格子状の方向規制部8aと流速変動を低減するメッシュなどの網状体で形成した変動抑制部8bによって流れを安定化させた流速分布を超音波伝搬路19に形成する。圧力脈動などにより流れに脈動が発生し、脈動レベルが増大して流れ方向が反転する順逆反転流れになった場合、逆方向流れ時においても導出部10から計測流路5に入った流れは下流側の流れ安定手段8の作用で安定化した流速分布を超音波伝搬路19に形成する。このように超音波伝搬路19に形成された安定化した流れに対して超音波の送受信による流速の計測を行う。
【0048】
次に超音波による流量計測動作を説明する。計測流路5では、計測制御部12の作用により超音波送受信器7a、7b間で計測流路5の流路断面の幅Wを横切るようにして超音波の送受が行われる。すなわち、上流側の超音波送受信器7aから発せられた超音波が下流側の超音波送受信器7bで受信されるまでの伝搬時間T1を計測する。また一方、下流側の超音波送受信器7bから発せられた超音波が上流側の超音波送受信器7aで受信されるまでの伝搬時間T2を計測する。このようにして測定された伝搬時間T1およびT2を基に、以下の演算式により演算部13で流量が算出される。
【0049】
いま、計測流路5の流動方向の被計測流体の流速Vと超音波伝搬路19とのなす角度をθとし、超音波送受信器7a、7b間の距離をL、被測定流体の音速をCとすると、流速Vは以下の式にて算出される。
【0050】
T1=L/(C+Vcosθ)
T2=L/(C−Vcosθ)
T1の逆数からT2の逆数を引き算する式より音速Cを消去して
V=(L/2cosθ)((1/T1)−(1/T2))
θおよびLは既知なのでT1およびT2の値より流速Vが算出できる。
【0051】
この流速Vと計測流路5の流れ方向に直交する横断面積Sより、流量Qは
Q=KVS
ここで、Kは横断面積Sにおける流速分布を考慮した補正係数であり、流量補正部14において流路形状に適した値で真の断面平均流量を求めることができる。
【0052】
この超音波方式により流速を計測する場合、外寸Dの大きさの送受信面24から送信した超音波は高さ方向に幅を持って伝搬し、超音波が伝搬する広い領域の計測流路部の平均流速を計測することで計測精度の信頼性を向上でき、さらに計測流路の高さ方向に幅を持った領域を計測するため流れにバラツキを生じても脈動時における瞬時の平均流速を計測でき測定精度を向上できる。
【0053】
このように、流速検出手段は計測流路の流れ方向中央に配置したものであり、計測流路の順方向および逆方向と流れが反転する脈動流れにおいて、順方向流れと逆方向流れの対称性を高めて脈動流れ時の計測精度を向上できる。
【0054】
また、流速検出手段の上流側および下流側のほぼ等距離の位置に流れ安定手段を設けたものであり、順逆いずれの方向の流れに対しても計測流路に流入する流れをより一層安定化でき、計測精度をより一層向上できる。
【0055】
また、流速検出手段の上流側および下流側のほぼ等距離の位置に計測流路の入口である導入部および出口である導出部を設けたものであり、順逆いずれの方向の流れに対しても計測流路に流入あるいは流出する上流側および下流側の流動条件を均等化して順方向流れと逆方向流れの対称性を高め、脈動流れ時の計測精度を向上できる。
【0056】
また、導入部および導出部は断面を略同一形状にするとともに、計測流路と交差させた屈曲部を設けたものである。そして、屈曲部を配置することで装置のより一層の小型化が実現でき、入口側あるいは出口側の形状をほぼ同じにすることにより順逆いずれの方向の流れに対しても計測流路での流れの対称性を高めて計測精度を向上できる。
【0057】
また、流速検出手段は計測流路の上流側および下流側に超音波送受信器を設け、前記超音波送受信器間で超音波の送受信を行いその送受信信号に基づいて流速を検出する超音波式としたものである。そして、超音波が伝搬する広い領域の計測流路部の平均流速を計測するため計測精度の信頼性を向上でき、さらに計測流路の高さ方向に幅を持った領域を計測するため流れにバラツキを生じても脈動時における瞬時の平均流速を計測でき測定精度を向上できる。
【0058】
また、計測流路の断面高さは超音波送受信器の送受信面よりも大きくしたものである。そして、送信した超音波を計測流路内に有効に送り込むことができ、超音波送受信器への駆動入力を低減して低消費入力化できる。また、コンパクトな超音波送受信器として機器の小型化ができる。
【0059】
(実施例4)
図10は本発明の実施例4を示す超音波送受信器の超音波伝搬状態図である。
【0060】
図において、超音波送受信器7aまたは7bからの超音波の一般的な伝搬状況を示している。超音波送受信器7aの送信面26から送信された超音波はラストマックス27までの近距離音場では平面波でまっすぐ進み(図中矢印で示す)、ラストマックス27以上の遠距離音場では球面波になって一定の角度で拡がって進行する。このラストマックス27までの距離Xは次式で表される。
【0061】
X=D2/4λ
ここで、Dは超音波送受信器の送信面の直径で、λは超音波の波長を表す。
【0062】
図7で示した実施例において、計測流路5内の超音波伝搬路長さLdをラストマックスまでの距離X以下(Ld≦X)とすることにより、超音波が拡がらず平面波で進行する近距離音場の領域を伝搬時間計測に利用し、計測流路5の内壁面による超音波の反射波の発生を低減して直接波による伝搬時間計測時の超音波伝搬波形の検出精度を高め、流速の計測精度を向上できる。
【0063】
また、平面波で伝搬させることで計測流路5の高さ方向の局部的な計測を促進して、脈動時の瞬時瞬時の平均流速の計測精度を高めて脈動流れの流量計測精度を一層向上できる。
【0064】
また、高さ方向の計測領域を小さくして局所の計測精度を高めるには、送信面の直径Dを小さくする必要があり、送信面の外寸Dを小さくしラストマックスまでの距離Xを確保するには超音波の波長をさらに短くすることが有効であることが判る。
【0065】
このように、超音波送受信器は、送信した超音波が平面波のままで超音波伝搬路を伝搬する超音波波長、送信面寸法および設置間距離としているので、送信された超音波が超音波伝搬路内を広がらずに平面波で伝搬させて計測流路の内壁面による反射波の影響を低減し、直接波による超音波伝搬計測の波形検出精度を高めて計測精度を向上でき、また平面波で超音波を伝搬させることで計測流路の高さ方向の局部的な計測を促進して、脈動時の瞬時平均流速の測定精度を高めて脈動流れの流量計測精度を一層向上できる。
【0066】
【発明の効果】
以上の説明から明らかなように本発明の流量計測装置によれば、計測流路を流れる流体が圧力脈動などにより脈動を生じている場合でも、瞬時流量計測ができ、計測精度を高めることができる。
【図面の簡単な説明】
【図1】本発明の実施例1の流量計測装置の構説明図
【図2】本発明の実施例1の基礎となる脈動流れの流速分布特性図
【図3】本発明の実施例1の基礎となる脈動流れの他の流速分布特性図
【図4】本発明の実施例2の流量計測装置の説明図
【図5】本発明の実施例2の基礎となる脈動流れの流速分布特性図
【図6】本発明の実施例2の基礎となる脈動流れの他の流速分布特性図
【図7】本発明の実施例3の流量計測装置の説明図
【図8】本発明の実施例3の流量計測装置の縦断面図
【図9】本発明の実施例3の流量計測装置の局部断面図
【図10】本発明の実施例4の超音波送受信器の超音波伝搬状態図
【図11】従来の流量計測装置の構成図
【符号の説明】
5 計測流路
7 流速検出手段
7a、7b 超音波送受信器
8 流れ安定手段
9 導入部
10 導出部
11 計測制御手段
13 流量演算部
14 流量補正部
16 計測時間設定部
23 屈曲部
24 送受信面
26 送信面
27 ラストマックス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flow rate measuring device that measures the flow rate and flow rate of gas and liquid.
[0002]
[Prior art]
Conventionally, as this type of flow rate measuring device, there is a membrane gas meter provided with a metering membrane as disclosed in JP-A-8-210893.
[0003]
As shown in FIG. 11, this type of membrane gas meter has a pair of measuring chambers (not shown) including an inlet 1 through which a gas to be measured flows in, an outlet 2 through which gas flows out, and a measuring membrane (not shown). And a display unit 4 for displaying the amount of gas that has passed through the metering unit 3.
[0004]
In such a configuration, the metering operation of the membrane gas meter, as is known in the art, is to reciprocate the metering membrane with a gas pressure in a pair of metering chambers having a constant volume, and measure the flow rate by the number of operations. is there.
[0005]
[Problems to be solved by the invention]
However, in the conventional example, in contrast to a security function for detecting and notifying gas leakage from a gas pipe or gas appliance downstream from the gas meter, the amount of gas approximately equal to the volume of the measuring chamber provided in the gas meter is used for detection of leakage. There is a problem that it is necessary to pass through, and that a minute leak (for example, a flow rate of about 3 liters per hour) requires a long time until the leak is detected (for example, 1 hour when the volume of the measuring chamber is 3 liters). In addition, when the fluid passing through the gas meter is accompanied by flow velocity pulsation due to pressure pulsation or the like, it is difficult to measure the instantaneous value of the flow rate.
[0006]
An object of the present invention is to solve the above-described problems, and it is an object of the present invention to realize instantaneous flow rate measurement and improve measurement accuracy even when a fluid flowing through a measurement flow path causes flow velocity pulsation due to pressure pulsation or the like.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a measurement channel through which a fluid to be measured flows, a flow rate detection unit that detects a flow rate in the measurement channel, and a measurement control that causes the flow rate detection unit to perform measurement operations at predetermined time intervals. Based on the signals from the control unit and the measurement control unit For pulsating flow, set the measurement interval equal to or less than that for steady flow. A flow rate calculation unit that calculates a flow rate or a flow rate, and a measurement control unit that includes a flow rate correction unit that calculates a flow rate by adding a flow rate correction coefficient to the flow rate or the flow rate. The flow rate is calculated by using the same flow rate correction coefficient at any time, obtaining the average value of the flow velocity or flow rate at the time of pulsation to the average value, and adding the flow rate correction coefficient to the average value. This is a flow rate measuring device.
[0008]
According to the above invention, the correction error is reduced at the time of pulsating flow to the same correction coefficient as that at the steady flow without pulsation, the instantaneous flow rate can be measured with high accuracy even during the pulsating flow, and the inspection man-hours can be reduced. Productivity can be improved.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, a measurement channel through which a fluid to be measured flows, a flow rate detection unit that detects a flow rate in the measurement channel at predetermined time intervals, and the flow rate detection unit are measured at predetermined time intervals. Based on the measurement control unit to be operated and the signal from the measurement control unit For pulsating flow, set the measurement interval equal to or less than that for steady flow. A flow rate calculation unit that calculates a flow rate or a flow rate, and a measurement control unit that includes a flow rate correction unit that calculates a flow rate by adding a flow rate correction coefficient to the flow rate or the flow rate. Use the same flow correction factor when there is no flow The flow rate measuring apparatus is characterized in that an average value of the flow velocity or flow rate is obtained at the time, and the flow rate is calculated in consideration of the flow rate correction coefficient. As a result, the instantaneous flow rate can be measured with high accuracy in the pulsating flow as in the steady flow, and the productivity can be improved by reducing the number of inspection steps.
[0010]
According to a second aspect of the present invention, the measurement control unit includes a measurement time setting unit that obtains a pulsation cycle, sets a measurement time that is an integral multiple of the pulsation cycle, and operates the flow velocity detection unit with the measurement time. The flow rate measuring device. Accordingly, the flow rate measurement with higher accuracy and higher reliability can be performed by measuring the average flow velocity in one cycle or several cycles of the pulsation in consideration of the pulsation cycle of the flow.
[0011]
According to a third aspect of the present invention, the measurement flow path has a substantially rectangular cross section, the measurement flow path has a substantially rectangular cross section, and the flow velocity detection means is constant from the wall surface in the height direction on the short side of the substantially rectangular cross section. This is a flow rate measuring device installed at a distance of. This makes it easy to detect changes in the flow velocity and improves measurement accuracy, and regulates the distance from the wall surface in the height direction regardless of the aspect ratio of the rectangular cross section. The road can be easily configured, and productivity and cost reduction can be improved by sharing parts.
[0012]
According to a fourth aspect of the present invention, the fixed distance is a height of a measurement flow path indicating a flow velocity average value of an instantaneous flow velocity distribution. Thereby, the measurement accuracy at the time of the pulsating flow can be improved by measuring the average flow velocity value in the measurement flow path at the instantaneous moment of the pulsating flow.
[0013]
The invention according to claim 5 is the flow rate measuring device in which the flow velocity detecting means is arranged at the center in the flow direction of the measurement channel. As a result, in the pulsating flow in which the flow is reversed between the forward direction and the reverse direction of the measurement flow path, the symmetry of the forward flow and the reverse flow can be improved to improve the measurement accuracy during the pulsating flow.
[0014]
A sixth aspect of the present invention is a flow rate measuring device in which flow stabilizing means are provided at equidistant positions on the upstream side and the downstream side of the flow velocity detecting means. As a result, the flow flowing into the measurement flow path can be further stabilized with respect to the flow in either the forward or reverse direction, and the measurement accuracy can be further improved.
[0015]
The invention according to claim 7 is a flow rate measuring device in which an introduction portion that is an inlet of a measurement flow path and a lead-out portion that is an outlet are provided at equidistant positions on the upstream side and the downstream side of the flow velocity detection means. This equalizes the upstream and downstream flow conditions that flow into or out of the measurement flow path for both forward and reverse flow directions, thereby improving the symmetry between the forward flow and the reverse flow. Measurement accuracy can be improved.
[0016]
According to an eighth aspect of the present invention, the introduction part and the lead-out part have the same cross section, and an inflow part having a bent part is connected to the introduction part so as to intersect the measurement channel, and an outflow having a bent part. It is a flow rate measuring apparatus which connected the part to the derivation part so that a part may intersect the measurement channel. As a result, it is possible to achieve further downsizing of the device by arranging the bent portion, and by making the shape of the inlet side or the outlet side substantially the same, the flow in the forward and reverse directions can be reduced. Measurement accuracy can be improved by increasing flow symmetry.
[0017]
According to a ninth aspect of the present invention, the flow velocity detecting means is provided with ultrasonic transmitters / receivers on the upstream side and the downstream side of the measurement channel, and transmits / receives ultrasonic waves between the ultrasonic transmitter / receivers, based on the transmission / reception signals. It is an ultrasonic flow rate measuring device that detects the flow velocity. This improves the accuracy of measurement accuracy because it measures the average flow velocity of the measurement channel in a wide area where the ultrasonic wave propagates, and further flows to measure a region with a width in the height direction of the measurement channel. Even if there is a variation, the instantaneous average flow velocity during pulsation can be measured and the measurement accuracy can be improved.
[0018]
The invention according to claim 10 is the flow rate measuring device in which the height of the cross section of the measurement channel is larger than the dimension of the transmission / reception surface of the ultrasonic transceiver. As a result, the transmitted ultrasonic waves can be effectively sent into the measurement flow path, and the drive input to the ultrasonic transmitter / receiver can be reduced to reduce the consumption consumption. In addition, the device can be miniaturized as a compact ultrasonic transceiver.
[0019]
The invention according to claim 11 is a flow rate measuring device in which the ultrasonic transmitter / receiver has an ultrasonic wavelength, a transmission surface dimension, and an inter-installation distance that are transmitted through an ultrasonic wave propagation path while the transmitted ultrasonic wave is a plane wave. . As a result, the transmitted ultrasonic wave propagates as a plane wave without spreading in the ultrasonic wave propagation path, reducing the influence of the reflected wave from the inner wall surface of the measurement flow path, and improving the waveform detection accuracy of the ultrasonic wave propagation measurement using the direct wave. The measurement accuracy can be improved by increasing the frequency, and the ultrasonic wave is propagated by plane waves to promote local measurement in the height direction of the measurement flow path, and the measurement accuracy of the instantaneous average flow velocity at the time of pulsation is enhanced to improve the pulsation flow. The flow measurement accuracy can be further improved.
[0020]
The invention according to claim 12 At predetermined time intervals Based on the step of detecting the flow of the measurement channel and the detected flow For pulsating flow, set the measurement interval equal to or less than that for steady flow. Uses the same flow rate correction coefficient both in the process of calculating the flow rate or flow velocity and when there is no pulsation and when there is no pulsation. flow A flow rate measurement method including a step of sometimes obtaining an average value of the flow rate or flow velocity and obtaining a flow rate by adding the flow rate correction coefficient to the average value.
[0021]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0022]
(Example 1)
FIG. 1 is a cross-sectional view of a flow rate measuring apparatus showing Embodiment 1 of the present invention. In the figure, 5 is a measurement flow path surrounded by the flow path wall 6, and 7 is a flow velocity detection means provided in the measurement flow path 5. The flow velocity detection means 7 detects a flow velocity at a specific location in the measurement flow path 5, and a small detection unit such as a thermal flow sensor is projected into the measurement flow path 5.
[0023]
Reference numeral 8 denotes a flow stabilizing means provided on the upstream side of the flow velocity detecting means 7, and includes a lattice-shaped direction regulating portion 8a for adjusting the flow direction and a fluctuation suppressing portion 8b formed of a mesh body such as a mesh for reducing flow velocity fluctuations. Yes. Reference numeral 9 is an introduction part provided on the upstream side of the measurement flow path 5 and serves as an inlet to the measurement flow path 5 of the fluid to be measured. Reference numeral 10 is provided on the downstream side of the measurement flow path 5 from the measurement flow path 5 of the measurement fluid. It is the derivation part used as an exit. Here, the cross section orthogonal to the flow (indicated by an arrow in the figure) of the measurement channel 5 is a rectangle or a substantially rectangle, the longitudinal direction of the rectangular cross section is the width W, and the short direction is the height H (not shown). ).
[0024]
Reference numeral 11 denotes a measurement control unit, which is connected to the flow rate detection unit 7 and causes the flow rate detection unit 7 to perform a measurement operation at a predetermined time interval. The flow rate is calculated based on a signal from the measurement control unit 12 and the flow rate is calculated. And a flow rate correction unit 14 that calculates an actual flow rate in the measurement flow path 5 by adding a correction coefficient based on the measured flow rate value. Reference numeral 15 denotes a pulsation determination unit that determines whether or not there is a pulsation of the fluid flowing through the measurement flow path 5 based on a flow velocity signal from the measurement control unit 12 entering the flow rate calculation unit 13, and the pulsation determination unit 15 has a pulsation. Is determined, the signal is sent to the measurement control unit 12 so that the measurement interval by the flow velocity detecting means 7 is equal to or less than that in the steady flow without pulsation. Reference numeral 16 denotes a measurement time setting unit. When the pulsation determination unit 15 determines that there is pulsation, the pulsation cycle is obtained, and a measurement time that is an integer multiple or almost an integral multiple of the pulsation cycle is set. Thus, the flow rate detecting means 7 is not only operated at a predetermined time interval, but also sends a signal so as to perform the measurement operation over a measurement time corresponding to the pulsation cycle.
[0025]
2 and 3 show experimental results obtained by measuring the flow velocity distribution of the pulsating flow in the channel having a rectangular cross section. FIG. 2 shows the case where the flow path height H = 17 mm (width W = 17 mm), the pulsation frequency 10 Hz, the flow rate 25 L / h, and the pressure fluctuation width ± 180 Pa. The flow velocity distribution shape is 1 cycle (100 ms). It turns out that it changes sequentially with the passage of time. Further, the flow velocity distribution indicated by “average pulsation” in the figure is an average of one cycle of the pulsating flow, and the flow velocity distribution indicated by “steady flow 25 L / h” is the flow velocity distribution at the steady flow 25 L / h without pulsation. It can be seen that the flow velocity distribution of the “pulsation average” and the flow velocity distribution of the “steady flow 25 L / h” are in good agreement. FIG. 3 shows the case where the flow path height H = 10 mm (width W = 30 mm), the pulsation frequency 10 Hz, the flow rate 25 L / h, and the pressure fluctuation width ± 180 Pa in the same manner as in FIG. It can be seen that the flow rate distribution of “pulsation average” and the flow rate distribution of “steady flow 25 L / h” are in good agreement. This result could be confirmed in any case where the flow rate was increased to 40, 100 L / h, the pulsation frequency was changed, or the pressure fluctuation range was changed. Accordingly, it was found that when the flow rate flowing through the measurement flow path 5 is obtained, the same flow rate correction coefficient can be used in the case of the pulsating flow as in the steady flow.
[0026]
Next, the operation of the flow rate measuring device based on the experimental results shown in FIGS. 2 and 3 will be described. The flow rate detecting means 7 is operated to measure the flow of the measurement channel 5 at a predetermined time interval by the measurement control unit 12, and the flow rate (or flow rate) is calculated by the flow rate calculation unit 13 based on the signal from the measurement control unit 12. If the pulsation determining unit 15 determines that there is pulsation at this time, a signal is sent to the measurement control unit 12 to shorten the measurement interval by the flow velocity detection means 7 to the same or less than that in the steady flow without pulsation. By continuing the measurement at a measurement interval shortened to the same or less, it is possible to measure the flow velocity (or flow rate) with high accuracy even for the pulsating flow. Further, an average flow velocity (or flow rate) is obtained with respect to the changing flow velocity (or flow rate) obtained in this manner, and the flow rate correction unit 14 adds a correction coefficient corresponding to the cross-sectional shape or measurement location to measure the flow rate. Calculate the flow rate of the road. However, since the same flow rate correction coefficient can be used for both the pulsating flow and the steady flow, there is no error due to the difference in the correction value, the measurement accuracy is improved, and the productivity can be improved by reducing the inspection man-hours. Needless to say, when the measurement interval by the flow velocity detection means 7 is increased in order to reduce power consumption during steady flow, the measurement interval by the flow velocity detection means 7 is obviously shortened during pulsation.
[0027]
Further, when the pulsating flow is detected in the measurement control means 11, a measurement time setting unit 16 for setting a measurement time that is an integral multiple or almost an integral multiple of the pulsation cycle is added, so that the flow velocity detection means 7 performs a measurement operation at a predetermined time interval. In addition, the measurement operation is performed over a measurement time that is an integral multiple of the pulsation period. This makes it possible to clearly define the time-series flow velocity data used as the basis for calculating the average flow rate, and further improve the measurement accuracy of the average flow velocity during pulsation.
[0028]
Thus, based on the output of the flow velocity detecting means 7, the flow rate calculation unit 13 for calculating the flow rate with a measurement interval equal to or less than that during steady flow and the flow rate correction coefficient during pulsation are the same as during steady flow. By providing the measurement control means 11 having the flow rate correction unit 14 for reducing the measurement error, the measurement time interval is shortened during pulsating flow, the correction error is reduced by setting the flow rate correction coefficient to be the same as during steady flow without pulsation, As with steady flow, the instantaneous flow rate can be measured with high accuracy and productivity can be improved by reducing the number of inspection steps.
[0029]
In addition, the measurement control means 11 includes a measurement time setting unit 16 that sets a measurement time that is substantially an integral multiple of the pulsation cycle at the time of the pulsation flow. The flow rate can be measured with higher accuracy and reliability by measuring the average flow velocity.
[0030]
(Example 2)
FIG. 4 is a longitudinal sectional view of a flow rate measuring apparatus showing Embodiment 2 of the present invention. 4, the same members and functions as those in the embodiment of FIG. 1 are denoted by the same reference numerals, detailed description thereof is omitted, and different points will be mainly described.
[0031]
In FIG. 4, the flow velocity detection means 7 is installed at a certain distance Lh from one wall surface in the height H direction of the measurement channel 5 having a rectangular cross section. Accordingly, the flow velocity detection means 7 detects the flow velocity in a region away from the wall surface in the height H direction of the measurement channel 5 by a certain distance, and measures the flow rate.
[0032]
5 and 6 show the measurement results of the flow velocity distribution of the pulsating flow in the rectangular cross-section flow path. The instantaneous flow velocity distribution (shown as “instantaneous flow velocity distribution” in the figure) and the average flow velocity in this flow velocity distribution (“ It is shown as time passes). FIG. 5 shows the case where the flow path height is H = 17 mm (width W = 17 mm), the pulsation frequency is 10 Hz, the flow rate is 25 L / h, and the pressure fluctuation range is ± 50 Pa. The flow rate increases from the minimum state to the maximum state. Indicates the time (measured from 0 ms to 52 ms). As shown in FIG. 5, it can be seen that there is a large change in flow velocity in the immediate vicinity of the wall surface, and further, the flow velocity distribution shape changes gradually with time from the minimum state to the maximum state, but the average velocity value of the instantaneous flow velocity distribution is high. It can be seen that there is a substantially constant distance from the wall in direction H. Now, looking at the position from the wall surface on the H = 0 mm side (left side in the figure), the intersection of the “instantaneous flow velocity distribution” and the “instantaneous average flow velocity” at the same measurement time exists at H = 3 to 4 mm. That is, by arranging the flow velocity detection means 7 at a position 3 to 4 mm from the wall surface in the height H direction of the measurement flow path 5, the instantaneous average flow velocity of the cross section is correctly obtained with respect to the flow velocity distribution that changes instantaneously in the pulsating flow. Therefore, the average flow velocity over the pulsation cycle can be measured more accurately, and the measurement accuracy can be improved. Even when the flow velocity is reduced (not shown) when the flow velocity changes from the maximum state to the minimum state, the position where the instantaneous cross-sectional average flow velocity is almost the same is 3 to 4 mm from the wall surface in the height H direction of the measurement channel 5. It is in. In addition, a measurement error due to variation in the measurement position becomes very close to the wall surface. Therefore, by installing the flow velocity detection means at a certain distance from the wall surface, the change in the flow velocity can be easily detected and the measurement accuracy can be improved.
[0033]
FIG. 6 shows a case where the flow path height H is 10 mm (width W = 30 mm), the pulsation frequency is 10 Hz, the flow rate is 25 L / h, and the pressure fluctuation range is ± 180 Pa. The flow rate decreases from the maximum state to the minimum state. Indicates time (measured from 50 ms to 0 ms). As in FIG. 5, the instantaneous flow velocity distribution in FIG. 6 changes sequentially, but the average velocity value of the instantaneous flow velocity distribution is approximately 1 to 3 mm from the wall in the height direction H. I understand. Even when the flow velocity is increased (not shown) when the flow velocity changes from the minimum state to the maximum state, the position at which the average flow velocity of the instantaneous cross section becomes approximately 1 to 3 mm from the wall surface in the height H direction of the measurement channel 5. It is in.
[0034]
Furthermore, when the flow rate during pulsation is increased to 40, 100 L / h, or when the pulsation frequency is changed, the average velocity value of the instantaneous flow velocity distribution is obtained when the height of the measurement channel 5 is 10 mm or more. 1 to 5 mm from the wall surface in the height direction H. The same can be expected even when the height of the measurement channel 5 is about 8 mm.
[0035]
Thus, by installing the flow velocity detection means 7 at a certain distance from the wall surface in the height direction, which is the short side of the substantially rectangular cross section, it is easy to detect changes in the flow velocity, and the measurement accuracy can be improved. Regardless of the aspect ratio, the distance from the wall surface in the height direction is specified, so the flow path with different measurement ranges can be easily configured by changing the width dimension of the rectangular cross section, and productivity and cost reduction are achieved by sharing parts. It can be improved.
[0036]
In addition, the installation distance from the wall in the height direction of the flow velocity detection means is set to the height region of the measurement flow path indicating the average value in the instantaneous flow velocity distribution at the time of pulsation of the fluid to be measured, so that the instantaneous pulsating flow By measuring the average flow velocity value in the measurement flow channel at the moment, the measurement accuracy during pulsating flow can be improved.
[0037]
In addition, the flow velocity detecting means is arranged at a position where the height of the measurement channel is 10 mm or more and the installation distance from the wall defining the height of the measurement channel is 1 to 5 mm, regardless of the aspect ratio of the rectangular cross section. The measurement accuracy at the time of pulsating flow can be improved by measuring the average flow velocity value in the measurement channel at the momentary moment of pulsating flow.
[0038]
Note that the flow rate detection means can improve the measurement accuracy of the pulsating flow by measuring with a width of about several millimeters in the height H direction instead of the pinpoint.
[0039]
(Example 3)
A third embodiment of the present invention is shown in FIGS. FIG. 7 is a transverse sectional view of the flow rate measuring device, FIG. 8 is a longitudinal sectional view of the flow rate measuring device, and FIG. 9 is a local longitudinal sectional view of the flow rate measuring device. 7 to 9, the same members and functions as those in the embodiment of FIG. 1 are denoted by the same reference numerals, detailed description thereof is omitted, and different points will be mainly described.
[0040]
In the figure, as the flow velocity detection means 7, upstream and downstream ultrasonic transceivers 7a and 7b attached to the flow path wall 6 are provided so as to face each other. The upstream ultrasonic transmitter / receiver 7 a and the downstream ultrasonic transmitter / receiver 7 b are separated from each other by a distance L so as to cross the width W direction of the measurement flow path 5 and are inclined by an angle θ with respect to the fluid flow direction of the measurement flow path 5. Installed. Further, the central axes of the ultrasonic transmitters / receivers 7 a and 7 b are set apart from the wall surface in the height H direction of the measurement channel 5 by a certain distance Lh. The central axes of the ultrasonic transmitters / receivers 7a and 7b are the centers of ultrasonic transmission / reception characteristics, and may or may not coincide with the center on the outer shape.
[0041]
Reference numerals 17 and 18 denote upstream and downstream opening holes that allow the ultrasonic transmitters / receivers 7a and 7b to face the measurement channel 5. Reference numeral 19 denotes an ultrasonic wave propagation path (a region indicated by a two-dot chain line) in which an ultrasonic wave transmitted between the opposing ultrasonic transceivers 7a and 7b directly propagates to the other side. The flow stabilizing means 8 is provided on the upstream side and the downstream side of the ultrasonic wave propagation path 19. Reference numeral 20 denotes an inflow suppressing body that reduces the flow of fluid into the opening holes 17 and 18. Since this inflow suppressing body 20 is provided flush with the flow path wall 6 and has fine holes through which ultrasonic waves can pass, the length Ld of the ultrasonic wave propagation path 19 in the measurement flow path 5 is the upstream side and The dimensions are clearly defined by being separated by the inflow suppression body 20 on the downstream side. 21 is an inflow path connected to the introduction part 9 of the measurement flow path 5, and 22 is an outflow path connected to the lead-out part 10 of the measurement flow path 5. The inflow path 21 and the outflow path 22 intersect the measurement flow path 5 to form upstream and downstream bent portions 23. Although the inflow path 21 and the outflow path 22 are bent at right angles to the height H direction of the measurement flow path 5, it is needless to say that the bending direction can be any direction, and the bending angle can be arbitrarily set. And can be miniaturized.
[0042]
The ultrasonic transmitters / receivers 7 a and 7 b as the flow velocity detecting means 7 are arranged so that the central position P of the ultrasonic propagation path 19 is the center of the length M in the flow direction of the measurement flow path 5. For this reason, in the pulsating flow in which the flow is reversed with respect to the forward direction and the reverse direction of the measurement flow path 5, the symmetry of the forward flow and the reverse flow can be enhanced to improve the measurement accuracy during the pulsating flow.
[0043]
Further, the upstream and downstream flow stabilizing means 8 are arranged at substantially equal distances on the upstream and downstream sides with respect to the central position P of the ultrasonic transmitters / receivers 7 a and 7 b as the flow velocity detecting means 7. For this reason, the flow which flows into the measurement flow path 5 can be further stabilized with respect to the flow in any of the forward and reverse directions, and the measurement accuracy can be further improved.
[0044]
Further, an introduction part 9 that is an inlet of the measurement flow path 5 and a lead-out part 10 that is an outlet are provided at substantially equidistant positions on the upstream and downstream sides of the ultrasonic transmitters and receivers 7a and 7b as the flow velocity detecting means 7. . For this reason, the flow conditions on the upstream side and the downstream side flowing into or out of the measurement flow path 5 are equalized with respect to the flow in either the forward or reverse direction, thereby improving the symmetry between the forward flow and the reverse flow. The measurement accuracy can be improved.
[0045]
Further, the introduction part 9 and the lead-out part 10 have substantially the same cross section, and a bent part 23 is formed in the introduction part 9 and the lead-out part 10 by the inflow path 21 and the outflow path 22 intersecting the measurement flow path 5. Yes. For this reason, further miniaturization of the apparatus can be realized by arranging the bent portion 23, and the measurement flow path can be applied to the flow in either the forward or reverse direction by making the shape of the inlet side or the outlet side substantially the same. The measurement accuracy can be improved by increasing the symmetry of the flow at 5.
[0046]
In addition, as shown in FIG. 9, the cross-sectional height H of the measurement channel 5 is larger than the outer dimension D of the transmission / reception surface 24 of the ultrasonic transmitters / receivers 7a, 7b. Therefore, the transmitted ultrasonic waves can be effectively sent into the measurement flow path, and the drive input to the ultrasonic transmitter / receiver can be reduced to reduce the consumption consumption. Further, even if it is inserted into the opening holes 17 and 18 provided in the flow path wall 6 forming the measurement flow path 5 and attached via a support member 25 having a vibration-proofing and hermetic sealing action, a compact configuration can be realized. The device can be miniaturized as a sound wave transmitter / receiver.
[0047]
Next, the operation of this ultrasonic flow measuring device will be described. The flow that has entered the measurement channel 5 from the introduction unit 9 is a fluctuation control unit that is formed of a grid-like direction regulating unit 8a that adjusts the flow direction in the upstream flow stabilizing means 8 and a mesh body such as a mesh that reduces flow rate fluctuations. A flow velocity distribution in which the flow is stabilized by 8 b is formed in the ultrasonic wave propagation path 19. When pulsation occurs in the flow due to pressure pulsation, and the pulsation level increases and the flow direction is reversed, the flow entering the measurement channel 5 from the derivation unit 10 is downstream even in reverse flow. A flow velocity distribution stabilized by the action of the flow stabilizing means 8 on the side is formed in the ultrasonic wave propagation path 19. The flow velocity is measured by transmitting and receiving ultrasonic waves with respect to the stabilized flow formed in the ultrasonic wave propagation path 19 in this way.
[0048]
Next, the flow measurement operation using ultrasonic waves will be described. In the measurement flow path 5, the ultrasonic wave is transmitted and received between the ultrasonic transmitters / receivers 7 a and 7 b across the width W of the cross section of the measurement flow path 5 by the action of the measurement control unit 12. That is, the propagation time T1 until the ultrasonic wave emitted from the upstream ultrasonic transmitter / receiver 7a is received by the downstream ultrasonic transmitter / receiver 7b is measured. On the other hand, the propagation time T2 until the ultrasonic wave emitted from the ultrasonic transmitter / receiver 7b on the downstream side is received by the ultrasonic transmitter / receiver 7a on the upstream side is measured. Based on the propagation times T1 and T2 thus measured, the flow rate is calculated by the calculation unit 13 by the following calculation formula.
[0049]
Now, the angle between the flow velocity V of the fluid to be measured in the flow direction of the measurement flow path 5 and the ultrasonic propagation path 19 is θ, the distance between the ultrasonic transceivers 7a and 7b is L, and the sound velocity of the fluid to be measured is C. Then, the flow velocity V is calculated by the following equation.
[0050]
T1 = L / (C + V cos θ)
T2 = L / (C−Vcos θ)
The speed of sound C is eliminated from the equation that subtracts the reciprocal of T2 from the reciprocal of T1.
V = (L / 2 cos θ) ((1 / T1) − (1 / T2))
Since θ and L are known, the flow velocity V can be calculated from the values of T1 and T2.
[0051]
From the flow velocity V and the cross-sectional area S orthogonal to the flow direction of the measurement channel 5, the flow rate Q is
Q = KVS
Here, K is a correction coefficient in consideration of the flow velocity distribution in the cross-sectional area S, and the true cross-sectional average flow rate can be obtained with a value suitable for the flow path shape in the flow rate correction unit 14.
[0052]
When the flow velocity is measured by this ultrasonic method, the ultrasonic wave transmitted from the transmission / reception surface 24 having the outer dimension D propagates with a width in the height direction, and the measurement channel section in a wide area where the ultrasonic wave propagates. The measurement accuracy can be improved by measuring the average flow velocity, and the instantaneous average flow velocity at the time of pulsation can be obtained even if the flow varies due to the measurement of the width of the measurement flow path. Measurement can be performed and measurement accuracy can be improved.
[0053]
As described above, the flow velocity detection means is arranged at the center of the flow direction of the measurement flow path, and in the pulsating flow in which the flow is reversed between the forward direction and the reverse direction of the measurement flow path, the forward flow and the reverse flow are symmetrical. To improve the measurement accuracy during pulsating flow.
[0054]
In addition, flow stabilization means are provided at approximately equal distances on the upstream and downstream sides of the flow velocity detection means, and the flow flowing into the measurement flow path is further stabilized against flow in either forward or reverse direction. Measurement accuracy can be further improved.
[0055]
In addition, an introduction part that is the inlet of the measurement flow path and a lead-out part that is the outlet of the measurement flow path are provided at approximately equidistant positions on the upstream side and downstream side of the flow velocity detection means. The flow conditions on the upstream side and the downstream side that flow into or out of the measurement flow path are equalized to increase the symmetry between the forward flow and the reverse flow, and the measurement accuracy during pulsating flow can be improved.
[0056]
The introduction part and the lead-out part have substantially the same cross section and are provided with a bent part intersecting with the measurement flow path. Further, by arranging the bent portion, the apparatus can be further miniaturized, and the flow in the measurement flow path can be performed in both forward and reverse directions by making the shape of the inlet side or the outlet side substantially the same. The measurement accuracy can be improved by increasing the symmetry.
[0057]
Further, the flow velocity detecting means is provided with ultrasonic transmitters / receivers on the upstream side and the downstream side of the measurement channel, and transmits / receives ultrasonic waves between the ultrasonic transmitter / receivers, and detects the flow rate based on the transmitted / received signals. It is a thing. And it can improve the reliability of measurement accuracy because it measures the average flow velocity of the measurement channel in a wide area where ultrasonic waves propagate, and it can be used to measure the area with a width in the height direction of the measurement channel. Even if variations occur, the instantaneous average flow velocity during pulsation can be measured and measurement accuracy can be improved.
[0058]
Moreover, the cross-sectional height of the measurement channel is larger than the transmission / reception surface of the ultrasonic transceiver. And the transmitted ultrasonic wave can be effectively sent into the measurement flow path, and the drive input to the ultrasonic transmitter / receiver can be reduced to reduce the consumption consumption. In addition, the device can be miniaturized as a compact ultrasonic transceiver.
[0059]
(Example 4)
FIG. 10 is an ultrasonic wave propagation state diagram of an ultrasonic wave transmitter / receiver showing Embodiment 4 of the present invention.
[0060]
In the figure, a general propagation state of ultrasonic waves from the ultrasonic transceiver 7a or 7b is shown. The ultrasonic wave transmitted from the transmission surface 26 of the ultrasonic transmitter / receiver 7a travels straight by a plane wave in the near field up to the last max 27 (indicated by an arrow in the figure), and a spherical wave in the far field of the last max 27 or higher. It spreads at a certain angle and proceeds. The distance X to the last max 27 is expressed by the following equation.
[0061]
X = D2 / 4λ
Here, D is the diameter of the transmission surface of the ultrasonic transceiver, and λ is the wavelength of the ultrasonic wave.
[0062]
In the embodiment shown in FIG. 7, by setting the ultrasonic propagation path length Ld in the measurement flow path 5 to be equal to or less than the distance X to the last max (Ld ≦ X), the ultrasonic wave does not spread and travels by a plane wave. Utilizing the near-field region for propagation time measurement, reducing the generation of ultrasonic reflected waves from the inner wall surface of the measurement channel 5 and increasing the detection accuracy of the ultrasonic propagation waveform during direct wave propagation time measurement The measurement accuracy of flow velocity can be improved.
[0063]
Further, by propagating with a plane wave, local measurement in the height direction of the measurement flow path 5 is promoted, and the measurement accuracy of the instantaneous instantaneous average flow velocity at the time of pulsation can be improved to further improve the flow measurement accuracy of the pulsating flow. .
[0064]
In addition, in order to reduce the measurement area in the height direction and increase the local measurement accuracy, it is necessary to reduce the diameter D of the transmission surface, and the outer dimension D of the transmission surface is reduced to ensure the distance X to the last max. It can be seen that it is effective to further shorten the wavelength of the ultrasonic wave.
[0065]
In this way, the ultrasonic transmitter / receiver uses the ultrasonic wavelength, transmission surface dimensions, and distance between installations as the transmitted ultrasonic wave remains a plane wave and propagates through the ultrasonic propagation path. Propagation with plane waves without spreading in the road reduces the influence of reflected waves from the inner wall surface of the measurement flow path, improves the accuracy of waveform detection for ultrasonic wave propagation measurement by direct waves, and improves the measurement accuracy. By propagating the sound wave, local measurement in the height direction of the measurement flow path is promoted, and the measurement accuracy of the instantaneous average flow velocity at the time of pulsation can be increased to further improve the flow rate measurement accuracy of the pulsating flow.
[0066]
【The invention's effect】
As is clear from the above description, according to the flow rate measuring device of the present invention, even when the fluid flowing through the measurement flow channel is pulsating due to pressure pulsation or the like, instantaneous flow rate measurement can be performed and measurement accuracy can be improved. .
[Brief description of the drawings]
FIG. 1 is a structural explanatory diagram of a flow rate measuring apparatus according to a first embodiment of the present invention.
FIG. 2 is a flow velocity distribution characteristic diagram of a pulsating flow that is the basis of Embodiment 1 of the present invention.
FIG. 3 is another flow velocity distribution characteristic diagram of the pulsating flow that is the basis of the first embodiment of the present invention.
FIG. 4 is an explanatory diagram of a flow rate measuring apparatus according to a second embodiment of the present invention.
FIG. 5 is a flow velocity distribution characteristic diagram of a pulsating flow that is the basis of Example 2 of the present invention.
FIG. 6 is another flow velocity distribution characteristic diagram of the pulsating flow that is the basis of Embodiment 2 of the present invention.
FIG. 7 is an explanatory diagram of a flow rate measuring device according to a third embodiment of the present invention.
FIG. 8 is a longitudinal sectional view of a flow rate measuring device according to Embodiment 3 of the present invention.
FIG. 9 is a partial cross-sectional view of a flow rate measuring device according to Embodiment 3 of the present invention.
FIG. 10 is an ultrasonic propagation state diagram of the ultrasonic transceiver according to the fourth embodiment of the present invention.
FIG. 11 is a configuration diagram of a conventional flow rate measuring device.
[Explanation of symbols]
5 Measurement channel
7 Flow rate detection means
7a, 7b Ultrasonic transceiver
8 Flow stabilization means
9 Introduction
10 Deriving part
11 Measurement control means
13 Flow rate calculator
14 Flow rate correction unit
16 Measurement time setting section
23 Bending part
24 Transmission and reception surface
26 Transmission surface
27 Last Max

Claims (12)

被計測流体が流れる計測流路と、前記計測流路内の流速を検出する流速検出手段と、前記流速検出手段を所定の時間間隔で計測動作させる計測制御部と前記計測制御部からの信号を基に脈動流れ時は計測間隔を定常流れ時と同等以下にして流速または流量を算出する流量演算部と前記流速または流量に流量補正係数を加味して流量を算出する流量補正部を有する計測制御手段を備え、前記流量補正部は、脈動のある時と脈動のない時のいずれにおいても同じ流量補正係数を用い、脈動流れ時において前記流速または流量の平均値を求め、前記平均値に前記流量補正係数を加味して流量を算出することを特徴とした流量計測装置。A measurement flow path through which the fluid to be measured flows, a flow velocity detection means for detecting a flow velocity in the measurement flow path, a measurement control section for measuring the flow velocity detection means at predetermined time intervals, and signals from the measurement control section Measurement control having a flow rate calculation unit for calculating a flow rate or a flow rate with a measurement interval equal to or less than that for a steady flow during a pulsating flow and a flow rate correction unit for calculating a flow rate by adding a flow rate correction coefficient to the flow rate or flow rate The flow rate correction unit uses the same flow rate correction coefficient when there is pulsation and when there is no pulsation, obtains an average value of the flow velocity or flow rate during pulsation flow , and adds the flow rate to the average value. A flow rate measuring apparatus characterized by calculating a flow rate in consideration of a correction coefficient. 前記計測制御手段は、脈動周期を求め、前記脈動周期の整数倍の計測時間を設定し、前記流速検出手段を前記計測時間で動作させる計測時間設定部を備えた請求項1に記載の流量計測装置。2. The flow measurement according to claim 1, further comprising: a measurement time setting unit that obtains a pulsation period, sets a measurement time that is an integral multiple of the pulsation period, and operates the flow velocity detection unit with the measurement time. apparatus. 前記計測流路は略矩形断面とし、前記流速検出手段は略矩形断面の短手側である高さ方向の壁面から一定の距離を離して設置した請求項1または2に記載の流量計測装置。3. The flow rate measuring device according to claim 1, wherein the measurement flow path has a substantially rectangular cross section, and the flow velocity detection unit is installed at a certain distance from a wall surface in a height direction on the short side of the substantially rectangular cross section. 前記一定の距離は、瞬時流速分布の流速平均値を示す計測流路の高さである請求項3記載の流量計測装置。The flow rate measuring apparatus according to claim 3, wherein the certain distance is a height of a measurement flow path indicating a flow velocity average value of an instantaneous flow velocity distribution. 前記流速検出手段は計測流路の流れ方向中央に配置した請求項1または2のいずれか1項に記載の流量計測装置。The flow rate measuring device according to claim 1, wherein the flow velocity detecting means is arranged at the center in the flow direction of the measurement channel. 前記流速検出手段の上流側および下流側の等距離の位置に流れ安定手段を設けた請求項1〜5のいずれか1項に記載の流量計測装置。The flow rate measuring device according to any one of claims 1 to 5, wherein flow stabilizing means are provided at equidistant positions on the upstream side and the downstream side of the flow velocity detecting means. 前記流速検出手段の上流側および下流側の等距離の位置に、計測流路の入口である導入部および出口である導出部を設けた請求項1〜6のいずれか1項に記載の流量計測装置。The flow rate measurement according to any one of claims 1 to 6, wherein an introduction portion that is an inlet of a measurement channel and a lead-out portion that is an outlet are provided at equidistant positions on the upstream side and the downstream side of the flow velocity detection means. apparatus. 前記導入部および導出部は断面を同一形状にし、屈曲部を有する流入部を前記計測流路と交差するように前記導入部に接続し、屈曲部を有する流出部を前記計測流路と交差するように前記導出部に接続した請求項7に記載の流量計測装置。The introduction part and the lead-out part have the same cross section, and an inflow part having a bent part is connected to the introduction part so as to intersect the measurement channel, and an outflow part having a bent part intersects the measurement channel. The flow rate measuring device according to claim 7, connected to the derivation unit. 前記流速検出手段は計測流路の上流側および下流側に超音波送受信器を設け、前記超音波送受信器間で超音波の送受信を行いその送受信信号に基づいて流速を検出する超音波式とした請求項1〜8のいずれか1項に記載の流量計測装置。The flow velocity detecting means is provided with ultrasonic transmitters / receivers on the upstream side and downstream side of the measurement flow path, and transmits and receives ultrasonic waves between the ultrasonic transmitters / receivers and detects the flow rate based on the transmission / reception signals. The flow measuring device according to any one of claims 1 to 8. 前記計測流路の断面の高さは超音波送受信器の送受信面の寸法より大きくした請求項9に記載の流量計測装置。The flow rate measurement device according to claim 9, wherein the height of the cross section of the measurement channel is larger than the dimension of the transmission / reception surface of the ultrasonic transceiver. 前記超音波送受信器は、送信した超音波が平面波のままで超音波伝搬路を伝搬する超音波波長、送信面寸法および設置間距離とした請求項9あるいは10に記載の流量計測装置。The flow rate measuring device according to claim 9 or 10, wherein the ultrasonic transmitter / receiver has an ultrasonic wavelength, a transmission surface dimension, and an installation distance that are transmitted through an ultrasonic wave propagation path while the transmitted ultrasonic wave is a plane wave. 所定の時間間隔で計測流路の流れを検出する工程と、前記検出した流れに基づいて脈動流れ時は計測間隔を定常流れ時と同等以下にして流量又は流速を算出する工程と、脈動のある時と脈動のない時のいずれにおいても同じ流量補正係数を用い、かつ脈動流れ時には前記流量又は流速の平均値を求め、前記平均値に前記流量補正係数加味して流量を求める工程とを含む流量計測方法。 There is a step of detecting the flow of the measurement channel at a predetermined time interval, a step of calculating the flow rate or the flow velocity by setting the measurement interval to be equal to or less than that of the steady flow based on the detected flow, and a pulsation The flow rate includes the step of using the same flow rate correction coefficient in both time and no pulsation, obtaining an average value of the flow rate or flow velocity at the time of pulsating flow , and obtaining the flow rate by adding the flow rate correction coefficient to the average value Measurement method.
JP2002229737A 2002-08-07 2002-08-07 Flow measuring device Expired - Fee Related JP3627729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229737A JP3627729B2 (en) 2002-08-07 2002-08-07 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229737A JP3627729B2 (en) 2002-08-07 2002-08-07 Flow measuring device

Publications (3)

Publication Number Publication Date
JP2004069526A JP2004069526A (en) 2004-03-04
JP2004069526A5 JP2004069526A5 (en) 2004-12-16
JP3627729B2 true JP3627729B2 (en) 2005-03-09

Family

ID=32016023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229737A Expired - Fee Related JP3627729B2 (en) 2002-08-07 2002-08-07 Flow measuring device

Country Status (1)

Country Link
JP (1) JP3627729B2 (en)

Also Published As

Publication number Publication date
JP2004069526A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
WO2010070891A1 (en) Ultrasonic flowmeter
WO2017122239A1 (en) Gas meter
JP4936856B2 (en) Flowmeter
JP3627729B2 (en) Flow measuring device
JP2014077750A (en) Ultrasonic meter
JP2009264906A (en) Flow meter
JP2008014829A (en) Ultrasonic flowmeter
JP2004251700A (en) Fluid measuring device
JP3438713B2 (en) Ultrasonic flow meter
JP2004069526A5 (en)
JPWO2005083371A1 (en) Doppler ultrasonic flow meter
JP4604520B2 (en) Flow measuring device
JP2021110685A (en) Ultrasonic flowmeter
JP4084236B2 (en) Ultrasonic flow meter
JP3438734B1 (en) Ultrasonic flow meter
JP3436247B2 (en) Ultrasonic flow meter
JP3503578B2 (en) Flow measurement device
JP4561071B2 (en) Flow measuring device
JP4453341B2 (en) Ultrasonic flow meter
JP2004061269A (en) Ultrasonic flow rate measuring apparatus
JP4087648B2 (en) Ultrasonic fluid measuring device
JP2001208585A (en) Flowmeter
JP3528436B2 (en) Ultrasonic flow meter and current meter
JP3217021B2 (en) Ultrasonic flow meter
JPH11351926A (en) Ultrasonic flow rate measuring device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031226

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20031226

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees