JP3621009B2 - Synthetic resin molded gear - Google Patents
Synthetic resin molded gear Download PDFInfo
- Publication number
- JP3621009B2 JP3621009B2 JP33450599A JP33450599A JP3621009B2 JP 3621009 B2 JP3621009 B2 JP 3621009B2 JP 33450599 A JP33450599 A JP 33450599A JP 33450599 A JP33450599 A JP 33450599A JP 3621009 B2 JP3621009 B2 JP 3621009B2
- Authority
- JP
- Japan
- Prior art keywords
- gear
- web
- rim
- thickness
- synthetic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Gears, Cams (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、外周側に歯部を有するリムの内周側にウェブを備えた合成樹脂製の成形歯車に関し、より詳細には、合成樹脂の収縮差を調整して歯車の成形精度を向上させることができる合成樹脂製の成形歯車に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
一般に、外周に歯部を備えた合成樹脂製の成形歯車は、歯幅が所定の大きさ以上のものになると、合成樹脂の収縮作用が大きく働いて、成形される歯車の歪みが大きくなってしまうため、歯車としての精度を確保するために、肉抜きが施されている。
【0003】
この種の歯車の従来例を図10に示す。円筒形のリム12は、外周面で複数の歯部11と一体化している。ボス13は、リム12の内側に同心円状に配置されている。ウェブ14は、リム12の内周部とボス13の外周部とに、一体的に接続されている。
【0004】
そしてこの種の歯車は、合成樹脂などの溶融材料を、例えば、ウェブ14の一方の側の面に同心円上に所定の個数設けられたゲート(図10においては二点鎖線で一つだけ示す)から歯車の形状に一致するキャビティーを形成した金型(図示省略)内に注入する。注入された溶融材料は、当初、ゲート位置を中心に放射状に流れるが、やがて、全体としてはウェブ14の外径方向および内径方向へ向かって流れて、歯部11とリム12のキャビティー内、ボス13のキャビティー内を充填する。その後、溶融材料を冷却固化し、離型することによって、図10(a),(b)に示すような合成樹脂製の成形歯車が得られる。
【0005】
このような射出成形加工においては、溶融材料の冷却固化時に多かれ少なかれ収縮作用が働き、所定の歯車形状の形成に影響を及ぼすことが知られている。そして、その収縮度は、一般には、肉厚が厚く溶融材料が充填される量が多くなる部位ほど、肉厚が薄く溶融材料が充填される量が少ない部位よりも固化が遅れて大きくなる傾向にある。また、同じ肉厚の場合には金型との接触面積が少ない箇所ほど熱が逃げにくく固化が遅れてしまいやすい。
【0006】
そのため、この種の歯車は、ウェブとの接続部近傍の歯部がウェブとの接続部から離れた部位の歯部に比べて、溶融材料の固化が遅くなり易く、ウェブとの接続部近傍での収縮度とウェブから離れた部位での収縮度に差が生じてしまい、特に、ウェブを歯幅の中央に配置できない歯車や歯幅が大きい歯車等、ウェブとの接続部近傍から歯の側端部までが離れているものほど成形される歯車の歪み、歯車の歯幅内の径差が大きくなってしまう傾向にあった。
【0007】
例えば、図10(a)に示すような円筒形状をしたリム12が外周面で複数の歯部11と一体化した形状に設計された歯車は、実際の射出成形においては、リム12のウェブ14との接続部12a近傍は接続部12aから離れた端部12bに比べて熱が軸方向に逃げにくく、固化が遅れて収縮作用が大きく働く。
このため、歯車は図10(c)に示すように、端部12bに比べて接続部12aが内側に大きく湾曲してしまう。
【0008】
そこで、本件出願人は、リムに接続するウェブ14の肉厚を薄くして、リムの端部から遠く離れた、ウェブとの接続領域における固化の遅れを防ぎ、リムの外周側に備えられた歯に与える歪みを小さく抑えて外径差を極力小さくして歯車の成形精度を向上させることを試み本発明を完成するに至った。
【0009】
【課題を解決するための手段】
本発明による合成樹脂製の成形歯車は、外周面で複数の歯部と一体化しているリムと、前記リムの内側に同心円状に配置された環状部と、前記リムの内周部と前記環状部の外周部とに接続するウェブと、前記ウェブの少なくとも一方の面に放射状に条設された複数のリブが一体成形されている合成樹脂製の成形歯車において、前記ウェブの肉厚は前記リムの肉厚に比べて薄く形成され、前記リブの幅が前記ウェブの肉厚よりも細く形成され、前記ウェブの肉厚と前記リブの肉厚の和は前記リムの肉厚よりも薄く形成されていることを特徴とする。
【0010】
【発明の実施形態】
以下、本発明の実施形態を、図を用いて説明する。
図1は本発明による合成樹脂製の成形歯車の一実施形態を示し、(a)は平面図、(b)は(a)に示す歯車のA−A断面図、(c)は(b)における歯車の変形状態を示す状態説明図である。なお、説明の便宜上、変形状態は誇張して示してある。
【0011】
本実施形態の合成樹脂製の成形歯車は、外周面で複数の歯部11と一体化しているリム12と、リム12の内側に同心円状に配置された本発明の環状部としてのボス13と、リム12の内周部とボス13の外周部とに接続するウェブ14とが一体成形されている。また、ウェブ14は歯幅W1の中央ではない偏った位置に配置されている。これらの点については、図10に示す従来例の歯車と構成が同じである。
本実施形態の成形歯車が従来例の歯車と異なるのは、次の点である。
【0012】
本実施形態の成形歯車では、ウェブ14の肉厚T1がリム12の肉厚T2に比べて薄く形成されている。また、ウェブ14の一方の面には、両端がリム12とボス13とに接続した状態で、リム12とボス13との間に放射状に条設された複数のリブ15が、一体的に形成されている。
【0013】
リブ15は補強の為に必要に応じて形成されるが、その長手方向に直交する方向における幅T3をウェブ14の肉厚T1よりも細く形成するのが好ましい。
また、本実施形態では、ウェブ14の一方の面にのみリブ15を形成したが、必要に応じてウェブ14の両面にリブ15を形成してもよい。
また、リブ15をウェブ14の両面に形成する場合は、ウェブ14の一方の面と他方の面とでリブ15が重ならないように交互に形成するのが好ましい。
尚、リブ15を形成するにあたり、リブ15の肉厚とウェブ14の肉厚との和T4が、リム12の肉厚T2以下となるようにするのが好ましい。
【0014】
このように構成した本実施形態の成形歯車は、上述した従来の成形歯車と同様の方法で製造される。すなわち、合成樹脂などの溶融材料を、例えば、リム12とボス13の間のウェブ14の一方の面に同心円上に設けられたゲート(図1においては二点鎖線で一つだけ示す)から歯車の形状に一致するキャビティを形成した金型(図示省略)内に注入する。注入された溶融材料は、当初、ゲート位置を中心に放射状に流れるが、やがて全体としては溶融材料は、歯部11、リム12およびボス13のキャビティー内を充填する。その後、溶融材料を冷却固化し、離型することによって、図1(a),(b)に示すような合成樹脂製の成形歯車が得られる。
【0015】
このとき、本実施形態の成形歯車によれば、ウェブ14の肉厚T1がリム12の肉厚T2に比べて薄く形成されるようにしたので、実際の射出成形においてキャビティー内の溶融材料は、ウェブ14において図10に示すような従来のものと比べて熱が逃げ易くなって固化が速まり、また、リム12とウェブ14との接続部12aにおける樹脂の量が少なくなるため、リム12は、図1(c)に示すように、ウェブ14との接続部12aと接続部12aから最も遠くはなれた端部12bとにおける収縮差を極力抑えることができ、歯車の歯幅W1方向に沿った径差が低減する。
【0016】
また、ウェブ14にはリブ15を設けることで、ウェブ14の肉厚を薄くしたことによるウェブ14の強度低下を抑えることができる。さらに、リブ15の幅T3を、ウェブ14の肉厚T1よりも細く形成したので、リブ15は、ウェブ14及びリム12に比べて固化が遅れることはなく、ウェブ14との接続部及びリム12との接続部における収縮度に悪影響を及ぼすことはない。
【0017】
このため、本実施形態の成形歯車によれば、ウェブの強度を維持しながら、歯車の歯幅W1方向に沿った径差を低減させて、歯車の成形精度を向上させることができる。
【0018】
なお、本実施形態の成形歯車は、図1に示すような、ウェブが歯幅方向の一方に偏った位置に配置された歯車のほかに、図2(a),(b)に示すような、大口径の歯車に適用しても、図1の成形歯車と同様の効果が得られる。特に大口径の歯車は、小径の歯車に比べてウェブに強度が要求されるため、収縮度に悪影響を及ぼさないようにリブを形成する本実施形態の歯車は特に有効である。
また、リブ15をウェブ14の図1とは逆側(ウェブ14の下側)の面上に設けた構成としてもよいが、収縮による悪影響を極力抑えるためには、リブ15は、ウェブ14のゲートが設けられている側の面に形成するのが好ましい。
【0019】
図3は、本発明による合成樹脂製の成形歯車のさらに他の実施形態および対応する従来例を示し、(a)は本実施形態の歯車の平面図、(b)は(a)に示す歯車のB−B断面図、(c)は(b)における歯車の変形状態を示す状態説明図、(d)は本実施形態に対応する従来例の歯車の変形状態を断面で示す状態説明図である。
【0020】
本実施形態の成形歯車は、ボス13の同心円上に本発明の環状部としての環状リブ16が設けられ、また、ウェブ14がリム12の内周部と環状リブ16の一端部とボス13の外周部とに接続し、更には、ウェブ14の一方の面に複数のリブ17が、両端を環状リブ16とボス13とに接続し、環状リブ16とボス13との間に放射状に条設された状態で、一体成形されている。
【0021】
そして本実施形態においては、ウェブ14は、その肉厚T1がリム12の肉厚T2に比べて薄く形成されている。
また、ウェブ14の一方の面には、両端がリム12と環状リブ16とに接続した状態で、リム12と環状リブ16との間に放射状に条設された複数のリブ15が、前述の実施形態と同様に、その長手方向に直交する方向における幅T3が、ウェブ14の肉厚T1よりも細くなるように一体的に形成されている。
その他の構成は図1の成形歯車とほぼ同様である。
本実施形態においても図1の実施形態の成形歯車と同様の効果が得られる。
【0022】
図4は、本発明による合成樹脂製の成形歯車のさらに他の実施形態および対応する従来例を示し、(a)は本実施形態の歯車の平面図、(b)は(a)に示す歯車のC−C断面図、(c)は(b)における歯車の変形状態を示す状態説明図、(d)は本実施形態に対応する従来例の歯車の変形状態を断面で示す状態説明図である。
【0023】
本実施形態の成形歯車は、外周面で複数の歯部18と一体化しているリム19が本発明の環状部としてボス13の同心円上にリム12とは別個に設けられた、いわゆる多段式の歯車である。また、本実施形態においても、リム19とボス13との間にリブ17が放射状に配置され、更にはウェブ14がリム12の内周部とリム19の外周部に接続した状態で一体成形されている。
【0024】
そして本実施形態においては、ウェブ14は、その肉厚T1がリム12の肉厚T2に比べて薄く形成されている。
また、ウェブ14の一方の面には、両端がリム12とリム19とに接続した状態で、リム12とリム19との間に放射状に条設された複数のリブ15が、前述の実施形態と同様に、その長手方向に直交する方向における幅T3が、ウェブ14の肉厚T1よりも細くなるように一体的に形成されている。
その他の構成は図1の成形歯車とほぼ同様である。
【0025】
本実施形態においても図1の実施形態の成形歯車と同様の効果が得られる。
なお上記各実施形態の歯車におけるリブは、図1〜図4のような形態のものに限定されるものではなく、環状のリブを組み合わせたものを用いてもよい。
【0026】
図5は、本発明による合成樹脂製の成形歯車のさらに他の実施形態および対応する従来例を示し、(a)は本実施形態の歯車の平面図、(b)は(a)に示す歯車のD−D断面図、(c)は(b)における歯車の変形状態を示す状態説明図、(d)は本実施形態に対応する従来例の歯車の変形状態を断面で示す状態説明図である。
【0027】
本実施形態の歯車は、外周面で複数の歯部11と一体化しているリム12と、リム12の内側に同心円状に配置された環状部20と、リム12の内周部と環状部20の外周部とに接続するウェブ14とが一体成形されている。
また、環状リブ21がリム12と環状部20との間に同心円状に配置されると共に、リム12と環状リブ21との間に複数のリブ22が、環状リブ21と環状部20との間に複数のリブ23が、それぞれ放射状に条設されている。環状リブ20、リブ22,23はウェブ14の一方の面上に一体的に形成されている。
【0028】
リブ22は、一端が環状リブ21に、他端がリム12にそれぞれ接続している。また、リブ23は、一端が環状リブ21に、他端が環状部20にそれぞれ接続している。
ウェブ14の肉厚T1は、リム12の肉厚T2に比べて薄く形成されている。また、補強用リブ22,23は、ウェブ14の肉厚T1よりも細い幅T3を有している。
【0029】
本実施形態の歯車によれば、ウェブ14の肉厚T1がリム12の肉厚T2に比べて薄く形成されるようにしたので、実際の射出成形においてキャビティー内の溶融材料は、ウェブ14において図5(d)に示すような従来のものと比べて熱が逃げ易くなって固化が速まり、また、リム12とウェブ14との接続部12aにおける樹脂の量が少なくなるため、リム12は、図5(c)に示すように、ウェブ14との接続部12aと接続部12aから最も遠くはなれた端部12bとにおける収縮差を極力抑えることができ、歯車の歯幅W1方向に沿った径差が低減する。
【0030】
また、ウェブ14には環状リブ21、リブ22,23を設けることで、ウェブ14の肉厚を薄くしたことによるウェブ14の強度低下を抑えることができる。さらに、リブ22,23の幅T3を、ウェブ14の肉厚T1よりも細く形成したので、リブ22,23はウェブ14及びリム12に比べて固化が遅れることはなく、ウェブ14との接続部及びリム12との接続部における収縮度に悪影響を及ぼすことはない。
その他の構成、作用および効果は、図1の実施形態の成形歯車とほぼ同様である。
【0031】
なお、図5では、リブ22,23の幅T3をいずれもウェブ14の肉厚T1より細く形成しているが、少なくともリブ22の幅T3をウェブ14の肉厚T1よりも細く形成すれば、同様の効果を得ることは可能である。
また、本実施形態の成形歯車は、上述のように少なくともリブ22の幅T3をウェブ14の肉厚T1よりも細く形成すれば、環状部20を図1のボス13、図3の環状リブ16、図4のリム19のいずれに相当する部位として構成しても、図1の実施形態の成形歯車と同様の効果を奏することができる。
【0032】
その他、上記各実施形態の歯車は、例えば、図6に示すように、逆向きに複数組合せた歯車など、いろいろな形態の歯車に適用可能である。
図6は、本発明による合成樹脂製の成形歯車のさらに他の実施形態を示す断面図である。
【0033】
本実施形態の成形歯車は、図1の実施形態とほぼ同様の構成の歯車が同軸で逆向きに2つ組み合わされており、それぞれの歯車において、ウェブ14,14’の肉厚T1,T’1が、リム12,12’の肉厚T2,T’2に比べて薄く形成されていると共に、ウェブ14,14’の一方の面には、それぞれ両端がリム12とボス13とに、リム12’とボス13’とにそれぞれ接続した状態で、リム12とボス13との間、リム12’とボス13’との間にそれぞれ放射状に条設された複数のリブ15,15’が、前述の実施形態と同様に、その長手方向に直交する方向における幅(図6では示していない)がウェブ14,14’の肉厚T1よりも細くなるように、一体的に形成されている。
本実施形態の成形歯車も、上記各実施形態と同様の効果が得られる。
【0034】
また、本発明による合成樹脂製の成形歯車は、ウェブを有する歯車本体が複数段同軸に組み合わされた構成の歯車に適用可能である。
図7は、本発明による合成樹脂製の成形歯車のさらに他の実施形態および対応する従来例を示し、(a)は本実施形態の歯車の平面図、(b)は(a)に示す歯車のE−E断面図、(c)は(b)における歯車の変形状態を示す状態説明図、(d)は本実施形態に対応する従来例の歯車の変形状態を断面で示す状態説明図である。
【0035】
本実施形態の成形歯車は、外周面で複数の歯部18と一体化しているリム19がボス13の同心円上にリム12とは別個に設けられ、リム19の内周部とボス13の外周部にウェブ24が接続され、ウェブ14がリム12の内周部とリム19の外周部に接続した状態で一体成形されている。
【0036】
そして本実施形態においては、ウェブ14は、肉厚T11がリム12の肉厚T12に比べて薄く形成されている。
また、ウェブ14の一方の面には、両端がリム12とリム19とに接続した状態で、リム12とリム19との間に放射状に条設された複数のリブ15が、前述の実施形態と同様に、その長手方向に直交する方向における幅T13がウェブ14の肉厚T11よりも細くなるように、一体的に形成されている。
【0037】
また本実施形態においては、ウェブ24は、肉厚T21がリム19の肉厚T22に比べて薄く形成されている。
また、ウェブ24の一方の面には、両端がリム19とボス13とに接続した状態で、リム19とボス13との間に放射状に条設された複数のリブ25が、前述の実施形態と同様に、その長手方向に直交する方向における幅T23がウェブ24の肉厚T21よりも細くなるように、一体的に形成されている。
【0038】
本実施形態の歯車によれば、ウェブ14の肉厚T11がリム12の肉厚T12に比べて薄く形成されるようにしたので、実際の射出成形においてキャビティー内の溶融材料は、ウェブ14において図7(d)に示すような従来のものと比べて熱が逃げ易くなって固化が速まり、また、リム12とウェブ14との接続部12aにおける樹脂の量が少なくなるため、リム12は、図7(c)に示すように、ウェブ14との接続部12aと接続部12aから最も遠くはなれた端部12bとにおける収縮差を極力抑えることができ、歯車の歯幅W1方向に沿った径差が低減する。
【0039】
また、ウェブ14にはリブ15を設けることで、ウェブ14の肉厚を薄くしたことによるウェブ14の強度低下を抑えることができる。さらに、リブ15の幅T13を、ウェブ14の肉厚T11よりも細く形成したので、リブ15は、ウェブ14及びリム12に比べて固化が遅れることはなく、ウェブ14との接続部及びリム12との接続部における収縮度に悪影響を及ぼすことはない。
【0040】
また、ウェブ24の肉厚T21がリム19の肉厚T22に比べて薄く形成されるようにしたので、実際の射出成形においてキャビティー内の溶融材料は、ウェブ24において図7(d)に示すような従来のものと比べて熱が逃げ易くなって固化が速まり、また、リム19とウェブ24との接続部19aにおける樹脂の量が少なくなるため、リム19は、図7(c)に示すように、ウェブ24との接続部19aと接続部19aから最も遠くはなれた端部19bとにおける収縮差を極力抑えることができ、歯車の歯幅W2方向に沿った径差が低減する。
【0041】
また、ウェブ24にはリブ25を設けることで、ウェブ24の肉厚を薄くしたことによるウェブ24の強度低下を抑えることができる。さらに、リブ25の幅T23を、ウェブ24の肉厚T21よりも細く形成したので、リブ25はウェブ24及びリム19に比べて固化が遅れることはなく、ウェブ24との接続部及びリム19との接続部における収縮度に悪影響を及ぼすことはない。
その他の構成、作用および効果は、図1の実施形態の成形歯車とほぼ同様である。
なお、本実施形態のような歯車においても、図5の実施形態に示すような放射状のリブと環状リブを組み合わせたリブを用いてもよい。
【0042】
その他、本発明による合成樹脂製の成形歯車のリムの外周面に形成される歯の種類は特に限定されず、例えば、平歯、はす歯であってもよい。
また、本発明による合成樹脂製の成形歯車の構成を、図7の実施形態で示したような複数段の歯車に適用する場合において、平歯の2段歯車に適用する場合は、図8に示すように、リブ15,25をそれぞれのウェブ14,24の両面に設けてもよい。勿論、リブ15,25をそれぞれのウェブ14,24のいずれか一方の面のみに設けてもよい。
また、はす歯の2段歯車に適用する場合は、要求される歯の精度を保つため、図9に示すように、リブ15,25をそれぞれのウェブ14,24において互いに反対側を向いた面に設けるのが好ましい。
【0043】
【発明の効果】
以上に説明したように、本発明によれば、歯車の歯部の収縮差を低減させて、歯車の成形精度を向上させることができる。
【図面の簡単な説明】
【図1】本発明による合成樹脂製の成形歯車の一実施形態を示し、(a)は平面図、(b)は(a)に示す歯車のA−A断面図、(c)は(b)における歯車の変形状態を示す状態説明図である。
【図2】本発明による合成樹脂製の成形歯車の他の実施形態を示し、(a)は断面図、(b)は(a)における歯車の変形状態を示す状態説明図ある。
【図3】本発明による合成樹脂製の成形歯車のさらに他の実施形態及び対応する従来例を示し、(a)は平面図、(b)は(a)に示す歯車のB−B断面図、(c)は(b)における歯車の変形状態を示す状態説明図、(d)は本実施形態に対応する従来例の歯車の変形状態を断面で示す状態説明図である。
【図4】本発明による合成樹脂製の成形歯車のさらに他の実施形態および対応する従来例を示し、(a)は本実施形態の歯車の平面図、(b)は(a)に示す歯車のC−C断面図、(c)は(b)における歯車の変形状態を示す状態説明図、(d)は本実施形態に対応する従来例の歯車の変形状態を断面で示す状態説明図である。
【図5】本発明による合成樹脂製の成形歯車のさらに他の実施形態および対応する従来例を示し、(a)は本実施形態の歯車の平面図、(b)は(a)に示す歯車のD−D断面図、(c)は(b)における歯車の変形状態を示す状態説明図、(d)は本実施形態に対応する従来例の歯車の変形状態を断面で示す状態説明図である。
【図6】本発明による合成樹脂製の成形歯車のさらに他の実施形態を示す断面図である。
【図7】本発明による合成樹脂製の成形歯車のさらに他の実施形態および対応する従来例を示し、(a)は本実施形態の歯車の平面図、(b)は(a)に示す歯車のE−E断面図、(c)は(b)における歯車の変形状態を示す状態説明図、(d)は本実施形態に対応する従来例の歯車の変形状態を断面で示す状態説明図である。
【図8】本発明による合成樹脂製の成形歯車のさらに他の実施形態を示す平歯の2段歯車の部分断面図である。
【図9】本発明による合成樹脂製の成形歯車のさらに他の実施形態を示すはすばの2段歯車の部分断面図である。
【図10】合成樹脂製の成形歯車の一従来例を示し、(a)は平面図、(b)は(a)に示す歯車のF−F断面図、(c)は(b)における歯車の変形状態を示す状態説明図である。
【符号の説明】
11,11’,18 歯部
12,12’,19 リム
12a,12’a ウェブとの接続部
12b,12’b 端部
13,13’ ボス
14,14’ ウェブ
15,15’,22,23 リブ
16,21 環状リブ
17 リブ
20 環状部
T1,T’1,T11,T21 ウェブの肉厚
T2,T’2,T12,T22 リムの肉厚
T3,T13,T23 リブの幅
T4,T’4,T14,T24 ウェブの肉厚とリブの幅との和
W1,W2 歯幅[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a synthetic resin molded gear provided with a web on the inner peripheral side of a rim having a tooth portion on the outer peripheral side, and more specifically, improves the molding accuracy of the gear by adjusting the shrinkage difference of the synthetic resin. This invention relates to a molded gear made of synthetic resin.
[0002]
[Prior art and problems to be solved by the invention]
In general, a synthetic resin molded gear having teeth on the outer periphery has a large contraction effect of the synthetic resin when the tooth width is greater than a predetermined width, which increases the distortion of the molded gear. Therefore, in order to ensure the accuracy of the gear, the meat is cut out.
[0003]
A conventional example of this type of gear is shown in FIG. The cylindrical rim 12 is integrated with the plurality of tooth portions 11 on the outer peripheral surface. The boss 13 is arranged concentrically inside the rim 12. The web 14 is integrally connected to the inner peripheral portion of the rim 12 and the outer peripheral portion of the boss 13.
[0004]
In this type of gear, a gate provided with a predetermined number of molten materials such as synthetic resin, for example, concentrically on one surface of the web 14 (only one is indicated by a two-dot chain line in FIG. 10). To the mold (not shown) in which a cavity matching the shape of the gear is formed. The injected molten material initially flows radially around the gate position, but eventually flows toward the outer and inner diameters of the web 14 as a whole in the cavities of the teeth 11 and the rim 12. The inside of the cavity of the boss 13 is filled. Thereafter, the molten material is cooled and solidified, and then released from the mold, so that a synthetic resin-made gear as shown in FIGS. 10A and 10B is obtained.
[0005]
In such an injection molding process, it is known that a shrinkage action works more or less when the molten material is cooled and solidified, thereby affecting the formation of a predetermined gear shape. In general, the degree of shrinkage tends to increase as the thickness of the thicker part increases and the amount of the molten material filled increases than the part of the thinner and less filled material. It is in. In addition, when the thickness is the same, the smaller the contact area with the mold, the more difficult the heat escapes and the solidification tends to be delayed.
[0006]
Therefore, in this type of gear, the solidification of the molten material tends to be slower than the tooth part in the vicinity of the connection part with the web compared to the tooth part in the part away from the connection part with the web. There is a difference between the degree of contraction and the degree of contraction at the site away from the web, especially gears that cannot place the web in the center of the tooth width, gears with a large tooth width, etc. As the distance to the end portion increases, the distortion of the formed gear and the diameter difference within the tooth width of the gear tend to increase.
[0007]
For example, as shown in FIG. 10 (a), a gear in which a rim 12 having a cylindrical shape is designed so as to be integrated with a plurality of tooth portions 11 on the outer peripheral surface is a web 14 of the rim 12 in actual injection molding. In the vicinity of the connecting portion 12a, heat is less likely to escape in the axial direction than the end portion 12b away from the connecting portion 12a, and solidification is delayed, resulting in a large contracting action.
For this reason, as shown in FIG.10 (c), the connection part 12a will be largely curved inside the gear compared with the end part 12b.
[0008]
Therefore, the present applicant reduced the thickness of the web 14 connected to the rim to prevent solidification delay in the connection region with the web far from the end of the rim, and was provided on the outer peripheral side of the rim. The present invention has been completed by attempting to improve the gear forming accuracy by minimizing the difference in outer diameter by minimizing the strain applied to the teeth.
[0009]
[Means for Solving the Problems]
A synthetic resin molded gear according to the present invention includes a rim integrated with a plurality of tooth portions on an outer peripheral surface, an annular portion disposed concentrically on the inner side of the rim, an inner peripheral portion of the rim, and the annular shape. A synthetic resin molded gear in which a web connected to an outer peripheral portion of a portion and a plurality of ribs radially provided on at least one surface of the web are integrally formed, and the thickness of the web is the rim The thickness of the rib is formed thinner than the thickness of the web, and the sum of the thickness of the web and the thickness of the rib is formed thinner than the thickness of the rim. It is characterized by.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1A and 1B show an embodiment of a molded gear made of a synthetic resin according to the present invention, in which FIG. 1A is a plan view, FIG. 1B is a cross-sectional view of the gear shown in FIG. It is a state explanatory drawing which shows the deformation | transformation state of the gear in. For convenience of explanation, the deformed state is exaggerated.
[0011]
The synthetic resin molded gear of the present embodiment includes a rim 12 integrated with a plurality of tooth portions 11 on the outer peripheral surface, and a boss 13 as an annular portion of the present invention disposed concentrically inside the rim 12. The web 14 connected to the inner periphery of the rim 12 and the outer periphery of the boss 13 is integrally formed. Also, the web 14 is arranged is not biased position at the center of the tooth width W 1. With respect to these points, the configuration is the same as that of the conventional gear shown in FIG.
The molded gear of the present embodiment is different from the conventional gear in the following points.
[0012]
In the formed gear of this embodiment, the thickness T 1 of the web 14 is formed thinner than the thickness T 2 of the rim 12. In addition, a plurality of ribs 15 radially formed between the rim 12 and the boss 13 are integrally formed on one surface of the web 14 with both ends connected to the rim 12 and the boss 13. Has been.
[0013]
Although the rib 15 is formed as needed for reinforcement, the width T 3 in the direction perpendicular to the longitudinal direction to form thinner than the thickness T 1 of the web 14 preferably.
Moreover, in this embodiment, although the rib 15 was formed only in one side of the web 14, you may form the rib 15 in both surfaces of the web 14 as needed.
When the ribs 15 are formed on both surfaces of the web 14, it is preferable that the ribs 15 are alternately formed so that the ribs 15 do not overlap on one surface and the other surface of the web 14.
In forming the rib 15, it is preferable that the sum T 4 of the thickness of the rib 15 and the thickness of the web 14 be equal to or less than the thickness T 2 of the rim 12.
[0014]
The molded gear of the present embodiment configured as described above is manufactured by the same method as the conventional molded gear described above. That is, a molten material such as synthetic resin is fed from a gate (only one is indicated by a two-dot chain line in FIG. 1) provided concentrically on one surface of the web 14 between the rim 12 and the boss 13. It is injected into a mold (not shown) in which a cavity matching the shape of the above is formed. The injected molten material initially flows radially around the gate position, but eventually the molten material fills the cavities of the teeth 11, rim 12 and boss 13 as a whole. Thereafter, the molten material is cooled and solidified, and then released from the mold, thereby obtaining a synthetic resin-made gear as shown in FIGS. 1 (a) and 1 (b).
[0015]
In this case, according to the molding wheel of the present embodiment. Thus the thickness T 1 of the web 14 is formed thinner than the thickness T 2 of the rim 12, melting in the cavity in the actual injection molding As for the material, the heat in the web 14 is easier to escape than the conventional one shown in FIG. 10 and the solidification is accelerated, and the amount of resin in the connecting portion 12a between the rim 12 and the web 14 is reduced. As shown in FIG. 1C, the rim 12 can suppress the difference in contraction between the connecting portion 12a with the web 14 and the end portion 12b farthest from the connecting portion 12a as much as possible, and the tooth width W 1 of the gear. The diameter difference along the direction is reduced.
[0016]
Further, by providing the web 14 with the ribs 15, it is possible to suppress a decrease in the strength of the web 14 due to a reduction in the thickness of the web 14. Furthermore, since the width T 3 of the rib 15 is formed to be smaller than the wall thickness T 1 of the web 14, the rib 15 is not delayed in setting compared to the web 14 and the rim 12, and the connecting portion with the web 14 and There is no adverse effect on the degree of contraction at the connection with the rim 12.
[0017]
Therefore, according to the molding wheel of the present embodiment, it is possible while maintaining the strength of the web, thereby reducing the diameter difference along the tooth width W 1 direction of the gear, to improve the molding accuracy of the gear.
[0018]
The molded gear of the present embodiment is as shown in FIGS. 2 (a) and 2 (b) in addition to the gear as shown in FIG. 1 where the web is disposed at a position biased to one side in the tooth width direction. Even when applied to a large-diameter gear, the same effect as that of the formed gear of FIG. 1 can be obtained. In particular, since a gear having a large diameter requires strength of the web as compared with a gear having a small diameter, the gear of this embodiment in which ribs are formed so as not to adversely affect the degree of contraction is particularly effective.
In addition, the rib 15 may be provided on the surface of the web 14 on the opposite side of FIG. 1 (the lower side of the web 14). However, in order to suppress the adverse effects due to the shrinkage as much as possible, the rib 15 is formed on the web 14. It is preferably formed on the surface on the side where the gate is provided.
[0019]
FIG. 3 shows still another embodiment of a molded gear made of a synthetic resin according to the present invention and a corresponding conventional example, wherein (a) is a plan view of the gear of this embodiment, and (b) is a gear shown in (a). BB sectional drawing of this, (c) is state explanatory drawing which shows the deformation | transformation state of the gear in (b), (d) is state explanatory drawing which shows the deformation | transformation state of the gear of the prior art example corresponding to this embodiment in a cross section. is there.
[0020]
In the formed gear of the present embodiment, an annular rib 16 as an annular portion of the present invention is provided on a concentric circle of the boss 13, and the web 14 is connected to the inner peripheral portion of the rim 12, one end portion of the annular rib 16, and the boss 13. Further, a plurality of ribs 17 are connected to the outer peripheral portion, and one end of the web 14 is connected to the annular rib 16 and the boss 13 at both ends, and radially provided between the annular rib 16 and the boss 13. In this state, it is integrally molded.
[0021]
In the present embodiment, the web 14 is formed such that its wall thickness T 1 is thinner than the wall thickness T 2 of the rim 12.
Also, on one surface of the web 14, a plurality of ribs 15 radially provided between the rim 12 and the annular rib 16 with both ends connected to the rim 12 and the annular rib 16 are provided as described above. Similarly to the embodiment, the width T 3 in the direction orthogonal to the longitudinal direction is integrally formed so as to be smaller than the wall thickness T 1 of the web 14.
Other configurations are substantially the same as those of the formed gear of FIG.
In this embodiment, the same effect as that of the formed gear of the embodiment of FIG. 1 can be obtained.
[0022]
FIG. 4 shows still another embodiment of a molded gear made of a synthetic resin according to the present invention and a corresponding conventional example, in which (a) is a plan view of the gear of this embodiment, and (b) is a gear shown in (a). (C) is a state explanatory drawing which shows the deformation state of the gear in (b), (d) is a state explanatory drawing which shows the deformation state of the conventional gear corresponding to this embodiment in cross section. is there.
[0023]
The molded gear of this embodiment is a so-called multistage type in which a rim 19 integrated with a plurality of tooth portions 18 on the outer peripheral surface is provided separately from the rim 12 on the concentric circle of the boss 13 as an annular portion of the present invention. It is a gear. Also in the present embodiment, the ribs 17 are arranged radially between the rim 19 and the boss 13, and the web 14 is integrally formed with the inner periphery of the rim 12 and the outer periphery of the rim 19 being connected. ing.
[0024]
In the present embodiment, the web 14 is formed such that its wall thickness T 1 is thinner than the wall thickness T 2 of the rim 12.
Further, on the one surface of the web 14, a plurality of ribs 15 radially provided between the rim 12 and the rim 19 with both ends connected to the rim 12 and the rim 19 are provided in the above-described embodiment. Similarly, the width T 3 in the direction orthogonal to the longitudinal direction is integrally formed so as to be smaller than the wall thickness T 1 of the web 14.
Other configurations are substantially the same as those of the formed gear of FIG.
[0025]
In this embodiment, the same effect as that of the formed gear of the embodiment of FIG. 1 can be obtained.
In addition, the rib in the gear of each said embodiment is not limited to a thing like a form as FIGS. 1-4, You may use what combined the cyclic | annular rib.
[0026]
FIG. 5 shows still another embodiment of a molded gear made of a synthetic resin according to the present invention and a corresponding conventional example, in which (a) is a plan view of the gear of this embodiment, and (b) is a gear shown in (a). (C) is a state explanatory view showing the deformation state of the gear in (b), (d) is a state explanatory view showing the deformation state of the conventional gear corresponding to this embodiment in cross section. is there.
[0027]
The gear of this embodiment includes a rim 12 integrated with a plurality of tooth portions 11 on the outer peripheral surface, an annular portion 20 disposed concentrically inside the rim 12, and an inner peripheral portion and an annular portion 20 of the rim 12. The web 14 connected to the outer peripheral portion of is integrally formed.
The annular rib 21 is concentrically disposed between the rim 12 and the annular portion 20, and a plurality of ribs 22 are provided between the rim 12 and the annular rib 21 between the annular rib 21 and the annular portion 20. A plurality of ribs 23 are provided radially. The annular rib 20 and the ribs 22 and 23 are integrally formed on one surface of the web 14.
[0028]
The rib 22 has one end connected to the annular rib 21 and the other end connected to the rim 12. The rib 23 has one end connected to the annular rib 21 and the other end connected to the annular portion 20.
The wall thickness T 1 of the web 14 is formed thinner than the wall thickness T 2 of the rim 12. Further, the reinforcing ribs 22 and 23 have a width T 3 that is thinner than the wall thickness T 1 of the web 14.
[0029]
According to the gear of the present embodiment, the thickness T 1 of the web 14 is formed to be thinner than the thickness T 2 of the rim 12. Therefore, in the actual injection molding, the molten material in the cavity is the web. 14, the heat can escape more easily than the conventional one shown in FIG. 5 (d), the solidification is accelerated, and the amount of resin at the connecting portion 12 a between the rim 12 and the web 14 is reduced. 12, as shown in FIG. 5 (c), it is possible to suppress the differential shrinkage in the farthest end 12b from the connecting portion 12a and the connection portion 12a of the web 14 as much as possible, the tooth width W 1 direction of the gear The diameter difference along is reduced.
[0030]
In addition, by providing the web 14 with the annular ribs 21 and the ribs 22 and 23, it is possible to suppress a decrease in the strength of the web 14 due to the thin thickness of the web 14. Further, since the width T 3 of the ribs 22 and 23 is formed to be thinner than the wall thickness T 1 of the web 14, the ribs 22 and 23 are not delayed in solidification compared to the web 14 and the rim 12, and The degree of contraction at the connection portion and the connection portion with the rim 12 is not adversely affected.
Other configurations, operations, and effects are substantially the same as those of the formed gear of the embodiment of FIG.
[0031]
In FIG. 5, the width T 3 of each of the ribs 22 and 23 is formed thinner than the wall thickness T 1 of the web 14, but at least the width T 3 of the rib 22 is thinner than the wall thickness T 1 of the web 14. If formed, the same effect can be obtained.
Further, the molding wheel of the present embodiment, by forming thinner than the thickness T 1 of the width T 3 of the web 14 of at least the rib 22 as described above, the boss 13 of FIG. 1 the annular portion 20, an annular Figure 3 Even if it is configured as a portion corresponding to either the rib 16 or the rim 19 of FIG. 4, the same effect as the molded gear of the embodiment of FIG. 1 can be obtained.
[0032]
In addition, the gears of the above-described embodiments can be applied to various types of gears such as, for example, a plurality of gears combined in opposite directions as shown in FIG.
FIG. 6 is a cross-sectional view showing still another embodiment of the synthetic resin molded gear according to the present invention.
[0033]
The formed gear of the present embodiment is composed of two coaxial gears having substantially the same configuration as that of the embodiment of FIG. 1 in the opposite directions, and the thicknesses T 1 , T of the webs 14, 14 ′ in each gear. ' 1 is formed thinner than the wall thicknesses T 2 and T' 2 of the rims 12 and 12 ', and both ends of the webs 14 and 14' are connected to the rim 12 and the boss 13 respectively. A plurality of ribs 15 and 15 'radially provided between the rim 12 and the boss 13 and between the rim 12' and the boss 13 'in a state of being connected to the rim 12' and the boss 13 ', respectively. but as with the previous embodiments, the longitudinal direction orthogonal to the width in the direction (not shown in FIG. 6) is to be thinner than the thickness T 1 of the web 14, 14 'are integrally formed ing.
The effect similar to each said embodiment is acquired also in the shaping | molding gear of this embodiment.
[0034]
The molded gear made of synthetic resin according to the present invention can be applied to a gear having a configuration in which a gear body having a web is combined in multiple stages coaxially.
FIG. 7 shows still another embodiment of a molded gear made of a synthetic resin according to the present invention and a corresponding conventional example, wherein (a) is a plan view of the gear of this embodiment, and (b) is a gear shown in (a). EE sectional drawing of this, (c) is a state explanatory drawing which shows the deformation | transformation state of the gear in (b), (d) is a state explanatory drawing which shows the deformation | transformation state of the gear of the prior art example corresponding to this embodiment in a cross section. is there.
[0035]
In the molded gear of this embodiment, a rim 19 integrated with a plurality of tooth portions 18 on the outer peripheral surface is provided on the concentric circle of the boss 13 separately from the rim 12, and the inner peripheral portion of the rim 19 and the outer periphery of the boss 13 are provided. The web 24 is connected to the part, and the web 14 is integrally molded in a state where the web 14 is connected to the inner peripheral part of the rim 12 and the outer peripheral part of the rim 19.
[0036]
In the present embodiment, the web 14 is formed so that the wall thickness T 11 is thinner than the wall thickness T 12 of the rim 12.
Further, on the one surface of the web 14, a plurality of ribs 15 radially provided between the rim 12 and the rim 19 with both ends connected to the rim 12 and the rim 19 are provided in the above-described embodiment. similar to the width T 13 in the direction perpendicular to the longitudinal direction such that thinner than the thickness T 11 of the web 14, are integrally formed.
[0037]
In the present embodiment, the web 24 is formed so that the thickness T 21 is thinner than the thickness T 22 of the rim 19.
Further, on the one surface of the web 24, the plurality of ribs 25 provided radially between the rim 19 and the boss 13 with both ends connected to the rim 19 and the boss 13 are the above-described embodiments. similar to the width T 23 in the direction perpendicular to the longitudinal direction such that thinner than the thickness T 21 of the web 24, are integrally formed.
[0038]
According to the gear of the present embodiment. Thus the thickness T 11 of the web 14 is formed thinner than the thickness T 12 of the rim 12, molten material in the cavity in the actual injection molding, the web 14, the heat can escape more easily than the conventional one shown in FIG. 7 (d), the solidification is accelerated, and the amount of resin at the connection portion 12 a between the rim 12 and the web 14 is reduced. 12, as shown in FIG. 7 (c), it is possible to suppress the differential shrinkage in the farthest end 12b from the connecting portion 12a and the connection portion 12a of the web 14 as much as possible, the tooth width W 1 direction of the gear The diameter difference along is reduced.
[0039]
Further, by providing the web 14 with the ribs 15, it is possible to suppress a decrease in the strength of the web 14 due to a reduction in the thickness of the web 14. Further, the width T 13 of the rib 15, since the thinner than the thickness T 11 of the web 14, the rib 15 is not be solidified as compared with the web 14 and the rim 12 is delayed, the connection portion of the web 14 and There is no adverse effect on the degree of contraction at the connection with the rim 12.
[0040]
Further, since as the thickness T 21 of the web 24 is formed thinner than the thickness T 22 of the rim 19, molten material in the cavity in the actual injection molding, the web 24 FIG 7 (d) As shown in FIG. 7 (c), the heat easily escapes and solidifies faster, and the amount of resin in the connecting portion 19a between the rim 19 and the web 24 is reduced. as shown in), it is possible to suppress the differential shrinkage in the farthest end 19b from the connecting portion 19a and the connection portion 19a of the web 24 as much as possible, the diameter difference is reduced along the tooth width W 2 direction of the gear To do.
[0041]
Further, by providing the ribs 25 on the web 24, it is possible to suppress a decrease in strength of the web 24 due to the thin thickness of the web 24. Further, the width T 23 of the rib 25, since the thinner than the thickness T 21 of the web 24, the rib 25 is not to be solidified as compared with the web 24 and the rim 19 is delayed, the connecting portion and the rim of the web 24 19 does not adversely affect the degree of contraction at the connecting portion.
Other configurations, operations, and effects are substantially the same as those of the formed gear of the embodiment of FIG.
In the gear as in the present embodiment, a combination of radial ribs and annular ribs as shown in the embodiment of FIG. 5 may be used.
[0042]
In addition, the kind of tooth | gear formed in the outer peripheral surface of the rim | limb of the synthetic resin molded gears by this invention is not specifically limited, For example, a flat tooth and a helical tooth may be sufficient.
Further, in the case where the configuration of the synthetic resin molded gear according to the present invention is applied to a multi-stage gear as shown in the embodiment of FIG. As shown, ribs 15 and 25 may be provided on both sides of the respective webs 14 and 24. Of course, the ribs 15 and 25 may be provided only on one surface of each of the webs 14 and 24.
In addition, when applied to a two-stage gear having a helical tooth, in order to maintain the required tooth accuracy, the ribs 15 and 25 are directed to opposite sides in the respective webs 14 and 24 as shown in FIG. It is preferable to provide it on the surface.
[0043]
【The invention's effect】
As described above, according to the present invention, it is possible to reduce the difference in contraction of the gear teeth and improve the gear forming accuracy.
[Brief description of the drawings]
1 shows an embodiment of a molded gear made of a synthetic resin according to the present invention, in which (a) is a plan view, (b) is a cross-sectional view taken along line AA of the gear shown in (a), and (c) is (b). It is a state explanatory drawing which shows the deformation | transformation state of the gear in ().
2A and 2B show another embodiment of a synthetic resin molded gear according to the present invention, in which FIG. 2A is a sectional view, and FIG. 2B is a state explanatory view showing a deformed state of the gear in FIG.
3A and 3B show still another embodiment of a synthetic resin molded gear according to the present invention and a corresponding conventional example, in which FIG. 3A is a plan view and FIG. 3B is a cross-sectional view of the gear shown in FIG. (C) is a state explanatory drawing which shows the deformation | transformation state of the gear in (b), (d) is a state explanatory drawing which shows the deformation | transformation state of the gear of the prior art example corresponding to this embodiment in a cross section.
4A and 4B show still another embodiment of a molded gear made of a synthetic resin according to the present invention and a corresponding conventional example, in which FIG. 4A is a plan view of the gear of this embodiment, and FIG. 4B is a gear shown in FIG. (C) is a state explanatory drawing which shows the deformation state of the gear in (b), (d) is a state explanatory drawing which shows the deformation state of the conventional gear corresponding to this embodiment in cross section. is there.
5A and 5B show still another embodiment of a molded gear made of a synthetic resin according to the present invention and a corresponding conventional example, in which FIG. 5A is a plan view of the gear of this embodiment, and FIG. 5B is a gear shown in FIG. (C) is a state explanatory view showing the deformation state of the gear in (b), (d) is a state explanatory view showing the deformation state of the conventional gear corresponding to this embodiment in cross section. is there.
FIG. 6 is a cross-sectional view showing still another embodiment of a synthetic resin molded gear according to the present invention.
7A and 7B show still another embodiment of a molded gear made of a synthetic resin according to the present invention and a corresponding conventional example, in which FIG. 7A is a plan view of the gear of this embodiment, and FIG. 7B is a gear shown in FIG. EE sectional drawing of this, (c) is a state explanatory drawing which shows the deformation | transformation state of the gear in (b), (d) is a state explanatory drawing which shows the deformation | transformation state of the gear of the prior art example corresponding to this embodiment in a cross section. is there.
FIG. 8 is a partial sectional view of a spur two-stage gear showing still another embodiment of a synthetic resin molded gear according to the present invention.
FIG. 9 is a partial cross-sectional view of a helical two-stage gear showing still another embodiment of a synthetic resin molded gear according to the present invention.
10A and 10B show a conventional example of a synthetic resin molded gear, in which FIG. 10A is a plan view, FIG. 10B is a cross-sectional view of the gear shown in FIG. 10A, and FIG. It is a state explanatory view showing the deformation state.
[Explanation of symbols]
11, 11 ', 18 Tooth parts 12, 12', 19 Rim 12a, 12'a Connection part 12b, 12'b End part 13, 13 'Boss 14, 14' Web 15, 15 ', 22, 23 ribs 16, 21 annular rib 17 rib 20 annular portion T 1, T '1, T 11, T 21 the thickness of webs T 2, T' 2, T 12, T 22 thickness of the rim T 3, T 13, T 23 Rib width T 4 , T ′ 4 , T 14 , T 24 Sum of web thickness and rib width W 1 , W 2 tooth width
Claims (1)
前記ウェブの肉厚は前記リムの肉厚に比べて薄く形成され、前記リブの幅が前記ウェブの肉厚よりも細く形成され、前記ウェブの肉厚と前記リブの肉厚の和は前記リムの肉厚よりも薄く形成されていることを特徴とする合成樹脂製の成形歯車。A rim integrated with a plurality of tooth portions on the outer peripheral surface, an annular portion disposed concentrically inside the rim, a web connected to the inner peripheral portion of the rim and the outer peripheral portion of the annular portion ; In a synthetic resin molded gear in which a plurality of ribs provided radially on at least one surface of the web are integrally molded,
The thickness of the web is formed thinner than the thickness of the rim, and the width of the rib is narrower than the thickness of the web. The sum of the thickness of the web and the thickness of the rib is the rim. A synthetic resin molded gear characterized in that it is formed thinner than the wall thickness of the synthetic resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33450599A JP3621009B2 (en) | 1999-11-25 | 1999-11-25 | Synthetic resin molded gear |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33450599A JP3621009B2 (en) | 1999-11-25 | 1999-11-25 | Synthetic resin molded gear |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001153207A JP2001153207A (en) | 2001-06-08 |
JP3621009B2 true JP3621009B2 (en) | 2005-02-16 |
Family
ID=18278161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33450599A Expired - Fee Related JP3621009B2 (en) | 1999-11-25 | 1999-11-25 | Synthetic resin molded gear |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3621009B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5175588B2 (en) * | 2008-03-26 | 2013-04-03 | バンドー化学株式会社 | Injection molding gear |
JP5865871B2 (en) * | 2013-06-19 | 2016-02-17 | 京セラドキュメントソリューションズ株式会社 | Drive device |
DE102016226131B4 (en) * | 2016-12-23 | 2024-05-16 | Robert Bosch Gmbh | Drive wheel for a gear drive device and gear drive device |
-
1999
- 1999-11-25 JP JP33450599A patent/JP3621009B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001153207A (en) | 2001-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20020043124A1 (en) | Plastic gear and method of producing the same | |
JP3747785B2 (en) | Hollow molding component molding method, vehicle member molding method, and vehicle member structure | |
JP3621009B2 (en) | Synthetic resin molded gear | |
JPH0796708A (en) | Industrial rubber wheel and manufacture thereof | |
US2705816A (en) | Method of making a steering wheel | |
JP5890690B2 (en) | Steering shaft | |
EP0010826B1 (en) | Method of manufacturing components adapted to be mounted on a shaft; and components, especially steering wheel hubs, so obtained | |
KR102431505B1 (en) | Gear rim carrier part for two- or multicomponent gear wheel and two- or multicomponent gear wheel comprisng such gear rim carrier part | |
JP2000110919A (en) | Molded gear of synthetic resin | |
JPH08192238A (en) | Frame forming method | |
JP3807859B2 (en) | Manufacturing method of disc for automobile wheel | |
JP3926939B2 (en) | Synthetic resin molded gear | |
JP2000346176A (en) | Plastic molded product | |
JP3596131B2 (en) | Injection molded gear | |
JPH06147295A (en) | Molding pinion, forming die therefor, and manufacture thereof | |
JP3563466B2 (en) | Resin molding | |
JP2827804B2 (en) | Steering wheel molding method | |
JP2008110677A (en) | Manufacturing method of vehicle wheel | |
JP2007093012A (en) | Molded gear | |
JP2000161468A (en) | Synthetic resin mold gear | |
JP7308781B2 (en) | Mandrel and manufacturing method of mandrel | |
US4799918A (en) | Gear wheel | |
KR20180122621A (en) | Method of manufacturing wheel | |
JP2610932B2 (en) | Rotor made of resin with bearing | |
JPH07117682A (en) | Steering wheel made of synthetic resin and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040727 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041116 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071126 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101126 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101126 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111126 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111126 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |