[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3615947B2 - Dielectric porcelain composition and porcelain capacitor - Google Patents

Dielectric porcelain composition and porcelain capacitor Download PDF

Info

Publication number
JP3615947B2
JP3615947B2 JP29936998A JP29936998A JP3615947B2 JP 3615947 B2 JP3615947 B2 JP 3615947B2 JP 29936998 A JP29936998 A JP 29936998A JP 29936998 A JP29936998 A JP 29936998A JP 3615947 B2 JP3615947 B2 JP 3615947B2
Authority
JP
Japan
Prior art keywords
component
additive component
dielectric
mol
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29936998A
Other languages
Japanese (ja)
Other versions
JP2000128635A (en
Inventor
洋一 水野
康之 猪又
広一 茶園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP29936998A priority Critical patent/JP3615947B2/en
Publication of JP2000128635A publication Critical patent/JP2000128635A/en
Application granted granted Critical
Publication of JP3615947B2 publication Critical patent/JP3615947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、誘電体磁器組成物、特に数100MHz〜数GHzの高周波領域で使用される0.01pF〜30pF程度の低容量の磁器コンデンサの誘電体層を形成するのに適した誘電体磁器組成物とこの誘電体磁器組成物を用いて形成した磁器コンデンサに関するものである。
【0002】
【従来の技術】
高周波領域で使用される低容量の磁器コンデンサの誘電体層の材料としては、従来、TiO 系材料、CaTiO 系材料、LaTiO 系材料、CaZrO 系材料、MgTiO 系材料等の低誘電率の誘電体磁器組成物が用いられていた。そして、これらの誘電体磁器組成物を用いた磁器コンデンサの内部電極の材料としては、Pt,Pd,Cu,Ni等の金属が用いられていた。
【0003】
ただ、これらの内部電極の材料中、Ptは高価な金属なので、これを内部電極の材料として使用すると磁器コンデンサの製造コストを高めるという欠点があった。また、Cu,Ni等の卑金属は焼成中に酸化し易いので、これを内部電極の材料として使用する場合は焼成雰囲気の制御をしなければならず、この点で磁器コンデンサの製造コストを高めるという欠点があった。
【0004】
本件特許出願人はこれらの欠点を解消する誘電体磁器組成物として、特願平8−188094号(特開平10−17359号)特許出願及び特願平9−84527号特許出願で、珪酸マグネシウム・亜鉛[(Mg Zn(1−a) SiOx+2 ]、アルミナ[Al ]、及びチタン酸ストロンチウム[SrTiO ]系の誘電体磁器組成物を提案した。
【0005】
この提案に係る誘電体磁器組成物は、数100MHz〜数GHzの高周波領域においてQ値が高く、損失、リーク電流の小さな低容量(0.01pF〜30pF)の磁器コンデンサを得ることができるという利点を有するものである。また、これらの誘電体磁器組成物は、1100℃以下の温度で焼結させることができるので、デラミネーション等の構造欠陥を抑制できるという利点を有するものである。
【0006】
【発明が解決しようとする課題】
ところで、企業間における技術競争は厳しいものがあり、電子機器回路の特性も更なる向上が求められ、そのために、上記提案の誘電体磁器組成物についても磁器コンデンサのQ値を更に向上させるものが求められている。
【0007】
磁器コンデンサのQ値を高めるためには、内部電極を比抵抗値の小さな金属材料で形成する方法が考えられる。そして、比抵抗値の小さな金属材料としてはAgが挙げられる。
【0008】
しかし、Agは融点が960℃と、上記誘電体磁器組成物の焼結温度1050〜1100℃より低いので、焼成の際に積層体内の内部電極が溶融してしまい、このままでは内部電極の材料として使用することができない。
【0009】
この発明は、950℃以下の温度で焼成でき、Pdよりも比抵抗の小さな、周波数特性の良好なAgを内部電極の材料として使用してもデラミネーションを生じさせず、低誘電率(ε :15以下)で、積層磁器コンデンサにした場合にリーク電流が低い(125℃−600Vで1.0μA以下)誘電体磁器組成物とこの誘電体磁器組成物を用いた磁器コンデンサを提供することを目的とする。
【0010】
【課題を解決するための手段】
この発明に係る誘電体磁器組成物は、一般式 X(Mg Zn(1−a) SiOX+2 −YAl −ZSrTiO で表わされる主成分と、Nb,Ta,及びWから選択された1種又は2種以上の元素の化合物からなる第一添加成分と、V,Cr,Mn,Fe,Co,Ni,及びCuから選択された1種又は2種以上の元素の化合物からなる第二添加成分を含有し、
前記主成分を構成する珪酸マグネシウム・亜鉛[(Mg Zn(1−a) SiOX+2 ]、アルミナ[Al ]及びチタン酸ストロンチウム[SrTiO ]のモル比[%]が、これら3種の化合物のモル比(X,Y,Z)を示す3成分組成図に於いて、
A(94.9, 0.1, 5.0)
B(85.0, 10.0, 5.0)
C(65.0, 10.0, 25.0)
D(65.0, 0.1, 34.9)
で示される各点A〜Dを頂点とする多角形で囲まれた範囲にあり、
前記主成分を表す一般式中のa及びxの値が、
0.1≦a≦0.80
0.67≦x≦1.30
の範囲にあり、
前記第一添加成分がNbO5/2 ,TaO5/2 ,又はWO に換算して0.01〜0.2モル%含有され、
前記第二添加成分がVO5/2 ,CrO3/2 ,MnO3/2 ,FeO3/2 ,CoO3/2 ,NiO,又はCuOに換算して0.05〜2.0モル%含有されているものである。
【0011】
ここで、MZS,Al 及びSrTiO のモル比[%]を上記の範囲としたのは、これらの化合物が上記の範囲にある場合は所望の電気的特性の誘電体磁器組成物が得られるが、これらの化合物が上記の範囲を逸脱すると、950℃以下の焼成で緻密な焼結体が得られなくなったり、誘電率が15以上と大きくなり過ぎ、また、温度係数がマイナス側に大きくなり過ぎるからである。
【0012】
また、aの値を0.1〜0.80の範囲としたのは、aの値がこの範囲にある場合は所望の電気的特性の誘電体磁器組成物が得られるが、aの値が0.1未満になると、焼結体の内部にポアが多く存在してしまい、緻密な焼結体が得られなくなり、aの値が0.8を超えると、950℃の焼成で緻密な焼結体が得られなくなるからである。
【0013】
また、xの値を0.67〜1.30の範囲としたのは、xの値がこの範囲にある場合は、所望の電気的特性の誘電体磁器組成物が得られるが、xの値が0.67未満になると、焼成の際に融着したり、焼成適正温度幅が非常に狭くなり、焼結体中にポアが多く生成してしまったり、Q値が1000より小さくなってしまい、xの値が1.30を超えると、950℃の焼成で緻密な焼結体が得られなくなるからである。
【0014】
前記第一添加成分をNbO5/2 ,TaO5/2 又はWO に換算して0.01〜0.2モル%の範囲としたのは、これらの添加成分がこれらの範囲にある場合は信頼性の高い(リーク電流の少ない)所望の電気的特性の誘電体磁器組成物が得られるが、これらの添加成分が0.01モル%未満になると、リーク電流が1.0μA以上となり、0.2モル%を越えると950℃以下の焼成で、緻密な焼結体が得られなくなるからである。
【0015】
前記第二添加成分をVO5/2 ,CrO3/2 ,MnO3/2 ,FeO3/2 ,CoO3/2 ,NiO又はCuOに換算して0.05〜2.0モル%の範囲としたのは、これらの添加成分がこれらの範囲にある場合は低温焼成で所望の電気的特性の誘電体磁器組成物が得られるが、これらの成分が0.05モル%未満になるか、2.0モル%を超えると緻密な焼結体が得られなくなるからである。
【0016】
なお、前記第一添加成分及び第二添加成分は、単独で使用しても、また複数種を同時に使用しても同様の結果が得られる。また、これらの添加成分は酸化物だけでなく、焼成して酸化物となり得る炭酸塩やその他の可溶性の合成物を用いても良い。
【0017】
また、MZS,Al 及びSTからなる混合物の仮焼は行っても、行わなくても、所望の特性は得られるが、仮焼の有無で電気的特性は変化する。また、仮焼により添加成分と主成分、或いは添加成分同志で反応が起こり、結晶系が変化し、急激に収縮が生じたり、収縮率が大きくなる場合、仮焼は有効である。すなわち、仮焼はデラミネーション、クラック等の構造欠陥の抑制に有効である。
【0018】
また、この発明に係る磁器コンデンサは、上記の誘電体磁器組成物を誘電体層として用いたものである。ここで、内部電極の材料としてはAgが好ましい。磁器コンデンサは単層タイプのもの及び積層タイプのもののいずれにも適用できる。
【0019】
また、この発明に係る磁器コンデンサは、低周波領域でも十分使用できるが、特に、数100MHz〜数GHzの高周波領域で使用される0.01pF〜30pF程度の低容量の磁器コンデンサとして用いるのに好適である。
【0020】
【実施例】
まず、MgO,ZnO及びSiO を表1〜表5に示すような比率で秤量し、これらをボールミルに入れ、湿式で15時間粉砕混合し、これらの混合物からなる泥漿を得た。そして、この泥漿を取り出して濾過し、ケーキの部分を乾燥器に入れ、150℃で充分に乾燥させ、混合物の粉末を得た。
【0021】
次に、この混合物の粉末を加熱炉に入れ、1100℃で仮焼し、混合物を構成している化合物を相互に反応させてMZSを得た。なお、ここでは混合物を1100℃で仮焼しているが、仮焼温度は900〜1200℃の範囲で変更可能である。また、この仮焼は必ずしもしなくてよく、試料No.85〜89のものはこの仮焼をしなかった。
【0022】
次に、このMZSをボールミルに入れ、湿式で充分に粉砕してMZSの泥漿を得た。そして、この泥漿を取り出して濾過し、ケーキの部分を乾燥器に入れ、150℃で充分に乾燥させ、MZSの粉末を得た。
【0023】
次に、MZS,Al ,ST,第一添加成分及び第二添加成分を表1〜表5に示すような比率で秤量し、これらをボールミルに入れ、湿式で充分に混合し、これらの混合物からなる泥漿を得た。そして、この泥漿を取り出して濾過し、ケーキの部分を乾燥器に入れ、150℃で充分に乾燥させ、混合物の粉末を得た。
【0024】
次に、試料No.24,88のものについては、800℃で2時間(800/2)、試料No.89のものについては、900℃で2時間(900/2)仮焼した。ここでは800℃又は900℃で2時間仮焼しているが、700〜900℃で2〜4時間の範囲で変更可能である。また、この仮焼も必須のものではなく、これらの試料No以外のものは仮焼しなかった。
【0025】
次に、有機バインダを加えて造粒し、プレス成型して直径約10mm、厚さ約0.5mmの円板状の試料を作製し、この試料を900〜950℃で1〜4時間焼成して焼結させ、Agペーストを塗布し、700℃で15分間焼成して外部電極を形成させ、磁器コンデンサを形成した。
【0026】
一方、混合物の粉末に有機溶剤、有機バインダー、可塑剤等を加えて混合し、スラリーとし、該スラリーよりドクターブレード法を用いて厚さ40μmのセラミックグリーンシートを得、このセラミックグリーンシートの表面にAg電極ペーストを所定パターンに印刷し、これを交互に11枚積層・圧着して10層の積層体を作成し、得られた積層体を切断して複数のチップ積層体を得た。ここで、Agペーストは、焼結を遅延させるための添加成分を多少混合したものを用いても良い。
【0027】
次に、この試料を脱バインダー処理して、約900〜950℃で1〜4時間焼成させ、得られた焼結体試料の両端部にAgペーストを塗布し、700℃で15分間焼成して外部電極を形成させ、積層磁器コンデンサを形成した(試料サイズ:1.0mm×0.5mm×0.5mm、有効交差面積:0.05mm 、誘電体一層当たりの厚み:30μm)。
【0028】
【表1】

Figure 0003615947
【0029】
【表2】
Figure 0003615947
【0030】
【表3】
Figure 0003615947
【0031】
【表4】
Figure 0003615947
【0032】
【表5】
Figure 0003615947
【0033】
次に、円板磁器コンデンサ及び積層磁器コンデンサについて、室温、HP4284A、1MHz、1Vrms の条件でC,Qを求めた。誘電率、150℃における絶縁抵抗、誘電率の温度係数(20℃を基準として85℃の変化率)は、円板状磁器コンデンサから10個平均として求めた。その結果は、表6〜表10に示す通りであった。
【0034】
なお、表6〜表10における絶縁抵抗ρの数値、例えば9.10E+06は9.10×10 を表す。温度係数TCCは次の数1の式を用いて算出した。リーク電流は125℃のオイル中で、試料に600VのDCを印加し、安定したときの電流値をデジタルマルチメータ(YOKOGAWA7552)を用いて測定した。
【0035】
【数1】
Figure 0003615947
【0036】
【表6】
Figure 0003615947
【0037】
【表7】
Figure 0003615947
【0038】
【表8】
Figure 0003615947
【0039】
【表9】
Figure 0003615947
【0040】
【表10】
Figure 0003615947
【0041】
表6〜表10に示す結果から、次のことがわかる。すなわち、主成分を構成するMZS,Al 及びSrTiO のモル比[%]が、これら3種の化合物のモル比(X,Y,Z)の組成範囲を示す図1に於いて、
A(94.9, 0.1, 5.0)
B(85.0, 10.0, 5.0)
C(65.0, 10.0, 25.0)
D(65.0, 0.1, 34.9)
で示される各点A〜Dを頂点とする多角形で囲まれた範囲にある場合、試料No.17〜24,50〜52,78,79,83〜89に示すように、所望の電気的特性の誘電体磁器組成物が得られるが、この範囲を逸脱すると、試料No.1,16,53,80,81に示すように、950℃以下の焼成で緻密な焼結体が得られなくなったり、試料No.82に示すように誘電率が15以上と大きくなり過ぎ、温度係数がマイナス側に大きくなり過ぎてしまう。
【0042】
また、aの値が、試料No.56〜58に示すように、0.10〜0.80の範囲にある場合、所望の電気的特性の誘電体磁器組成物が得られるが、試料No.59に示すように、aの値が0.1未満になると、焼結体内部にポアが多く存在しまい、緻密な焼結体が得られなくなり、また、試料No.54,55に示すように、aの値が0.8より大きくなると、950℃の焼成で緻密な焼結体が得られなくなる。
【0043】
また、xの値が、試料No.61,64に示すように、0.67〜1.30の範囲にある場合、所望の電気的特性の誘電体磁器組成物が得られるが、xの値が0.67未満になると、焼結体が融着し易くなり、焼成適正温度幅が非常に狭くなり、焼結体中にポアが多く生成してしまったり、Q値が1000より小さくなり、また、試料No.62,63に示すように、xの値が1.3を超えると、950℃の焼成で緻密な焼結体が得られなくなる。
【0044】
また、第一添加成分であるNb,Ta又はWの化合物が、試料No.3,9,11,14に示すように、NbO5/2 ,TaO5/2 又はWO に換算して0.01〜0.2モル%の範囲にある場合、所望の電気的特性の誘電体磁器組成物が得られるが、試料No.2に示すように、0.01モル%未満になるとリーク電流が1.0μA以上となり、試料No.12,13,15に示すように、0.2モル%を超えると、950℃の焼成で緻密な焼結体が得られなくなる。Nb,Ta又はWの化合物は単独で添加してもよいし、試料No.75,77に示すように、複数種を同時に添加してもよい。
【0045】
また、第二添加成分であるV,Cr,Mn,Fe,Co,Ni又はCuの化合物が、試料No.3〜7,9,11,14,26〜28,31〜33,36〜38,41〜43,46〜48に示すように、VO5/2 ,CrO3/2 ,MnO3/2 ,FeO3/2 ,CoO3/2 ,NiO又はCuOに換算して0.05〜2.0モル%の範囲にある場合、所望の電気的特性の誘電体磁器組成物が得られるが、試料No.8,10,25,30,35,40,45に示すように、0.05モル%未満になるか、2.0モル%を超えると緻密な焼結体が得られなくなる。V,Cr,Mn,Fe,Co,Ni又はCuの化合物は単独で添加してもよいし、試料No.66〜73に示すように、複数種を同時に添加してもよい。
【0046】
なお、MZS,Al 及びSTからなる混合物の仮焼は行っても、行わなくても、所望の特性は得られるが、仮焼の有無で電気的特性は変化する。また、仮焼により、添加成分と主成分、或いは添加成分同志で反応が起こり、結晶系が変化し、急激に収縮が生じたり、収縮率が大きくなる場合、仮焼は有効である。すなわち、仮焼はデラミネーション、クラック等の構造欠陥の抑制に有効である。
【0047】
この発明に従う誘電体磁器組成物、すなわち表1〜表5中で評価○となっている試料は、950℃以下の焼成で焼結でき、誘電率が15以下と低く、Q値が高く(1MHzで1000以上)、150℃での抵抗率が高く(1.0×10 MΩcm以上)、容量の温度係数が小さく、JIS規格の
CG特性( −30〜 +30[ppm/℃])
CH特性( −60〜 +60[ppm/℃])
CJ特性(−120〜+120[ppm/℃])
PH特性( −90〜−210[ppm/℃])
RH特性(−160〜−280[ppm/℃])
SH特性(−270〜−390[ppm/℃])
を満足していることがわかる。
【0048】
【発明の効果】
この発明によれば、数100MHz〜数GHzの高周波領域においてQ値が高く、損失、リーク電流の小さな低容量(0.01pF〜30pF)の磁器コンデンサを得ることができるという効果がある。
【0049】
また、この発明によれば、誘電体磁器組成物の焼結温度を950℃以下に低下させることができるので、デラミネーション等の構造欠陥を抑制でき、磁器コンデンサ製造の際における焼成のための電力費を低減でき、コストダウンを図ることができるという効果がある。
【0050】
また、この発明によれば、内部電極の材料としてPdより安価なAgを使用することができるので、磁器コンデンサ製造のコストダウンを図ることができるという効果がある。
【図面の簡単な説明】
【図1】MZS,Al 及びSTのモル比[%]を示す3成分組成図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric ceramic composition, particularly a dielectric ceramic composition suitable for forming a dielectric layer of a low-capacity ceramic capacitor of about 0.01 pF to 30 pF used in a high frequency region of several hundred MHz to several GHz. And a ceramic capacitor formed by using the dielectric ceramic composition.
[0002]
[Prior art]
The dielectric layer of ceramic capacitors with low capacity used in a high frequency region, the conventional, TiO 2 based materials, CaTiO 3 based materials, LaTiO 3 based materials, CaZrO 3 based materials, low dielectric such as MgTiO 3 based material Rate dielectric porcelain compositions were used. Metals such as Pt, Pd, Cu, and Ni have been used as materials for internal electrodes of ceramic capacitors using these dielectric ceramic compositions.
[0003]
However, among these internal electrode materials, since Pt is an expensive metal, there is a drawback in that if this is used as the internal electrode material, the manufacturing cost of the ceramic capacitor is increased. In addition, since base metals such as Cu and Ni are easily oxidized during firing, the firing atmosphere must be controlled when using this as a material for the internal electrode, which increases the production cost of the ceramic capacitor. There were drawbacks.
[0004]
As a dielectric ceramic composition that solves these drawbacks, the present patent applicant has filed Japanese Patent Application No. Hei 8-188094 (Japanese Patent Laid-Open No. 10-17359) and Japanese Patent Application No. Hei 9-84527. zinc [(Mg a Zn (1- a)) x SiO x + 2], alumina [Al 2 O 3], and proposed a dielectric ceramic composition of strontium titanate [SrTiO 3] system.
[0005]
The dielectric ceramic composition according to this proposal has an advantage that a low-capacitance (0.01 pF to 30 pF) ceramic capacitor having a high Q value in a high frequency region of several hundred MHz to several GHz and small loss and leakage current can be obtained. It is what has. Moreover, since these dielectric ceramic compositions can be sintered at a temperature of 1100 ° C. or less, they have the advantage that structural defects such as delamination can be suppressed.
[0006]
[Problems to be solved by the invention]
By the way, there are severe technological competitions between companies, and further improvement in the characteristics of electronic equipment circuits is required. For this reason, the proposed dielectric ceramic composition further improves the Q value of the ceramic capacitor. It has been demanded.
[0007]
In order to increase the Q value of the ceramic capacitor, a method of forming the internal electrode with a metal material having a small specific resistance value can be considered. And Ag is mentioned as a metal material with a small specific resistance value.
[0008]
However, since Ag has a melting point of 960 ° C., which is lower than the sintering temperature of 1050 to 1100 ° C. of the dielectric ceramic composition, the internal electrode in the laminated body melts during firing, and as it is, the material for the internal electrode Cannot be used.
[0009]
This invention can be fired at a temperature of 950 ° C. or lower, has a specific resistance lower than that of Pd, and has good frequency characteristics, so that no delamination occurs and low dielectric constant (ε r 15 or less), and a multilayer ceramic capacitor having a low leakage current (1.0 μA or less at 125 ° C.-600 V) and a ceramic capacitor using the dielectric ceramic composition are provided. Objective.
[0010]
[Means for Solving the Problems]
The dielectric ceramic composition according to the invention, selected main component represented by the general formula X (Mg a Zn (1- a)) X SiO X + 2 -YAl 2 O 3 -ZSrTiO 3, Nb, Ta, and the W A first additive component composed of a compound of one or two or more elements and a compound of one or more elements selected from V, Cr, Mn, Fe, Co, Ni, and Cu Containing a second additive component,
The molar ratio [%] of magnesium silicate / zinc [(Mg a Zn (1-a) ) X SiO X + 2 ], alumina [Al 2 O 3 ] and strontium titanate [SrTiO 3 ] constituting the main components is In the three-component composition diagram showing the molar ratio (X, Y, Z) of the three compounds,
A (94.9, 0.1, 5.0)
B (85.0, 10.0, 5.0)
C (65.0, 10.0, 25.0)
D (65.0, 0.1, 34.9)
In a range surrounded by a polygon having the points A to D as vertices,
The values of a and x in the general formula representing the main component are
0.1 ≦ a ≦ 0.80
0.67 ≦ x ≦ 1.30
In the range of
The first additive component is contained in an amount of 0.01 to 0.2 mol% in terms of NbO 5/2 , TaO 5/2 , or WO 3 ,
The second additive component is contained in an amount of 0.05 to 2.0 mol% in terms of VO 5/2 , CrO 3/2 , MnO 3/2 , FeO 3/2 , CoO 3/2 , NiO, or CuO. It is what.
[0011]
Here, the molar ratio [%] of MZS, Al 2 O 3 and SrTiO 3 was set in the above range because when these compounds are in the above range, the dielectric ceramic composition having desired electrical characteristics is obtained. However, if these compounds deviate from the above range, a dense sintered body cannot be obtained by firing at 950 ° C. or lower, the dielectric constant becomes too large as 15 or more, and the temperature coefficient becomes negative. Because it becomes too big.
[0012]
In addition, the value of a is in the range of 0.1 to 0.80 because when the value of a is in this range, a dielectric ceramic composition having desired electrical characteristics can be obtained. If it is less than 0.1, there are many pores inside the sintered body, and a dense sintered body cannot be obtained. If the value of a exceeds 0.8, dense firing is performed at 950 ° C. This is because no union can be obtained.
[0013]
Also, the value of x is in the range of 0.67 to 1.30. When the value of x is in this range, a dielectric ceramic composition having desired electrical characteristics can be obtained. If it is less than 0.67, it will be fused at the time of firing, the appropriate temperature range for firing will be very narrow, many pores will be generated in the sintered body, and the Q value will be less than 1000 If the value of x exceeds 1.30, a dense sintered body cannot be obtained by firing at 950 ° C.
[0014]
The first additive component is in the range of 0.01 to 0.2 mol% in terms of NbO 5/2 , TaO 5/2 or WO 3 when these additive components are in these ranges. A dielectric ceramic composition having desired electrical characteristics with high reliability (low leakage current) can be obtained. However, when these additive components are less than 0.01 mol%, the leakage current becomes 1.0 μA or more, and 0 This is because if it exceeds 2 mol%, a dense sintered body cannot be obtained by firing at 950 ° C. or lower.
[0015]
When the second additive component is converted to VO 5/2 , CrO 3/2 , MnO 3/2 , FeO 3/2 , CoO 3/2 , NiO or CuO, When these additive components are in these ranges, a dielectric ceramic composition having desired electrical characteristics can be obtained by low-temperature firing, but these components are less than 0.05 mol%, or 2 This is because if it exceeds 0.0 mol%, a dense sintered body cannot be obtained.
[0016]
In addition, the said 1st addition component and the 2nd addition component can use the same result, even if it uses individually or it uses multiple types simultaneously. In addition to these oxides, these additive components may be carbonates or other soluble compounds that can be baked to become oxides.
[0017]
Moreover, although the desired characteristics can be obtained with or without calcination of the mixture composed of MZS, Al 2 O 3 and ST, the electrical characteristics change depending on the presence or absence of calcination. In addition, when calcining causes a reaction between the additive component and the main component, or between the additive components, the crystal system changes, and a rapid contraction occurs or the shrinkage rate increases, the calcining is effective. That is, calcination is effective for suppressing structural defects such as delamination and cracks.
[0018]
A ceramic capacitor according to the present invention uses the above dielectric ceramic composition as a dielectric layer. Here, Ag is preferable as the material of the internal electrode. The ceramic capacitor can be applied to both a single layer type and a multilayer type.
[0019]
Further, the ceramic capacitor according to the present invention can be sufficiently used in a low frequency region, but is particularly suitable for use as a low-capacity ceramic capacitor of about 0.01 pF to 30 pF used in a high frequency region of several hundred MHz to several GHz. It is.
[0020]
【Example】
First, MgO, ZnO, and SiO 2 were weighed at the ratios shown in Tables 1 to 5, put in a ball mill, and pulverized and mixed for 15 hours in a wet manner to obtain a slurry consisting of these mixtures. The slurry was taken out and filtered, and the cake portion was put in a drier and dried sufficiently at 150 ° C. to obtain a powder of the mixture.
[0021]
Next, the powder of this mixture was put into a heating furnace and calcined at 1100 ° C., and the compounds constituting the mixture were reacted with each other to obtain MZS. In addition, although the mixture is calcined at 1100 ° C. here, the calcining temperature can be changed in the range of 900 to 1200 ° C. Further, this calcination is not necessarily performed. No. 85-89 did not perform this calcination.
[0022]
Next, this MZS was put in a ball mill and sufficiently pulverized by a wet process to obtain an MZS slurry. Then, this slurry was taken out and filtered, and the cake portion was put in a dryer and sufficiently dried at 150 ° C. to obtain MZS powder.
[0023]
Next, MZS, Al 2 O 3 , ST, the first additive component and the second additive component are weighed in the ratios as shown in Tables 1 to 5, and these are put in a ball mill and mixed well in a wet manner. A slurry consisting of a mixture of The slurry was taken out and filtered, and the cake portion was put in a drier and dried sufficiently at 150 ° C. to obtain a powder of the mixture.
[0024]
Next, sample No. For samples Nos. 24 and 88, sample No. 2 at 800 ° C. for 2 hours (800/2). No. 89 was calcined at 900 ° C. for 2 hours (900/2). Here, calcination is performed at 800 ° C. or 900 ° C. for 2 hours, but the temperature can be changed within a range of 700 to 900 ° C. for 2 to 4 hours. Moreover, this calcination was not essential, and those other than these sample Nos were not calcinated.
[0025]
Next, an organic binder is added, granulated, and press-molded to produce a disk-shaped sample having a diameter of about 10 mm and a thickness of about 0.5 mm. The sample is fired at 900 to 950 ° C. for 1 to 4 hours. Then, an Ag paste was applied and fired at 700 ° C. for 15 minutes to form external electrodes, thereby forming a ceramic capacitor.
[0026]
On the other hand, an organic solvent, an organic binder, a plasticizer, and the like are added to the powder of the mixture and mixed to obtain a slurry, and a ceramic green sheet having a thickness of 40 μm is obtained from the slurry using a doctor blade method. An Ag electrode paste was printed in a predetermined pattern, and 11 sheets were alternately laminated and pressure-bonded to prepare a 10-layer laminate, and the obtained laminate was cut to obtain a plurality of chip laminates. Here, as the Ag paste, a paste obtained by slightly mixing additive components for delaying the sintering may be used.
[0027]
Next, this sample was debindered and fired at about 900 to 950 ° C. for 1 to 4 hours. An Ag paste was applied to both ends of the obtained sintered body sample and fired at 700 ° C. for 15 minutes. External electrodes were formed to form a laminated ceramic capacitor (sample size: 1.0 mm × 0.5 mm × 0.5 mm, effective crossing area: 0.05 mm 2 , thickness per dielectric layer: 30 μm).
[0028]
[Table 1]
Figure 0003615947
[0029]
[Table 2]
Figure 0003615947
[0030]
[Table 3]
Figure 0003615947
[0031]
[Table 4]
Figure 0003615947
[0032]
[Table 5]
Figure 0003615947
[0033]
Next, C and Q were calculated | required on the conditions of room temperature, HP4284A, 1 MHz, 1V rms about a disk ceramic capacitor and a laminated ceramic capacitor. The dielectric constant, the insulation resistance at 150 ° C., and the temperature coefficient of the dielectric constant (rate of change of 85 ° C. with respect to 20 ° C.) were obtained as an average of 10 disc-shaped ceramic capacitors. The results were as shown in Tables 6 to 10.
[0034]
In Tables 6 to 10, the numerical value of the insulation resistance ρ, for example, 9.10E + 06 represents 9.10 × 10 6 . The temperature coefficient TCC was calculated using the following equation (1). The leakage current was measured by using a digital multimeter (YOKOGAWA7552) in a 125 ° C. oil and applying a DC of 600 V to the sample.
[0035]
[Expression 1]
Figure 0003615947
[0036]
[Table 6]
Figure 0003615947
[0037]
[Table 7]
Figure 0003615947
[0038]
[Table 8]
Figure 0003615947
[0039]
[Table 9]
Figure 0003615947
[0040]
[Table 10]
Figure 0003615947
[0041]
From the results shown in Tables 6 to 10, the following can be understood. That is, in FIG. 1, the molar ratio [%] of MZS, Al 2 O 3 and SrTiO 3 constituting the main component indicates the composition range of the molar ratio (X, Y, Z) of these three compounds.
A (94.9, 0.1, 5.0)
B (85.0, 10.0, 5.0)
C (65.0, 10.0, 25.0)
D (65.0, 0.1, 34.9)
In the range surrounded by the polygon having the points A to D as vertices, the sample No. 17 to 24, 50 to 52, 78, 79, 83 to 89, a dielectric ceramic composition having desired electrical characteristics can be obtained. 1, 16, 53, 80, 81, a dense sintered body cannot be obtained by firing at 950 ° C. or lower. As shown by 82, the dielectric constant becomes too large as 15 or more, and the temperature coefficient becomes too large on the negative side.
[0042]
Further, the value of a is the sample No. As shown to 56-58, when it exists in the range of 0.10-0.80, the dielectric ceramic composition of a desired electrical property is obtained. 59, when the value of a is less than 0.1, there are many pores in the sintered body, and a dense sintered body cannot be obtained. As shown by 54 and 55, when the value of a is larger than 0.8, a dense sintered body cannot be obtained by firing at 950 ° C.
[0043]
Further, the value of x is the sample No. As shown in 61 and 64, when it is in the range of 0.67 to 1.30, a dielectric ceramic composition having desired electrical characteristics can be obtained, but when the value of x is less than 0.67, sintering is performed. The body is easy to fuse, the appropriate temperature range for firing becomes very narrow, a lot of pores are generated in the sintered body, the Q value is less than 1000, and the sample no. As shown by 62 and 63, when the value of x exceeds 1.3, a dense sintered body cannot be obtained by firing at 950 ° C.
[0044]
In addition, the Nb, Ta or W compound as the first additive component is the sample no. As shown in 3 , 9, 11, and 14, when it is in the range of 0.01 to 0.2 mol% in terms of NbO 5/2 , TaO 5/2 or WO 3 , the dielectric of desired electrical characteristics A body porcelain composition is obtained. As shown in FIG. 2, when it is less than 0.01 mol%, the leakage current becomes 1.0 μA or more. As shown in 12, 13 and 15, when it exceeds 0.2 mol%, a dense sintered body cannot be obtained by firing at 950 ° C. The Nb, Ta or W compound may be added alone, or sample no. As shown to 75,77, you may add multiple types simultaneously.
[0045]
In addition, the compound of V, Cr, Mn, Fe, Co, Ni, or Cu as the second additive component is sample no. 3-7, 9, 11, 14, 26-28, 31-33, 36-38, 41-43, 46-48, VO 5/2 , CrO 3/2 , MnO 3/2 , FeO When it is in the range of 0.05 to 2.0 mol% in terms of 3/2 , CoO 3/2 , NiO or CuO, a dielectric ceramic composition having desired electrical characteristics can be obtained. As shown in 8, 10, 25, 30, 35, 40, and 45, if it is less than 0.05 mol% or exceeds 2.0 mol%, a dense sintered body cannot be obtained. A compound of V, Cr, Mn, Fe, Co, Ni or Cu may be added alone, or sample No. As shown to 66-73, you may add multiple types simultaneously.
[0046]
In addition, although the desired characteristics can be obtained with or without calcination of the mixture composed of MZS, Al 2 O 3 and ST, the electrical characteristics change depending on the presence or absence of calcination. In addition, when the calcination causes a reaction between the additive component and the main component or between the additive components, the crystal system changes, and a rapid contraction occurs or the contraction rate increases, the calcination is effective. That is, calcination is effective for suppressing structural defects such as delamination and cracks.
[0047]
Dielectric porcelain compositions according to the present invention, that is, samples evaluated as ○ in Tables 1 to 5, can be sintered by firing at 950 ° C. or less, have a low dielectric constant of 15 or less, and have a high Q value (1 MHz 1000 or more), high resistivity at 150 ° C. (1.0 × 10 3 MΩcm or more), small temperature coefficient of capacity, JIS standard CG characteristics (−30 to +30 [ppm / ° C.])
CH characteristics (−60 to +60 [ppm / ° C.])
CJ characteristics (−120 to +120 [ppm / ° C.])
PH characteristics (-90 to -210 [ppm / ° C])
RH characteristics (−160 to −280 [ppm / ° C.])
SH characteristics (−270 to −390 [ppm / ° C.])
It turns out that is satisfied.
[0048]
【The invention's effect】
According to the present invention, there is an effect that a low-capacitance (0.01 pF to 30 pF) ceramic capacitor having a high Q value in a high frequency region of several hundred MHz to several GHz and small loss and leakage current can be obtained.
[0049]
Further, according to the present invention, since the sintering temperature of the dielectric ceramic composition can be lowered to 950 ° C. or less, structural defects such as delamination can be suppressed, and the power for firing in the production of the ceramic capacitor. Costs can be reduced and costs can be reduced.
[0050]
In addition, according to the present invention, Ag which is cheaper than Pd can be used as the material of the internal electrode, so that there is an effect that it is possible to reduce the cost of manufacturing the ceramic capacitor.
[Brief description of the drawings]
FIG. 1 is a three-component composition diagram showing a molar ratio [%] of MZS, Al 2 O 3 and ST.

Claims (3)

一般式
X(Mg Zn(1−a) SiOX+2 −YAl −ZSrTiO で表わされる主成分と、Nb,Ta,及びWから選択された1種又は2種以上の元素の化合物からなる第一添加成分と、V,Cr,Mn,Fe,Co,Ni,及びCuから選択された1種又は2種以上の元素の化合物からなる第二添加成分を含有し、
前記主成分を構成する珪酸マグネシウム・亜鉛[(Mg Zn(1−a) SiOX+2 ]、アルミナ[Al ]及びチタン酸ストロンチウム[SrTiO ]のモル比[%]が、これら3種の化合物のモル比(X,Y,Z)を示す3成分組成図に於いて、
A(94.9, 0.1, 5.0)
B(85.0, 10.0, 5.0)
C(65.0, 10.0, 25.0)
D(65.0, 0.1, 34.9)
で示される各点A〜Dを頂点とする多角形で囲まれた範囲にあり、
前記主成分を表わす一般式中のa及びxの値が、
0.1≦a≦0.80
0.67≦x≦1.30
の範囲にあり、
前記第一添加成分がNbO5/2 ,TaO5/2 ,又はWO に換算して0.01〜0.2モル%含有され、
前記第二添加成分がVO5/2 ,CrO3/2 ,MnO3/2 ,FeO3/2 ,CoO3/2 ,NiO,又はCuOに換算して0.05〜2.0モル%含有されていることを特徴とする誘電体磁器組成物。
A main component represented by the general formula X (Mg a Zn (1- a)) X SiO X + 2 -YAl 2 O 3 -ZSrTiO 3, Nb, Ta, and selected from W 1 kind or 2 or more elements A first additive component comprising a compound, and a second additive component comprising a compound of one or more elements selected from V, Cr, Mn, Fe, Co, Ni, and Cu,
The molar ratio [%] of magnesium silicate / zinc [(Mg a Zn (1-a) ) X SiO X + 2 ], alumina [Al 2 O 3 ] and strontium titanate [SrTiO 3 ] constituting the main components is In the three-component composition diagram showing the molar ratio (X, Y, Z) of the three compounds,
A (94.9, 0.1, 5.0)
B (85.0, 10.0, 5.0)
C (65.0, 10.0, 25.0)
D (65.0, 0.1, 34.9)
In a range surrounded by a polygon having the points A to D as vertices,
The values of a and x in the general formula representing the main component are
0.1 ≦ a ≦ 0.80
0.67 ≦ x ≦ 1.30
In the range of
The first additive component is contained in an amount of 0.01 to 0.2 mol% in terms of NbO 5/2 , TaO 5/2 , or WO 3 ,
The second additive component is contained in an amount of 0.05 to 2.0 mol% in terms of VO 5/2 , CrO 3/2 , MnO 3/2 , FeO 3/2 , CoO 3/2 , NiO, or CuO. A dielectric ceramic composition characterized by comprising:
一般式
X(Mg Zn(1−a) SiOX+2 −YAl −ZSrTiO で表わされる主成分と、Nb,Ta,及びWから選択された1種又は2種以上の元素の化合物からなる第一添加成分と、V,Cr,Mn,Fe,Co,Ni,及びCuから選択された1種又は2種以上の元素の化合物からなる第二添加成分を含有し、
前記主成分を構成する珪酸マグネシウム・亜鉛[(Mg Zn(1−a) SiOX+2 ]、アルミナ[Al ]及びチタン酸ストロンチウム[SrTiO ]のモル比[%]が、これら3種の化合物のモル比(X,Y,Z)を示す3成分組成図に於いて、
A(94.9, 0.1, 5.0)
B(85.0, 10.0, 5.0)
C(65.0, 10.0, 25.0)
D(65.0, 0.1, 34.9)
で示される各点A〜Dを頂点とする多角形で囲まれた範囲にあり、
前記主成分を表す一般式中のa及びxの値が、
0.1≦a≦0.80
0.67≦x≦1.30
の範囲にあり、
前記第一添加成分がNbO5/2 ,TaO5/2 ,又はWO に換算して0.01〜0.2モル%含有され、
前記第二添加成分がVO5/2 ,CrO3/2 ,MnO3/2 ,FeO3/2 ,CoO3/2 ,NiO,又はCuOに換算して0.05〜2.0モル%含有されている誘電体磁器組成物を誘電体層として用いた磁器コンデンサ。
A main component represented by the general formula X (Mg a Zn (1- a)) X SiO X + 2 -YAl 2 O 3 -ZSrTiO 3, Nb, Ta, and selected from W 1 kind or 2 or more elements A first additive component comprising a compound, and a second additive component comprising a compound of one or more elements selected from V, Cr, Mn, Fe, Co, Ni, and Cu,
The molar ratio [%] of magnesium silicate / zinc [(Mg a Zn (1-a) ) X SiO X + 2 ], alumina [Al 2 O 3 ] and strontium titanate [SrTiO 3 ] constituting the main components is In the three-component composition diagram showing the molar ratio (X, Y, Z) of the three compounds,
A (94.9, 0.1, 5.0)
B (85.0, 10.0, 5.0)
C (65.0, 10.0, 25.0)
D (65.0, 0.1, 34.9)
In a range surrounded by a polygon having the points A to D as vertices,
The values of a and x in the general formula representing the main component are
0.1 ≦ a ≦ 0.80
0.67 ≦ x ≦ 1.30
In the range of
The first additive component is contained in an amount of 0.01 to 0.2 mol% in terms of NbO 5/2 , TaO 5/2 , or WO 3 ,
The second additive component is contained in an amount of 0.05 to 2.0 mol% in terms of VO 5/2 , CrO 3/2 , MnO 3/2 , FeO 3/2 , CoO 3/2 , NiO, or CuO. Ceramic capacitor using a dielectric ceramic composition as a dielectric layer.
誘電体層と内部電極とを交互に積層したことを特徴とする請求項2に記載の磁器コンデンサ。3. The ceramic capacitor according to claim 2, wherein dielectric layers and internal electrodes are alternately laminated.
JP29936998A 1998-10-21 1998-10-21 Dielectric porcelain composition and porcelain capacitor Expired - Fee Related JP3615947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29936998A JP3615947B2 (en) 1998-10-21 1998-10-21 Dielectric porcelain composition and porcelain capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29936998A JP3615947B2 (en) 1998-10-21 1998-10-21 Dielectric porcelain composition and porcelain capacitor

Publications (2)

Publication Number Publication Date
JP2000128635A JP2000128635A (en) 2000-05-09
JP3615947B2 true JP3615947B2 (en) 2005-02-02

Family

ID=17871680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29936998A Expired - Fee Related JP3615947B2 (en) 1998-10-21 1998-10-21 Dielectric porcelain composition and porcelain capacitor

Country Status (1)

Country Link
JP (1) JP3615947B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5901190B2 (en) * 2011-09-13 2016-04-06 株式会社トクヤマ Method for producing aluminum nitride sintered granules
CN112919894B (en) * 2021-03-10 2022-02-22 嘉兴佳利电子有限公司 Frequency-stable low-dielectric microwave dielectric ceramic material and preparation method thereof

Also Published As

Publication number Publication date
JP2000128635A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
KR100841506B1 (en) Dielectric ceramic composition and manufacturing method thereof
JP3746763B2 (en) Reduction-resistant low-temperature fired dielectric ceramic composition, multilayer ceramic capacitor using the same, and manufacturing method thereof
KR100889900B1 (en) Electronic component, dielectric magnetic composite and method of manufacturing the same
JP4786604B2 (en) Dielectric porcelain and multilayer ceramic capacitor using the same
JP4382598B2 (en) Reduction-resistant dielectric ceramic composition and ultrathin multilayer ceramic capacitor
JP5461774B2 (en) Electronic component and manufacturing method thereof
KR102430851B1 (en) Dielectric Ceramic Compositions and Ceramic Electronic Components
JP2007297258A (en) Dielectric ceramic and laminated ceramic capacitor
JP4480367B2 (en) Dielectric porcelain and its manufacturing method, and multilayer electronic component and its manufacturing method
JP5838968B2 (en) Dielectric ceramic, multilayer ceramic electronic component, and manufacturing method thereof
CN111954650B (en) Dielectric ceramic composition and ceramic electronic component
JP2004323315A (en) Dielectric ceramic composition, its production method, and multilayer ceramic capacitor obtained by using the same
JP2008201616A (en) Dielectric ceramic and laminated ceramic capacitor
CN111954649B (en) Dielectric ceramic composition and ceramic electronic component
JP3908458B2 (en) Method for producing dielectric ceramic composition
JP3615947B2 (en) Dielectric porcelain composition and porcelain capacitor
US7351676B2 (en) Dielectric porcelain composition, multilayer ceramic capacitor, and electronic component
JP4691978B2 (en) Method for manufacturing dielectric composition
JP4376508B2 (en) Dielectric porcelain composition and electronic component
JP4677961B2 (en) Electronic component, dielectric ceramic composition and manufacturing method thereof
JP3493882B2 (en) Multilayer ceramic capacitors
JP2002246217A (en) Ferrite material and part for ceramic inductor
JPH10167824A (en) Dielectric ceramic composition and ceramic capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees