【0001】
【発明の属する技術分野】
本発明は、効果的な冷却を行うことができるようにした蒸気タービンの複流型等の調速段に関する。
【0002】
【従来の技術】
図2は従来の蒸気タービンの複流型調速段の断面図である。調速弁(図示省略)からの蒸気は、ノズル片2内に設けられたノズル室1へ導かれ、ノズル室1よりノズル片2に設けられた左右のノズル2aを通過し、動翼3へ導かれて同動翼3により仕事をする。またノズル片2の出口より漏洩した蒸気4は、ロータ7に設けられたポンピングホール5によりポンプアップされて、冷却蒸気6と混合し、ロータ7を冷却した後ノズル室1の中央部に設けられた排出穴8より調速段出口側へ排出される。
【0003】
【発明が解決しようとする課題】
タービン蒸気が高温高圧になる場合には、ロータ強度の点より、従来図2に示すように、ポンピングホールを用いた冷却を行なうようにしているが、蒸気温度が、例えば600℃を越えるような高温の条件では、ノズル室からの輻射伝熱によりロータ表面温度が上昇し強度不足が生じる。また、ノズル室自身も高温となるため強度的に成立し難いという問題点がある。
【0004】
本発明は、以上の問題点を解決することができる蒸気タービンの調速段を提供しようとするものである。
【0005】
【課題を解決するための手段】
本発明は、蒸気がノズル片内に設けられたノズル室からノズルを経て動翼へ導かれる蒸気タービンの調速段において、ノズル室より半径方向内側のノズル片の部分とロータとの間にノズル片に取付けられると共にノズル片との間に閉じられた空間を形成する熱しゃへい板を設け、前記空間内へ高圧段抽気を導入する供給穴と前記空間より蒸気を排出する排出穴をそれぞれノズル片を貫通して設けたことを特徴とする。
【0006】
本発明では、ノズル室より半径方向内側のノズル片の部分とロータとの間に熱しゃへい板を配置することにより、ノズル室からロータへの輻射熱を遮断しロータ表面温度を下げることができる。また、熱しゃへい板とノズル片との間に形成される空間内へノズル片を貫通する供給穴を経て高圧段抽気の低温蒸気を導き、かつ、同空間よりノズル片を貫通する排出穴を経て蒸気を排出することによって、ノズル室を効果的に冷却することができる。
【0007】
【発明の実施の形態】
本発明の実施の一形態を、図1によって説明する。本実施の形態は、図2に示す蒸気タービンの複流型調速段を以下説明するように改良したものであり、図1において図2におけると同一の部分には同一の符号を付し、変更のなかった部分の説明を省略し以下変更のあった部分について説明する。
【0008】
本実施の形態においては、ノズル室1,1の半径方向内側のノズル片2の部分の全表面を覆うようにノズル片2に熱しゃへい板11を取付け、かつ、熱しゃへい板11によってノズル片2との間に図1における左右に横方向へ延びる閉じられた空間12が形成されている。
【0009】
ノズル片2を貫通して前記空間12の図1における右端に開口する高圧段抽気9の供給穴10aが設けられ、またノズル片を貫通して前記空間12の図1における左端に開口し前記空間12より蒸気を高圧段抽気側へ排出する排出穴10bが設けられている。
【0010】
また、熱しゃへい板12とロータ7との間には間隔が設けられており、この間隔には熱しゃへい板11とノズル片2の中央部を貫通する排出穴8が開口している。左右のノズル2の出口より漏洩した蒸気4が、ロータ7に設けられたポンピングホール5によりポンプアップされた冷却空気6と混合し、ロータ7を冷却した後前記排出穴8より調速段出口側へ排出されることは、図2に示される蒸気タービンの調速段と同様である。
【0011】
本実施例では、高圧段抽気である低温蒸気9は、ノズル片2を貫通する供給穴10aを経て熱しゃへい板11とノズル片2との間の空間12内の右端へ導かれる。この低温蒸気9は、空間12を右から左へ流れた上空間12内の左端より高圧段抽気側へ流出する。
【0012】
なお本実施の形態において、空間12の右端に供給され、また空間12の左端より蒸気が排出される左右の高圧段抽気側の圧力は、右側が高く左側が低い設定となるように抽気点を選定することとする。
【0013】
本実施の形態では、以上説明したように、空間12内を横方へ流れる低温蒸気9によって、ノズル室1を効果的に冷却することができる。また、熱しゃへい板11によって、ノズル室1からロータ7への輻射熱を遮断してロータ7への輻射熱を遮断し、ロータ7の表面温度を下げることができる。
【0014】
【発明の効果】
本発明では、ノズル室より半径方向内側のノズル片の部分とロータの間に設けられた熱しゃへい板によりノズル室からロータへの輻射熱を遮断することによりロータ表面温度を下げ、ロータ強度を確保することができる。
【0015】
また、ノズル片と熱しゃへい板の空間内へノズル片を貫通する供給穴を経て高圧段抽気の低温蒸気を導入し、この蒸気をノズル片を貫通する排出穴を経て同空間より排出することによって、ノズル室を冷却しノズル室の強度向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態の断面図である。
【図2】従来の蒸気タービンを示す断面図である。
【符号の説明】
1 ノズル室
2 ノズル片
2a ノズル
3 動翼
4 ノズル出口よりの漏洩蒸気
5 ポンピングホール
6 冷却蒸気
7 ロータ
8 排出穴
9 低温蒸気(高圧段抽気)
10a 供給穴
10b 排出穴
11 熱しゃへい板
12 空間[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a speed control stage such as a double flow type of a steam turbine capable of performing effective cooling.
[0002]
[Prior art]
FIG. 2 is a cross-sectional view of a double-flow speed regulating stage of a conventional steam turbine. Steam from a speed control valve (not shown) is guided to the nozzle chamber 1 provided in the nozzle piece 2, passes through the left and right nozzles 2 a provided in the nozzle piece 2 from the nozzle chamber 1, and moves to the moving blade 3. It is guided and works by the moving blade 3. Further, the steam 4 leaking from the outlet of the nozzle piece 2 is pumped up by a pumping hole 5 provided in the rotor 7, mixed with the cooling steam 6, and after cooling the rotor 7, the steam 4 is provided in the central portion of the nozzle chamber 1. Then, it is discharged from the discharge hole 8 to the speed control stage outlet side.
[0003]
[Problems to be solved by the invention]
When turbine steam becomes high temperature and high pressure, cooling is performed using a pumping hole as shown in FIG. 2 from the viewpoint of rotor strength, but the steam temperature exceeds 600 ° C., for example. Under high temperature conditions, the rotor surface temperature rises due to radiant heat transfer from the nozzle chamber, resulting in insufficient strength. In addition, since the nozzle chamber itself is at a high temperature, there is a problem that it is difficult to establish the strength.
[0004]
The present invention seeks to provide a governing stage for a steam turbine that can solve the above-described problems.
[0005]
[Means for Solving the Problems]
The present invention provides a nozzle between a portion of a nozzle piece radially inward of a nozzle chamber and a rotor in a speed control stage of a steam turbine in which steam is guided from a nozzle chamber provided in the nozzle piece to a moving blade through a nozzle. A heat shield plate is provided which is attached to the piece and forms a closed space between the nozzle piece, a supply hole for introducing high-pressure extraction into the space and a discharge hole for discharging steam from the space. It is characterized by being provided through.
[0006]
In the present invention, by disposing a heat shield plate between the portion of the nozzle piece radially inward from the nozzle chamber and the rotor, the radiant heat from the nozzle chamber to the rotor can be blocked and the rotor surface temperature can be lowered. In addition, the low-temperature steam of the high-pressure stage bleed gas is guided through the supply hole that penetrates the nozzle piece into the space formed between the heat shielding plate and the nozzle piece, and from the same space through the discharge hole that penetrates the nozzle piece. By discharging the steam, the nozzle chamber can be effectively cooled.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG. In the present embodiment, the double-flow type speed adjusting stage of the steam turbine shown in FIG. 2 is improved as described below. In FIG. 1, the same parts as those in FIG. The description of the part that has not been omitted is omitted, and the changed part will be described below.
[0008]
In the present embodiment, the thermal shielding plate 11 is attached to the nozzle piece 2 so as to cover the entire surface of the nozzle piece 2 on the radially inner side of the nozzle chambers 1, 1, and the nozzle piece 2 is attached by the thermal shielding plate 11. Between the two, a closed space 12 extending in the horizontal direction in the right and left in FIG. 1 is formed.
[0009]
A supply hole 10a for the high-pressure stage bleed air 9 that passes through the nozzle piece 2 and opens at the right end in FIG. 1 of the space 12 is provided. The supply hole 10a passes through the nozzle piece and opens at the left end in FIG. 12 is provided with a discharge hole 10b for discharging steam to the high-pressure stage extraction side.
[0010]
Further, a space is provided between the heat shielding plate 12 and the rotor 7, and a discharge hole 8 penetrating the central portion of the heat shielding plate 11 and the nozzle piece 2 is opened at this space. Steam 4 leaked from the outlets of the left and right nozzles 2 is mixed with cooling air 6 pumped up by a pumping hole 5 provided in the rotor 7, and after cooling the rotor 7, the speed adjusting stage outlet side from the discharge hole 8. It is the same as that of the speed control stage of the steam turbine shown in FIG.
[0011]
In the present embodiment, the low-temperature steam 9 that is the high-pressure stage extraction is guided to the right end in the space 12 between the thermal shielding plate 11 and the nozzle piece 2 through the supply hole 10 a penetrating the nozzle piece 2. The low-temperature steam 9 flows out from the left end in the upper space 12 that flows from the right to the left in the space 12 to the high-pressure stage extraction side.
[0012]
In the present embodiment, the pressure on the left and right high-pressure extraction side supplied to the right end of the space 12 and discharged from the left end of the space 12 is set so that the right side is set high and the left side is set low. It will be selected.
[0013]
In the present embodiment, as described above, the nozzle chamber 1 can be effectively cooled by the low-temperature steam 9 that flows laterally in the space 12. Further, the heat shielding plate 11 can block the radiant heat from the nozzle chamber 1 to the rotor 7 to block the radiant heat to the rotor 7, thereby reducing the surface temperature of the rotor 7.
[0014]
【The invention's effect】
In the present invention, the surface of the rotor is lowered by blocking the radiant heat from the nozzle chamber to the rotor by the heat shielding plate provided between the nozzle piece portion radially inward of the nozzle chamber and the rotor, thereby ensuring the rotor strength. be able to.
[0015]
Also, by introducing the low-temperature steam of the high-pressure stage extraction into the space between the nozzle piece and the heat shielding plate through the supply hole penetrating the nozzle piece, and discharging this vapor from the same space through the discharge hole penetrating the nozzle piece. The nozzle chamber can be cooled to improve the strength of the nozzle chamber.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a conventional steam turbine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Nozzle chamber 2 Nozzle piece 2a Nozzle 3 Moving blade 4 Leakage steam from nozzle exit 5 Pumping hole 6 Cooling steam 7 Rotor 8 Discharge hole 9 Low temperature steam (high pressure stage extraction)
10a Supply hole 10b Discharge hole 11 Heat shield plate 12 Space