[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3619212B2 - Switchgear - Google Patents

Switchgear Download PDF

Info

Publication number
JP3619212B2
JP3619212B2 JP2002154348A JP2002154348A JP3619212B2 JP 3619212 B2 JP3619212 B2 JP 3619212B2 JP 2002154348 A JP2002154348 A JP 2002154348A JP 2002154348 A JP2002154348 A JP 2002154348A JP 3619212 B2 JP3619212 B2 JP 3619212B2
Authority
JP
Japan
Prior art keywords
main circuit
current
switch
polarity
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002154348A
Other languages
Japanese (ja)
Other versions
JP2003346612A (en
Inventor
行盛 岸田
博之 笹尾
健一 小山
靖 中山
和彦 香川
洋一 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002154348A priority Critical patent/JP3619212B2/en
Publication of JP2003346612A publication Critical patent/JP2003346612A/en
Application granted granted Critical
Publication of JP3619212B2 publication Critical patent/JP3619212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電流の遮断を行う開閉装置、特に強制転流遮断方式の開閉装置に関する。
【0002】
【従来の技術】
図6に従来のこの種の強制転流遮断式の開閉装置の構成図を示す。図において、1は主回路スイッチ、2は主回路電源、6は負荷でこれらが電力系統等の主回路を構成する。7は主回路のインダクタンスを示す。また、4は強制転流回路のコンデンサで3はこのコンデンサ4を図示の極性に充電保持する強制転流回路の直流電源、11は転流のための順方向の投入スイッチ、111は転流のための逆方向の投入スイッチ、12は強制転流回路のリアクトル、15はエネルギー吸収素子でこれらが強制転流回路60を構成し、コンデンサ4のCとリアクトル12のLで決まる周波数の高周波電流を主回路電流に重畳させて主回路電流に零クロス点を持たせる。また、14は主回路電流の方向、異常等の検出のための電流センサ、13は強制転流遮断の制御を行う制御装置、22は主回路スイッチ1に流れる電流、23は重畳する高周波電流、24は全電流を示す。
【0003】
また、図7には主回路スイッチ1の構成の一例を示す。図において、90は真空バルブ、91は固定接点、92は可動接点、93は開極用コイル、94は閉極用コイル、95は反発板、96は接圧発生開極保持バネ、97は上部端子、98は下部端子、99は可動軸である。主回路電流は上部端子97、固定接点91、可動接点92、下部端子98の順で流れ、反発板95と開極用コイル93または閉極用コイル94の間の磁力(斥力)により、可動軸99を含む可動接点92から反発板95までの部分が上下に移動して、真空バルブ90内で固定接点91と可動接点92の接続切り離しが行われる。接圧発生開極保持バネ96はこの際、閉極状態での接圧の発生と開極時の開極保持の力を与えるバネである。
【0004】
次に動作を説明する。機械スイッチである主回路スイッチ1は自己消弧機能がなく、電流零点でないと主回路スイッチ1に流れる主回路電流の遮断ができない。交流回路において自然電流零点を待たず遮断する場合、または直流回路の場合、強制転流遮断式開閉装置(HSS)は電路の電流にリアクトル12およびコンデンサ4を含む強制転流回路60から反対の方向(極性が反対)の高周波電流を重畳させて強制的に電流零点をつくることにより電流を遮断する。交流回路では電流が流れる向きは変わり、直流回路でも事故時では電流の向きが変わるので、両方向の転流回路が必要になる。しかしながら経済性から、例えば電流22で示す方向の電流に逆極性の高周波電流を重畳させるようにコンデンサ4が充電される片方向のための強制転流回路60のみを設け、電流22と逆方向の電流を遮断する場合には、1周期の高周波電流を重畳することで、逆方向からの電流の零点を作って遮断している。これにより、主回路スイッチ1の接点間には主回路電流22に加え、振幅が大きくかつ変化が急峻な高周波電流23が流れることになり、従って主回路スイッチ1には高い遮断性能が要求される。
【0005】
図8には主回路スイッチ1の図6に示す電流22と逆方向の電流22を遮断する場合に、電流22に1周期の高周波電流23を重畳することで、逆方向からの電流零点を作って遮断する際の図6の各部の電流、電圧のタイムチャートを示し、図6の矢印の方向を正として示されている。図8において、22〜24は図6に示すものにそれぞれ対応し、25はコンデンサ4の電圧、26は主回路スイッチ1の図7に示す接点91、92のトラベル状態、57は電流センサ14により制御装置13が事故を判定して主回路スイッチ1に開極指令を送るタイミング、51は主回路スイッチ1の接点間が離れるタイミング、56は順方向、逆方向の投入スイッチ11,111を投入して高周波電流を1周期重畳させるタイミングを示す。図8は結局、全電流24は遮断できなかった状態を示している。
【0006】
【発明が解決しようとする課題】
以上のように従来の強制転流遮断式の開閉装置においては、経済性から片方向の強制転流回路のみしか設けず、1周期の高周波電流を重畳することで逆方向からの電流の零点も作って遮断していた。これにより、高周波電流が1周期重畳された図7の22に示すような主回路スイッチが遮断するべき主回路電流は、電流の振幅が大きくかつ変化が急峻であるため、主回路スイッチの図7に示す真空バルブ90内の接点91,92間において、アーク発弧により接点から噴き出すイオンや電子の密度が大きくなり、又、電流減少速度に真空アーク消滅が追いつかないので、電流零点での電流遮断が困難になっていた。従って主回路スイッチには高い遮断性能が要求されるという問題があった。
【0007】
この発明は上記の課題を解消するためになされたもので、高い遮断性能を要求されることなく1つの強制転流回路で主回路スイッチにおける両方向の電流を遮断可能な強制転流遮断式の開閉装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の目的に鑑み、この発明は、主回路に挿入された主回路スイッチと、主回路に流れる電流を検出する電流センサと、この主回路スイッチの第1の方向の主回路電流と反対の第2の方向に高周波電流を重畳させるように充電されたコンデンサとこれに直列接続されたリアクトル、およびこれらを前記主回路スイッチに並列に接続して高周波電流を前記主回路電流に重畳させる逆並列接続された順方向および逆方向の一対の投入スイッチを含む強制転流回路と、閉ループを介して充放電により電荷を入れ替え前記コンデンサの極性を反転させる極性反転手段と、前記主回路電流の遮断が要求された時に、前記電流センサにより主回路電流の方向を検出する手段と、主回路電流の方向が前記第1の方向であれば前記主回路スイッチに開極指令を発生し、所定時間経過後に前記順方向の投入スイッチを投入して主回路スイッチに前記第1の方向と反対の第2の方向の高周波電流を流す手段と、主回路電流の方向が前記第1の方向と反対の第2の方向であれば前記主回路スイッチに開極指令を発生すると共に前記極性反転手段によりコンデンサの極性を反転させ、所定時間経過後に前記逆方向の投入スイッチを投入して主回路スイッチに前記第1の方向の高周波電流を流す手段と、を備えたことを特徴とする開閉装置にある。
【0009】
また、前記極性反転手段が、前記強制転流回路と主回路スイッチからなる閉ループからなり、前記順方向の投入スイッチを投入し主回路スイッチを介して極性反転を行うことを特徴とする。
【0010】
また、前記極性反転手段が、極性反転用スイッチを含む前記コンデンサの両端間に接続された閉ループからなり、前記極性反転用スイッチを投入しこれを介して極性反転を行うことを特徴とする。
【0011】
【発明の実施の形態】
実施の形態1.
図1はこの発明の一実施の形態による強制転流遮断式の開閉装置の構成図を示す。図において、上記図6と同一もしくは相当部分は同一符号で示す。13aはこの発明による強制転流遮断制御を行う例えばプログラム制御によるマイクロコンピュータ等からなる制御装置、BCは外部からスイッチ(特に図示せず)のマニュアル操作等により入力される遮断指令信号である。また図2にはこの発明による制御装置13aの制御動作を示すフローチャート、図3には図1に示す電流22の方向の主回路電流を遮断する場合の図1の各部の電流、電圧のタイムチャート、図4には図1に示す電流22と逆方向の主回路電流を遮断する場合の図1の各部の電流、電圧のタイムチャートを示す。主回路スイッチ1の構造は図7に示すものと同様である。
【0012】
図3および4において、22〜24は図1に示すものにそれぞれ対応し、また各電流、電圧は図1の矢印、符号の方向を正として示されている。25はコンデンサ4の電圧、26は主回路スイッチ1の図7に示す接点91、92のトラベル状態を示す。また図3において、50は、例えば電流センサ14からの電流検出に基づき制御装置13aが事故を判定あるいは事故とは無関係に外部から遮断指令信号BCが制御装置13aに入力されて主回路電流の遮断が要求され、電流センサ14からの電流検出に基づき主回路電流の方向を判断すると共に主回路スイッチ1に開極指令を送るタイミング、51は主回路スイッチ1の接点間が離れるタイミング、52は順方向の投入スイッチ11を投入して高周波電流を重畳させるタイミング、53は主回路スイッチ1の主回路電流が零点になるタイミング、54は遮断後、回生電流が流れ終わるタイミングを示す。
【0013】
また図4において、51、53、54は図3に示すものに相当するものであり、55は、例えば電流センサ14からの電流検出に基づき制御装置13aが事故を判定あるいは事故とは無関係に外部から遮断指令信号BCが制御装置13aに入力されて主回路電流の遮断が要求され、電流センサ14からの電流検出に基づき主回路電流の方向を判断しこれが反対方向(図1の22と逆方向)である場合に順方向の投入スイッチ11を投入して半周期の高周波電流を重畳させてコンデンサ4の極性を判定させ、さらに主回路スイッチ1に開極指令を送るタイミング、56は逆方向の投入スイッチ111を投入して高周波電流を重畳させるタイミング、結局、全電流24は遮断できなかった状態を示している。
【0014】
すなわち、この発明においては、主回路電流が図1の22に示す方向(第1の方向:正方向)である場合には基本的に従来と同様の遮断動作を行い、主回路電流が図1の22と反対の方向(第2の方向:逆方向)である場合には、主回路スイッチ1に開極指令が与えられその接点間が実際に離れる前に、例えば図1の順方向の投入スイッチ11を半周期投入して投入スイッチ11、リアクトル12、主回路スイッチ1からなる閉ループ回路を介してコンデンサ4の電荷を入れ替えて極性を反転させるようにしておくことで、1つの強制転流回路60で図1の22と反対の方向の主回路電流に対しても、これと極性の反対の高周波電流を重畳させて零点をつくって遮断を行えるようにした。
【0015】
以下、図1〜4に従って動作を説明する。例えば電流センサ14からの電流検出に基づき制御装置13aが事故を判定した場合(主回路電流値が所定値を越え主回路スイッチ遮断が必要な状態等)、あるいは事故とは無関係に外部から遮断指令信号BCが制御装置13aに入力されて主回路電流の遮断が要求されると(ステップS1)、電流センサ14からの電流検出に基づき主回路電流の方向を判断する(ステップS2)。
【0016】
主回路電流が図1の22に示す方向(第1の方向:正方向)である場合には基本的に従来と同様の遮断動作を行い、主回路スイッチ1に開極指令を与え(ステップS3)、主回路スイッチ1の接点間が実際に離れ始めた(主回路スイッチ1はスイッチングの機械的時間遅れがある)後の所定時間経過後に順方向の投入スイッチ11を投入して、主回路スイッチ1に電流22(第1の方向)と反対方向(第2の方向)の高周波電流23を流して重畳させる(ステップS3)。これにより、主回路スイッチ1の電流22すなわち主回路電流は遮断される(以上図3参照)。
【0017】
一方、主回路電流が図1の22に示す方向と反対(第2の方向:逆方向)である場合には、まず順方向の投入スイッチ11を投入して高周波電流を半周期流しコンデンサ4の極性を反転させる。なおこれは、後の主回路スイッチ1に開極指令を与えその接点間が実際に離れ始める前までに行えばよい(ステップS5)。以降は上記正方向の時と基本的同様で、主回路スイッチ1に開極指令を与え(ステップS6)、主回路スイッチ1の接点間が実際に離れ始めた後の所定時間経過後に逆方向の投入スイッチ111を投入して、主回路スイッチ1に電流22(第2の方向)と反対方向(第1の方向)の高周波電流23を流して重畳させる(ステップS7)。これにより、主回路スイッチ1の電流22すなわち主回路電流は遮断される(以上図4参照)。
【0018】
このように、主回路スイッチ1に流れる電流が逆方向の場合には、遮断する前に、強制転流回路60のコンデンサ4の極性を充放電により反転させておくことにより、正方向の電流と同様に強制転流遮断することが可能であり、特にコンデンサ4を主回路スイッチ1を介して充放電させて極性反転を行うことにより、基本的に制御の変更のみで実施が可能となる。
【0019】
実施の形態2.
図2はこの発明の別の実施の形態による強制転流遮断式の開閉装置の構成図を示す。この実施の形態では、極性反転用スイッチ112およびリアクトル113を含む、コンデンサ4の極性反転専用の閉ループ114を設け、主回路スイッチ1の電流22が図1と逆方向である場合には極性反転用スイッチ112を投入して反転させるようにした。その他は上記実施の形態と同様である。
【0020】
主回路スイッチ1に大きな電流が流れると図7に示す主回路スイッチ1の接点91、92間が離れようとする力が発生するが、通常これを接圧発生開極保持バネ96で接点間を押し付けるようにしている。この実施の形態では、コンデンサ4の極性反転の際、上記実施の形態のように図4の22に示すように主回路電流22に同極性の高周波電流が重畳して流れることがないので押し付け力を低減でき、主回路スイッチ1の接圧発生開極保持バネ96等の構造をより簡単なものにできる。
【0021】
なお、主回路電流の遮断が必要な状態として、電流センサ14からの電流検出に基づき制御装置13aが事故を判定した場合、事故とは無関係に外部から遮断指令信号BCが制御装置13aに入力された場合を例に挙げたが、例えば電流センサ14からの電流検出に基づく場合、例えば、電流レベルをチェックする、メモリ(特に図示せず)等に基準となる電流波形を格納しておき電流波形をチェックする等がある。また、さらに主回路電圧測定用の電圧計(特に図示せず)を設け、同様に、電圧レベルをチェックする、メモリ(特に図示せず)等に基準となる電圧波形を格納しておき電圧波形をチェックする等としてもよい。
【図面の簡単な説明】
【図1】この発明の一実施の形態による強制転流遮断式の開閉装置の構成を示す図である。
【図2】この発明による制御装置の制御動作を示すフローチャートである。
【図3】この発明による装置の正方向の主回路電流を遮断する場合の図1の各部の電流、電圧のタイムチャートである。
【図4】この発明による装置の逆方向の主回路電流を遮断する場合の図1の各部の電流、電圧のタイムチャートである。
【図5】この発明の別の実施の形態による強制転流遮断式の開閉装置の構成を示す図である。
【図6】従来のこの種の強制転流遮断式の開閉装置の構成を示す図である。
【図7】主回路スイッチの構成の一例を示す図である。
【図8】従来の動作を説明するための図6の各部の電流、電圧のタイムチャートである。
【符号の説明】
1 主回路スイッチ、2 主回路電源、3 強制転流回路の直流電源、4 強制転流回路のコンデンサ、6 負荷、7 主回路のインダクタンス、11 順方向の投入スイッチ、12 強制転流回路のリアクトル、13a 制御装置、14電流センサ、15 エネルギー吸収素子、60 強制転流回路、111 逆方向の投入スイッチ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a switchgear for cutting off current, and more particularly to a forced commutation cutoff type switchgear.
[0002]
[Prior art]
FIG. 6 shows a configuration diagram of this type of conventional forced commutation cutoff type switching device. In the figure, 1 is a main circuit switch, 2 is a main circuit power supply, and 6 is a load, which constitute a main circuit such as a power system. Reference numeral 7 denotes the inductance of the main circuit. 4 is a capacitor of the forced commutation circuit, 3 is a DC power source of the forced commutation circuit that charges and holds the capacitor 4 in the illustrated polarity, 11 is a forward closing switch for commutation, and 111 is a commutation switch. For the reverse commutation switch, 12 is a reactor of the forced commutation circuit, 15 is an energy absorption element, and these constitute a forced commutation circuit 60, and a high frequency current having a frequency determined by C of the capacitor 4 and L of the reactor 12 is generated. The main circuit current is superposed on the main circuit current to have a zero cross point. Further, 14 is a current sensor for detecting the direction of the main circuit current, abnormality, etc., 13 is a control device for controlling forced commutation cutoff, 22 is a current flowing through the main circuit switch 1, 23 is a high-frequency current to be superimposed, Reference numeral 24 denotes the total current.
[0003]
FIG. 7 shows an example of the configuration of the main circuit switch 1. In the figure, 90 is a vacuum valve, 91 is a fixed contact, 92 is a movable contact, 93 is a coil for opening, 94 is a coil for closing, 95 is a repulsion plate, 96 is a contact pressure generating opening holding spring, and 97 is an upper part. A terminal, 98 is a lower terminal, and 99 is a movable shaft. The main circuit current flows in the order of the upper terminal 97, the fixed contact 91, the movable contact 92, and the lower terminal 98, and the movable shaft is driven by the magnetic force (repulsive force) between the repulsion plate 95 and the opening coil 93 or the closing coil 94. The part from the movable contact 92 including 99 to the repulsion plate 95 moves up and down, and the connection between the fixed contact 91 and the movable contact 92 is disconnected in the vacuum valve 90. At this time, the contact pressure generating and opening holding spring 96 is a spring that generates a contact pressure in a closed state and provides a force for maintaining the opening at the time of opening.
[0004]
Next, the operation will be described. The main circuit switch 1 which is a mechanical switch does not have a self-extinguishing function, and the main circuit current flowing through the main circuit switch 1 cannot be interrupted unless the current is zero. When the AC circuit cuts off without waiting for the natural current zero point, or in the case of a DC circuit, the forced commutation cutoff switch (HSS) is in the opposite direction from the forced commutation circuit 60 including the reactor 12 and the capacitor 4 in the current of the circuit. The current is cut off by forcibly creating a current zero point by superimposing high-frequency currents of opposite polarity. In an AC circuit, the direction of current flow changes, and even in a DC circuit, the direction of current changes in the event of an accident, so a commutation circuit in both directions is required. However, for economic reasons, for example, only a unidirectional forced commutation circuit 60 in which the capacitor 4 is charged is provided so as to superimpose a high-frequency current having a reverse polarity on a current in the direction indicated by the current 22. When the current is cut off, a high frequency current of one cycle is superimposed to create a zero point of the current from the reverse direction and cut off. As a result, in addition to the main circuit current 22, a high-frequency current 23 having a large amplitude and a steep change flows between the contacts of the main circuit switch 1. Therefore, the main circuit switch 1 is required to have a high breaking performance. .
[0005]
In FIG. 8, when the current 22 in the reverse direction to the current 22 shown in FIG. 6 of the main circuit switch 1 is cut off, a current zero point from the reverse direction is created by superimposing one cycle of the high-frequency current 23 on the current 22. 6 shows a time chart of currents and voltages of the respective parts in FIG. 6 at the time of interruption, and the direction of the arrow in FIG. 6 is shown as positive. 8, 22-24 correspond to those shown in FIG. 6, 25 is the voltage of the capacitor 4, 26 is the travel state of the contacts 91, 92 shown in FIG. 7 of the main circuit switch 1, and 57 is the current sensor 14. The timing at which the control device 13 determines an accident and sends an opening command to the main circuit switch 1, 51 is the timing at which the contacts of the main circuit switch 1 are separated, 56 is at the time of turning on the forward and reverse closing switches 11, 111 The timing at which the high-frequency current is superimposed for one period is shown. FIG. 8 shows a state where the total current 24 cannot be cut off.
[0006]
[Problems to be solved by the invention]
As described above, in the conventional forced commutation cutoff type switchgear, only a unidirectional forced commutation circuit is provided for economy, and the zero point of the current from the reverse direction can be obtained by superimposing one cycle of high-frequency current. I made it and blocked it. As a result, the main circuit current that should be cut off by the main circuit switch 22 shown in FIG. 7 on which the high-frequency current is superimposed for one period has a large current amplitude and a sharp change. Between the contacts 91 and 92 in the vacuum valve 90 shown in FIG. 3, the density of ions and electrons ejected from the contacts by arc firing increases, and the vacuum arc extinction cannot catch up with the rate of current reduction. Had become difficult. Therefore, there is a problem that the main circuit switch is required to have a high breaking performance.
[0007]
The present invention has been made to solve the above-described problems, and is a forced commutation cutoff type opening and closing type capable of interrupting current in both directions in the main circuit switch with one forced commutation circuit without requiring high cutoff performance. An object is to provide an apparatus.
[0008]
[Means for Solving the Problems]
In view of the above-described object, the present invention provides a main circuit switch inserted in a main circuit, a current sensor for detecting a current flowing in the main circuit, and a first opposite to the main circuit current in the first direction of the main circuit switch. A capacitor charged so as to superimpose a high-frequency current in the direction of 2 and a reactor connected in series with the capacitor, and an anti-parallel connection that superimposes the high-frequency current on the main circuit current by connecting them in parallel to the main circuit switch A forced commutation circuit including a pair of forward and reverse input switches, polarity reversal means for reversing the polarity of the capacitor by exchanging charges through charge and discharge through a closed loop, and interruption of the main circuit current are required. Means for detecting the direction of the main circuit current by the current sensor, and if the direction of the main circuit current is the first direction, an opening command is sent to the main circuit switch. And a means for turning on the forward closing switch after a predetermined time to flow a high-frequency current in a second direction opposite to the first direction through the main circuit switch, and a direction of the main circuit current being the first If the second direction is opposite to the direction, the opening instruction is issued to the main circuit switch and the polarity of the capacitor is reversed by the polarity reversing means. And a means for supplying a high-frequency current in the first direction to the main circuit switch.
[0009]
The polarity reversing means comprises a closed loop composed of the forced commutation circuit and a main circuit switch, and the polarity reversal is performed via the main circuit switch by turning on the forward closing switch.
[0010]
The polarity reversing means may be a closed loop connected between both ends of the capacitor including a polarity reversing switch, and the polarity reversing switch is turned on to perform polarity reversal.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a forced commutation cutoff type switching device according to an embodiment of the present invention. In the figure, the same or corresponding parts as those in FIG. Reference numeral 13a denotes a control device comprising a microcomputer or the like under program control for performing forced commutation cutoff control according to the present invention, and BC is a cutoff command signal inputted from the outside by manual operation of a switch (not shown). 2 is a flowchart showing the control operation of the control device 13a according to the present invention, and FIG. 3 is a time chart of current and voltage of each part of FIG. 1 when the main circuit current in the direction of the current 22 shown in FIG. FIG. 4 is a time chart of currents and voltages of respective parts in FIG. 1 when the main circuit current in the direction opposite to that of the current 22 shown in FIG. 1 is cut off. The structure of the main circuit switch 1 is the same as that shown in FIG.
[0012]
3 and 4, numerals 22 to 24 correspond to those shown in FIG. 1, and currents and voltages are shown with the arrow and the direction of the sign in FIG. 1 as positive. Reference numeral 25 denotes a voltage of the capacitor 4, and 26 denotes a travel state of the contacts 91 and 92 shown in FIG. 7 of the main circuit switch 1. In FIG. 3, reference numeral 50 denotes, for example, that the control device 13 a determines an accident based on the current detection from the current sensor 14, or the cutoff command signal BC is input from the outside to the control device 13 a regardless of the accident and the main circuit current is cut off. Is determined, the direction of the main circuit current is determined based on the current detection from the current sensor 14 and the opening command is sent to the main circuit switch 1, 51 is the timing when the contacts of the main circuit switch 1 are separated, and 52 is the order The timing when the direction switch 11 is turned on to superimpose the high-frequency current, 53 indicates the timing when the main circuit current of the main circuit switch 1 becomes zero, and 54 indicates the timing when the regenerative current ends after the interruption.
[0013]
In FIG. 4, reference numerals 51, 53, and 54 correspond to those shown in FIG. 3, and reference numeral 55 indicates that the controller 13a determines an accident based on, for example, current detection from the current sensor 14, or is external regardless of the accident. Is inputted to the control device 13a to request the interruption of the main circuit current, and the direction of the main circuit current is determined based on the current detection from the current sensor 14, which is the opposite direction (the opposite direction to 22 in FIG. 1). ), The forward closing switch 11 is turned on to superimpose a half-cycle high-frequency current so that the polarity of the capacitor 4 is determined, and the opening instruction is sent to the main circuit switch 1. The timing at which the on-off switch 111 is turned on to superimpose the high-frequency current, that is, the state in which the entire current 24 cannot be interrupted is shown.
[0014]
That is, according to the present invention, when the main circuit current is in the direction indicated by 22 in FIG. 1 (first direction: positive direction), basically the same interruption operation as in the prior art is performed, and the main circuit current is shown in FIG. 1 is applied in the forward direction of FIG. 1, for example, before an opening command is given to the main circuit switch 1 and the contacts are actually separated from each other. One forced commutation circuit is configured such that the polarity of the capacitor 4 is reversed by switching the switch 11 through a half-cycle and switching the charge of the capacitor 4 through the closed loop circuit including the closing switch 11, the reactor 12, and the main circuit switch 1. 60, the high-frequency current having the opposite polarity to the main circuit current in the direction opposite to 22 in FIG.
[0015]
The operation will be described below with reference to FIGS. For example, when the controller 13a determines an accident based on the current detection from the current sensor 14 (a state in which the main circuit current value exceeds a predetermined value and the main circuit switch needs to be shut off), or a command to shut off from the outside regardless of the accident. When the signal BC is input to the control device 13a and a cutoff of the main circuit current is requested (step S1), the direction of the main circuit current is determined based on the current detection from the current sensor 14 (step S2).
[0016]
When the main circuit current is in the direction indicated by 22 in FIG. 1 (first direction: positive direction), basically the same interruption operation as in the prior art is performed, and an opening command is given to the main circuit switch 1 (step S3). ) When the predetermined time has elapsed after the contacts of the main circuit switch 1 have actually started to separate (the main circuit switch 1 has a switching mechanical time delay), 1, a high-frequency current 23 in the direction opposite to the current 22 (first direction) (second direction) is caused to flow and superimpose (step S3). Thereby, the current 22 of the main circuit switch 1, that is, the main circuit current is cut off (see FIG. 3 above).
[0017]
On the other hand, when the main circuit current is opposite to the direction indicated by 22 in FIG. 1 (second direction: reverse direction), the forward closing switch 11 is first turned on to allow the high-frequency current to flow for a half cycle and Invert the polarity. This may be performed before the opening instruction is given to the subsequent main circuit switch 1 and before the contacts actually start to separate (step S5). The subsequent steps are basically the same as those in the forward direction, and an opening command is given to the main circuit switch 1 (step S6). After a predetermined time elapses after the contacts of the main circuit switch 1 actually start to separate, The closing switch 111 is turned on, and the high frequency current 23 in the direction opposite to the current 22 (second direction) (first direction) is caused to flow and superimpose on the main circuit switch 1 (step S7). Thereby, the current 22 of the main circuit switch 1, that is, the main circuit current is cut off (see FIG. 4 above).
[0018]
As described above, when the current flowing through the main circuit switch 1 is in the reverse direction, the polarity of the capacitor 4 of the forced commutation circuit 60 is reversed by charging / discharging before the interruption, so that Similarly, forced commutation can be interrupted, and in particular, by charging and discharging the capacitor 4 via the main circuit switch 1 to perform polarity reversal, it is basically possible to implement only by changing the control.
[0019]
Embodiment 2. FIG.
FIG. 2 shows a configuration diagram of a forced commutation cutoff type switchgear according to another embodiment of the present invention. In this embodiment, a closed loop 114 dedicated to the polarity inversion of the capacitor 4 including the polarity inversion switch 112 and the reactor 113 is provided, and the polarity inversion is performed when the current 22 of the main circuit switch 1 is in the opposite direction to FIG. The switch 112 was turned on so as to be reversed. Others are the same as in the above embodiment.
[0020]
When a large current flows through the main circuit switch 1, a force for separating the contacts 91 and 92 of the main circuit switch 1 shown in FIG. 7 is generated. Usually, the contact is generated between the contacts by a contact pressure generating opening holding spring 96. I try to press it. In this embodiment, when the polarity of the capacitor 4 is reversed, a high-frequency current of the same polarity does not flow superimposed on the main circuit current 22 as shown in FIG. The structure of the main circuit switch 1 such as the contact pressure generating and opening retaining spring 96 can be simplified.
[0021]
When the control device 13a determines that an accident has occurred based on the current detection from the current sensor 14 as a state in which the main circuit current needs to be interrupted, an interrupt command signal BC is input to the control device 13a from the outside regardless of the accident. For example, when based on current detection from the current sensor 14, for example, a current waveform that is used as a reference is stored in a memory (not shown) or the like that checks the current level. There is a check. In addition, a voltmeter (not shown) for measuring the main circuit voltage is further provided. Similarly, a voltage waveform to be used as a reference is stored in a memory (not shown) or the like for checking the voltage level. It is good also as checking.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a forced commutation cutoff type switching device according to an embodiment of the present invention;
FIG. 2 is a flowchart showing a control operation of the control device according to the present invention.
FIG. 3 is a time chart of currents and voltages at various parts in FIG. 1 when the main circuit current in the positive direction of the device according to the present invention is cut off.
FIG. 4 is a time chart of currents and voltages at various parts in FIG. 1 when the main circuit current in the reverse direction of the device according to the present invention is cut off.
FIG. 5 is a diagram showing a configuration of a forced commutation cutoff type switching device according to another embodiment of the present invention.
FIG. 6 is a diagram showing a configuration of a conventional forced commutation cutoff type opening / closing device of this type.
FIG. 7 is a diagram illustrating an example of a configuration of a main circuit switch.
8 is a time chart of currents and voltages at various parts in FIG. 6 for explaining a conventional operation.
[Explanation of symbols]
1 main circuit switch, 2 main circuit power supply, 3 DC power supply for forced commutation circuit, 4 capacitor for forced commutation circuit, 6 load, 7 inductance of main circuit, 11 forward switch, 12 reactor for forced commutation circuit , 13a Control device, 14 current sensor, 15 energy absorbing element, 60 forced commutation circuit, 111 reverse direction switch.

Claims (3)

主回路に挿入された主回路スイッチと、
主回路に流れる電流を検出する電流センサと、
この主回路スイッチの第1の方向の主回路電流と反対の第2の方向に高周波電流を重畳させるように充電されたコンデンサとこれに直列接続されたリアクトル、およびこれらを前記主回路スイッチに並列に接続して高周波電流を前記主回路電流に重畳させる逆並列接続された順方向および逆方向の一対の投入スイッチを含む強制転流回路と、
閉ループを介して充放電により電荷を入れ替え前記コンデンサの極性を反転させる極性反転手段と、
前記主回路電流の遮断が要求された時に、前記電流センサにより主回路電流の方向を検出する手段と、
主回路電流の方向が前記第1の方向であれば前記主回路スイッチに開極指令を発生し、所定時間経過後に前記順方向の投入スイッチを投入して主回路スイッチに前記第1の方向と反対の第2の方向の高周波電流を流す手段と、
主回路電流の方向が前記第1の方向と反対の第2の方向であれば前記主回路スイッチに開極指令を発生すると共に前記極性反転手段によりコンデンサの極性を反転させ、所定時間経過後に前記逆方向の投入スイッチを投入して主回路スイッチに前記第1の方向の高周波電流を流す手段と、
を備えたことを特徴とする開閉装置。
A main circuit switch inserted in the main circuit;
A current sensor for detecting the current flowing in the main circuit;
A capacitor charged so as to superimpose a high-frequency current in a second direction opposite to the main circuit current in the first direction of the main circuit switch, a reactor connected in series with the capacitor, and these in parallel with the main circuit switch A forced commutation circuit including a pair of forward and reverse input switches connected in reverse parallel to superimpose a high frequency current on the main circuit current
Polarity reversing means for reversing the polarity of the capacitor by exchanging charges by charging and discharging through a closed loop;
Means for detecting a direction of the main circuit current by the current sensor when the interruption of the main circuit current is requested;
If the direction of the main circuit current is the first direction, an opening command is issued to the main circuit switch, and after a predetermined time has elapsed, the forward direction switch is turned on and the main circuit switch is turned on with the first direction. Means for flowing a high-frequency current in the opposite second direction;
If the direction of the main circuit current is the second direction opposite to the first direction, an opening command is issued to the main circuit switch, and the polarity of the capacitor is inverted by the polarity inversion means, and after a predetermined time has elapsed, Means for turning on a reverse turn-on switch to flow a high-frequency current in the first direction to the main circuit switch;
A switchgear characterized by comprising:
前記極性反転手段が、前記強制転流回路と主回路スイッチからなる閉ループからなり、前記順方向の投入スイッチを投入し主回路スイッチを介して極性反転を行うことを特徴とする請求項1に記載の開閉装置。The polarity inversion means comprises a closed loop composed of the forced commutation circuit and a main circuit switch, and the polarity inversion is performed via the main circuit switch by turning on the forward closing switch. Switchgear. 前記極性反転手段が、極性反転用スイッチを含む前記コンデンサの両端間に接続された閉ループからなり、前記極性反転用スイッチを投入しこれを介して極性反転を行うことを特徴とする請求項1に記載の開閉装置。2. The polarity inversion means comprises a closed loop connected between both ends of the capacitor including a polarity inversion switch, and the polarity inversion is performed through the polarity inversion switch. The switchgear described.
JP2002154348A 2002-05-28 2002-05-28 Switchgear Expired - Fee Related JP3619212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002154348A JP3619212B2 (en) 2002-05-28 2002-05-28 Switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002154348A JP3619212B2 (en) 2002-05-28 2002-05-28 Switchgear

Publications (2)

Publication Number Publication Date
JP2003346612A JP2003346612A (en) 2003-12-05
JP3619212B2 true JP3619212B2 (en) 2005-02-09

Family

ID=29771175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002154348A Expired - Fee Related JP3619212B2 (en) 2002-05-28 2002-05-28 Switchgear

Country Status (1)

Country Link
JP (1) JP3619212B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660131B2 (en) * 2004-07-15 2011-03-30 株式会社東芝 DC circuit breaker
JP2012079660A (en) * 2010-10-06 2012-04-19 Hitachi Ltd Commutation-type ac breaker
EP3240004B1 (en) * 2014-12-26 2021-04-07 Tokyo Institute of Technology Circuit breaker
WO2021038978A1 (en) * 2019-08-30 2021-03-04 株式会社日立製作所 Commutation-type direct-current circuit breaker and method for same

Also Published As

Publication number Publication date
JP2003346612A (en) 2003-12-05

Similar Documents

Publication Publication Date Title
US4805062A (en) DC circuit breaker and method of commutation thereof
JP6029772B2 (en) DC breaker
JP2001197680A (en) Apparatus and method for switching power system
EP3242309B1 (en) High voltage dc circuit breaker
JP6042035B2 (en) DC breaker
JP2017527067A (en) DC cutoff cutoff switch
JP5031607B2 (en) DC high-speed vacuum circuit breaker
JP3619212B2 (en) Switchgear
JP2004014241A (en) Dc breaker
JPH0917294A (en) Two-way dc circuit breaker
JPH0589753A (en) Direct current breaker
JP2016126920A (en) High voltage current circuit breaker
JP3711334B2 (en) Switchgear
JP2004248345A (en) Distributed power source system
US11049677B2 (en) Inverse current injection-type direct current blocking device and method using vacuum gap switch
JP3954265B2 (en) Power converter for vehicle
JP2002110006A (en) Direct current breaker
KR20170122005A (en) Short-circuit testing device
WO2016199407A1 (en) Direct-current interruption apparatus, direct-current interruption method
JP4374669B2 (en) Switchgear
JPH10224187A (en) Pulse power source device
JP4229630B2 (en) DC circuit breaker
JPS58121519A (en) Breaker with resistance contact
JPH10262376A (en) Electric power converter
JP2002025396A (en) Power supply device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3619212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees