JP3608007B2 - Decomposition accelerator - Google Patents
Decomposition accelerator Download PDFInfo
- Publication number
- JP3608007B2 JP3608007B2 JP08989495A JP8989495A JP3608007B2 JP 3608007 B2 JP3608007 B2 JP 3608007B2 JP 08989495 A JP08989495 A JP 08989495A JP 8989495 A JP8989495 A JP 8989495A JP 3608007 B2 JP3608007 B2 JP 3608007B2
- Authority
- JP
- Japan
- Prior art keywords
- acid
- sulfone group
- decomposition accelerator
- decomposition
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Biological Depolymerization Polymers (AREA)
- Artificial Filaments (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Woven Fabrics (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、改良されたポリ乳酸組成物及びその成型品に使用される分解促進剤に関する。
【0002】
【従来の技術】
生分解性又は自然環境下で分解するポリマーが、環境保護の見地から注目されている。特にポリ乳酸は、農産物を粗原料とし、またポリマーの溶融成型性、製品の耐熱性や強度などに優れるため、最も実用性が高いと期待されている。
【0003】
しかし、未変性のポリ乳酸は、結晶性が高く剛直な分子構造を持つために、分解速度が比較的遅いという問題がある。
【0004】
一般に、分解性ポリマーは、目的や用途により、分解速度や寿命の異なるものが必要とされる。しかし、従来のポリ乳酸は上記のように分解速度が遅く、用途によってはもっと分解速度の早いものが望まれている。
【0005】
【発明が解決しようとする課題】
ポリ乳酸に第2成分を共重合してその結晶性を低下させ、その分解性を高めることは知られている。しかし、共重合法では、結晶性の低下と共に融点も低下し、成型品の耐熱性や耐溶剤性が低下する問題がある。第2成分の混合によって結晶性を低下させることも考えられるが、ポリ乳酸の物性の劣化を抑えつつ、その分解速度を制御する有効な添加剤は、ほとんど知られていない。
【0006】
本発明の目的は、ポリ乳酸の物性劣化を最小限に抑制しつつ、その分解性を高め、且つ制御することが出来る新規な組成物を提供することにある。
【0007】
【課題を解決するための手段及び作用】
上記本発明の目的は、スルホン基の含有率が0.1重量%以上であり融点が200℃以下であるポリエステル(B)からなり、スルホン基が全重量の0.01%以上を占めるように、且つ、乳酸を主成分とする重合体(A)の重量比率が50%以上となるように添加される分解促進剤によって、達成される。本発明において、乳酸を主成分とする重合体(A)とは、ポリL−乳酸、ポリD−乳酸、ポリL/D−乳酸共重合体、及びそれらにエステル結合形成性の化合物を、全重量の50%以下の割合となるように共重合したものである。エステル結合形成性の化合物(重合原料)の例としては、グリコール酸、ヒドロキシブチルカルボン酸、ヒドロキシ安息香酸などのヒドロキシアルキル又はアリールカルボン酸、グリコリド、プロピオラクトン、ブチロラクトン、バレロラクトン、カプロラクトンなどのラクトン、ジオール及びジカルボン酸などがあげられる。
【0008】
ジオールの例としては、エチレングリコール、プロパンジオール、ブタンジオール、ヘキサンジオール、オクタンジオール、デカンジオールなどの炭素原子数2〜20程度の脂肪族ジオール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール及びそれらの共重合体など、ポリアルキレンエーテル(ポリアルキレンオキシド)のオリゴマー及びポリマーがあげられる。ジカルボン酸の例としては、コハク酸、アジピン酸、セバシン酸、デカンジカルボン酸など、炭素数4〜20程度の脂肪族ジカルボン酸、フタル酸、イソフタル酸、スルホイソフタル酸及びその金属塩(Na、Kなど)テレフタル酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸があげられる。
【0009】
これらの共重合成分と、ポリ乳酸との共重合は、ランダム共重合でもよく、ブロック共重合でもよい。しかし、結晶性や耐熱性をあまり損なわないで所期の変性を行なうには、ブロック共重合が好ましいことが多く、本発明に特に好適である。
【0010】
本発明において、乳酸を主成分とする重合体(A)は、本発明組成物の母体となるものであり、ポリ乳酸ホモポリマー及びポリ乳酸に他の成分を共重合した、共重合ポリ乳酸を包含する。共重合の主目的は、(1)結晶性及び融点を適度に低下させ、重合温度や成型温度を下げ、それらの工程でのポリマーの劣化を防ぐ、(2)分解速度促進用のポリエステル(B)との親和性を高め、混合を容易にすると共に親和性不足によって生じる混合物の白濁などを防ぐ、(3)ポリ乳酸を可塑化し、柔軟性や耐衝撃性を高める、の3点である。ポリL−乳酸ホモポリマーの融点(DSC曲線の吸熱ピーク)は175〜180℃であるが、上記目的に沿うためには、共重合物の融点は120℃〜170℃が好ましく、130〜165℃が特に好ましい。このようなポリ乳酸の共重合による改質は、少なくとも1種の第2成分を50重量%以下、特に1〜30%、最も多くの場合2〜20%共重合することにより行なわれる。
【0011】
本発明において、スルホン基含有率が0.1 重量%以上であり融点が200℃以下であるポリエステル(B)は、組成物の分解速度を高め且つ制御するものであり、以下分解促進剤(B)とも記す。分解促進剤(B)の特徴は、スルホン基を有することである。スルホン基はそのままでもよいが、多くの場合、アルカリ金属(Na、K、Liなど)で中和された塩が広く使われ、分解促進効果も高く好ましい。銀、銅、亜鉛などの塩は、抗菌作用があり、医学、衛生分野などに応用可能である。スルホン基の分解促進の作用機構は明らかではないが、(1)スルホン基の形状効果によるポリ乳酸の結晶性の低下、(2)スルホン基の吸水性により吸収された水によるポリ乳酸の加水分解及び生分解の促進の2つと推測される。
【0012】
分解促進剤(B)のスルホン基含有率が高いほど、分解促進作用が著しい。分解促進剤(B)のスルホン基含有率は、0.1 重量%以上であることが必要であり、0.3 %以上が好ましく、0.5 〜15%が特に好ましい。ここで、スルホン基の含有率は、スルホン基をSO3 、分子量80として計算する。例えば、分解促進剤中のS(硫黄、原子量32)を定量し、それが1重量%であったとすると、スルホン基含有量は、80/32=2.5 を乗じて、2.5 %と計算する。
【0013】
分解促進剤(B)にスルホン基を導入するには、スルホン基をもつエステル結合形成性化合物、例えば5−スルホイソフタル酸又は/及びその金属塩を重合原料として用いればよい。また、その誘導体であるビスヒドロキシエチルスルホイソフタル酸(金属塩)、及びその水酸基にエチレンオキシド又は/及びプロピレンオキシドなどのアルキレンオキシドを付加反応させたものも同様に有用である。 分解促進剤(B)の融点は、乳酸を主成分とする重合体(A)との溶融混合、溶融成型などの見地から、200℃以下である必要があり、180℃以下が好ましく、170℃以下が最も好ましい。非晶性物質では、結晶の融点が観測されないが、充分に軟化又は流動開始する温度を融点とする。
【0014】
スルホン基は、高密度に存在すると融点を高める傾向がある。例えば、ポリエチレンスルホイソフタル酸(ナトリウム塩)は、スルホン基含有率が約24%と高いが、融点が200℃以上で本発明には適さない。融点を低下するには、分子鎖の長い(例えば炭素原子数4以上、特に6以上の)グリコールを使用したり、他の(低融点)ポリエステル重合成分、例えばコハク酸、アジピン酸、セバシン酸、デカンジカルボン酸などを反応(重合又は共重合)させ、スルホン基を希釈すればよい。同様に、低融点ポリエステル、例えばポリ乳酸、ポリグリコール酸、ポリヒドロキシブチレートなどのポリヒドロキシアルキルカルボン酸、ポリカプロラクトンなどのポリラクトン、ポリエチレンアジペート、ポリエチレンセバケート、ポリブチレンサクシネート、ポリブチレンアジペート、ポリブチレンセバケート、ポリヘキサンサクシネート、ポリヘキサンアジペート、ポリヘキサンセバケートなどのポリアルキレンアルキレートなどのポリマー又は/及びオリゴマーとスルホン基含有化合物との共重合により、融点200℃以下の分解促進剤(B)を得ることが出来る。同様に、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレンエーテル、それらの共重合物などのポリアルキレンエーテルやポリヘキサンカーボネートなどのポリアルキレンカーボネートのポリマー及びオリゴマーも、スルホン基を有する成分と組合せて低融点の分解促進剤を得ることが出来る。例えば、ポリアルキレンオキシド(エーテル)やポリアルキレンカーボネートなどのポリマーや低重合度オリゴマー、例えば分子量1,000 以下、特に500以下のものは、脂肪族ジカルボン酸と組合せて低融点のポリエステルを得ることが出来、その分子鎖中にスルホイソフタル酸を共重合成分として導入することにより、任意のスルホン基含有率を持つ低融点ポリエステルを容易に得ることが出来る。
【0015】
混合物の物性劣化を抑制する見地からは、母体である乳酸を主成分とする重合体(A)(以下母体ポリマー(A)と記すことがある)と、添加剤である分解促進剤(B)は相互親和性が高いものが好ましい。この相互親和性が高いほど、組成物の均一で微細な混合が容易で、その透明性や、強度、伸度、衝撃強度などの力学特性が良好である。母体ポリマー(A)と分解促進剤(B)との親和性(混和性、相溶性、接着性)は、両者に共通(同一)の成分や近似の成分を持たせることにより、高めることが出来る。例えば分解促進剤(B)が、分子鎖中にポリ乳酸セグメント(ブロック)を持つブロック共重合体であれば、母体(A)との親和性が高い。一般に、ポリ乳酸と分子構造(例えば主鎖のエステル結合間の原子数)が近似する(上記原子数の差が4以下、特に2以下の)脂肪族ポリエステルは、母体ポリマー(A)と親和性が高い。ここで、セグメントとは、ポリマーの分子鎖の1部分をいう。
【0016】
また、母体ポリマー(A)が共重合体である場合、その共重合成分と分解促進剤(B)とに、共通又は近似成分を用いることにより、両者の親和性を高めることが出来る。例えば、母体ポリマー(A)として、ポリ乳酸とポリブチレンアジペートとのブロック共重合体を用い、分解促進剤(B)にポリブチレンアジペートセグメントをもつブロック共重合ポリエステルを用いれば、両者の親和性は高い。
【0017】
ここで、分解促進剤中のポリブチレンアジペートセグメントを、ポリエチレンセバケートに置換えた場合も、両者の分子構造は近似性が高く、その相互親和性は高い。このように、分解促進剤(B)はその分子中に、母体ポリマー(A)の主成分であるポリ乳酸又は/及び共重合成分と共通又は近似する成分(構成単位又はセグメント)を持つものが、両者の親和性の見地から、特に好ましい。
【0018】
分解促進剤(B)中のスルホン基の量が多いほど分解促進作用が強いが、それが多すぎると融点が高すぎて本発明に不適となる。実用上充分なスルホン基含有率とするため、例えばスルホン基含有量を1%又は5%とするには、分子量約8,000 当り1個又は、分子量約1,600 当り1個のスルホン基を導入するよう分子設計すればよい。例えば、スルホイソフタル酸(Na塩)又はそのエステル(メチルエステル、エチレングリコールエステルなど)と、両末端に水酸基を持つ分子量約600のポリアルキレングリコール(ポリエチレングリコールなど)、又はポリアルキレンアルキレート(ポリブチレンアジペートなど)、又はポリアルキレンカーボネート(ポリヘキサンカーボネートなど)との縮合(エステル結合形成)により、スルホン基含有率約10%のポリエステルが得られる。
【0019】
母体ポリマー(A)と分解促進剤(B)とからなる混合物の分解性は、組成物全体に対するスルホン基の重量分率が大きいほど、高い。充分な分解促進作用を示すには、組成物全体に対するスルホン基の重量比率は、少なくとも0.01%を必要とし、0.05%以上が好ましく、0.1 %〜5%程度が最も広く用いられる。分解促進剤(B)の組成物全体に対する混合比率(重量比)は、50%以下であるが、全組成物中のスルホン基の量が上記の範囲となるように、適宜混合すればよい。例えば、スルホン基含有率5%の分解促進剤を10%混合すれば、組成物全体のスルホン基含有率は約0.5 %であるが、このような比較的少量の含有率でも、スルホン基の分解促進作用はかなり明瞭に発揮され、スルホン基を含まない場合の例えば1.5 倍以上、特に2倍以上を示すものが容易に得られる。分解促進剤(B)の混合率は、50%以下の範囲で目的に応じて任意に選べば良く、例えば1〜40%、特に3〜30%がよく用いられ、5〜20%が最も広く用いられる。
【0020】
分解促進剤(B)の分子量は特に限定されないが、或程度大きいこと、例えば1,000 以上、特に3,000 以上が好ましく、5,000 以上のもの、多くの場合10,000〜200,000 程度のものが広く用いられる。
【0021】
上記のように、分解促進剤のスルホン基含有率が高いほど、分解促進剤の組成物中の混合率が高いほど、組成物の分解速度が大きい。更に母体ポリマー(A)として共重合物を用いる場合は、共重合成分の重量比率が高いほど分解速度が大きい傾向がある。これらの分解速度に関係する要因を適宜選択、調整することにより、目的、用途に応じて非常に広範・多様な分解性を有する組成物を得ることが出来る。
【0022】
また、必要に応じ、母体ポリマー(A)、分解促進剤(B)の他に、副次的添加剤(C)を混合することが出来る。副次的添加剤の例としては、安定剤、酸化防止剤、紫外線吸収剤、着色材、顔料、各種無機化合物粒子、充填材、滑剤、帯電防止剤、離型剤、撥水剤、親水剤、抗菌剤、香料、発泡剤、可塑剤、その他周知の有機及び無機の添加剤や充填剤があげられる。
【0023】
母体ポリマー(A)と、分解促進剤(B)との混合は、多くの場合、母体ポリマー(A)の重合後又は重合工程の末期以降に行なう。重合原料に分解促進剤(B)を混合したり、重合中に添加すると、互いに反応して共重合や分解を生じ、目的とする組成物が得られないことがあるからである。両者の反応は、溶融法で混合している間にも若干は起る可能性があるから、溶融混合の時間は出来るだけ短かく、例えば20分以内、特に10分以内とすることが好ましく、5分以内が最も好ましい。また両者の反応を防ぐため、その少なくとも一方の、末端官能基すなわち水酸基やカルボキシル基を単官能性化合物と反応させ、封鎖しておくことが好ましい。
【0024】
母体ポリマー(A)と分解促進剤(B)との混合は、溶融法でもよく、溶剤法でもよいが、溶融法が高能率で好ましい。すなわち母体ポリマーの溶融重合末期、成型前、成型工程中に分解促進剤を溶融混合することが出来る。混合の方法は、任意であるが、一軸又は多軸の混合器、押出機、ニーダー、ギアポンプ、その他の機械的攪拌によるもの、及び案内装置によって流れの分割と複合を多段的に繰返す静止混合器によるものなどが、連続化可能で効率が高く好ましい。
【0025】
【実施例】
以下の実施例において、部、%などは特に断らない限り重量部、重量%である。 [実施例1]
ビスヒドロキシエチルスルホイソフタル酸ナトリウム塩と、ビスヒドロキシエチルアジピン酸をモル比1/2で混合し、重合触媒として3酸化アンチモン微粒子を全体の400ppm 添加し、窒素気流下230℃、常圧で2時間反応し、次に両末端が水酸基で分子量3,000 のポリブチレンアジペート/ポリヘキサンアジペートのランダム共重合物(共重合モル比1/1)を全体の60%となるように加えた後、徐々に昇温及び減圧し240℃、圧力0.7Torr で2時間反応して、スルホン基を有するポリエステルP1を得た。ポリマーP1(分解促進剤)は、スルホン基含有率約5.0 %、分子量18,000、非晶性であるため融点は明瞭でないが、160℃で流動する。
【0026】
光学純度99%以上のL−ラクチドに対し重合触媒オクチル酸錫を0.2 %、酸化防止剤チバガイギー社イルガノックス1010を0.05%、直径0.05μmの酸化チタン粒子0.05%を添加し、互いに噛み合う2軸のスクリュウをもつ混合送液機で150℃で平均約7分間、窒素ガス下で連続的に混合、反応し、次に互いに噛み合うスクリュウと互いに噛み合う2フライト型(長円形)の混合素子を多数持つ2軸混練押出機で190℃で平均3分間、窒素気流下で攪拌、重合した。更に最終ベント孔より、上記ポリマーP1を溶融したものを反応系に対し10%となるよう供給、混合した後、口金より押出し水中で冷却、固化、切断してチップC1を得た。チップC1を遠心脱水、風乾後、120℃の窒素中で12時間加熱し、更に140℃4時間加熱してチップC2を得た。
【0027】
チップC2の重量平均分子量は188,000 、スルホン基含有率0.5 %、残存モノマー(ラクチド)0.1 %である。
【0028】
チップC2を210℃のスクリュウ押出機で溶融し、孔径0.2 mm、温度200℃のオリフィスより紡出し、空気中で冷却、オイリングして800m/min の速度で巻取り、次に70℃倍率3.9 倍で延伸し、緊張下110℃で熱処理して150デニール/48フィラメントの延伸糸Y1を得た。糸Y1の強度は4.3 g/d、伸度31.2%である。
【0029】
比較のため、上記ポリマーC2とほぼ同様にして、但しL−ラクチドの重合の末期にポリマーP1を添加しないで得た未変性のポリ乳酸を得、それを糸Y1と同様に溶融紡糸、延伸、熱処理して得た延伸糸をY2とする。糸Y2の強度は4.5 g/d、伸度28.3%である。
【0030】
糸Y1及びY2を土中に埋没して劣化試験を行なった。すなわち糸を引揃え金属枠に固定し、1ケ月毎にサンプルを取出し、糸の強度を測定する。強度が初期値の1/2になる時間を半減期とする。本発明の糸Y1の半減期は3.3 ケ月で、比較例の糸Y2の半減期7.4 ケ月の半分以下であり、ポリマーP1の分解促進剤としての効果が明らかである。
【0031】
[実施例2]
光学純度99%以上のL−ラクチド95部、両末端が水酸基で分子量20,000のポリブチレンアジペート/ポリヘキサンアジペート、共重合物(モル比1/1)5部を溶融混合し、以下実施例のチップC1及びC2と同様に重合し、重合末期に実施例1のポリマーP1を5%及び10%混合して、それぞれチップC3、C4を得た。比較のため、チップC3と同様にして、但しポリマーP1を添加しないで得たチップをC5とする。
【0032】
チップC3、C4、C5を用い、それぞれ実施例1の糸Y1と同様に溶融紡糸、延伸して得た糸をY3、Y4、Y5とする。これらの糸について、実施例1と同様に、土中埋没時の半減期を求めた。本発明による糸Y3の半減期は3.5 ケ月、糸Y4の半減期は2.1 ケ月であり、共に比較例の糸Y5の半減期6.0 ケ月よりもかなり短かく、分解促進剤P1の効果が明らかである。なお糸Y3及びY4は実施例1の糸Y1よりも透明度及び光沢に優れていたが、これは母体ポリマーと分解促進剤とが同一の成分を持ち、両者の相互親和性が高いためである。
【0033】
【発明の効果】
本発明によって、分解速度が遅いポリ乳酸について、その分解速度を効果的に早めることが可能となった。すなわち目的、用途に応じて、分解促進剤の組成や添加量を調整することにより、ポリ乳酸又はその変性体の分解速度をかなり自由且つ広範囲に制御することが出来る。更に母体ポリマーである乳酸を主成分とする重合体と、分解促進剤の親和性を高めることにより、両者の混合による白濁、強度の劣化などの問題を低減することが出来る。
【0034】
また本発明のスルホン基を有する分解促進剤は、母体ポリマーに対して可塑剤としても働き、成型品の柔軟性や耐衝撃性を高める。同様にスルホン基、特にその金属塩は塩基性染料に対して高い親和性を持っており、本発明による繊維、フィルム、その他の成型品は塩基性染料によって染色することが出来るという特色を持っている。
【0035】
本発明に係る分解促進剤を含む組成物は、繊維、編物、織物、不織布、紙、ロープ、網、シート、フィルム、発泡体、包装材、板、棒、チューブ、各種部品その他の成型品に好ましく用いることが出来る。[0001]
[Industrial application fields]
The present invention relates to an improved polylactic acid composition and a decomposition accelerator used for molded articles thereof.
[0002]
[Prior art]
Polymers that are biodegradable or decompose in the natural environment have attracted attention from the standpoint of environmental protection. In particular, polylactic acid is expected to be the most practical because it uses agricultural products as raw materials and is excellent in polymer melt moldability, product heat resistance and strength.
[0003]
However, unmodified polylactic acid has a problem that its degradation rate is relatively slow because of its high crystallinity and rigid molecular structure.
[0004]
Generally, degradable polymers having different degradation rates and lifetimes are required depending on purposes and applications. However, the conventional polylactic acid has a slow degradation rate as described above, and it is desired to have a faster degradation rate depending on the application.
[0005]
[Problems to be solved by the invention]
It is known that polylactic acid is copolymerized with a second component to lower its crystallinity and increase its degradability. However, the copolymerization method has a problem that the melting point is lowered together with the crystallinity and the heat resistance and solvent resistance of the molded product are lowered. Although it is conceivable to lower the crystallinity by mixing the second component, few effective additives are known that control the degradation rate while suppressing deterioration of the physical properties of polylactic acid.
[0006]
An object of the present invention is to provide a novel composition capable of enhancing and controlling the degradability while minimizing deterioration of physical properties of polylactic acid.
[0007]
[Means and Actions for Solving the Problems]
The object of the present invention is a polyester (B) having a sulfone group content of 0.1% by weight or more and a melting point of 200 ° C. or less, so that the sulfone groups occupy 0.01% or more of the total weight, and lactic acid This is achieved by a decomposition accelerator added so that the weight ratio of the polymer (A) containing as a main component is 50% or more. In the present invention, the polymer (A) containing lactic acid as a main component includes poly L-lactic acid, poly D-lactic acid, poly L / D-lactic acid copolymer, and compounds that form ester bonds to them. Copolymerized so as to have a ratio of 50% or less by weight. Examples of ester bond-forming compounds (polymerization raw materials) include hydroxyalkyl or arylcarboxylic acids such as glycolic acid, hydroxybutylcarboxylic acid, and hydroxybenzoic acid, lactones such as glycolide, propiolactone, butyrolactone, valerolactone, and caprolactone Diols and dicarboxylic acids.
[0008]
Examples of the diol include aliphatic diols having about 2 to 20 carbon atoms such as ethylene glycol, propanediol, butanediol, hexanediol, octanediol, decanediol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, poly Examples include oligomers and polymers of polyalkylene ethers (polyalkylene oxides) such as butylene glycol and copolymers thereof. Examples of dicarboxylic acids include aliphatic dicarboxylic acids having about 4 to 20 carbon atoms, such as succinic acid, adipic acid, sebacic acid, decanedicarboxylic acid, phthalic acid, isophthalic acid, sulfoisophthalic acid, and metal salts thereof (Na, K). And aromatic dicarboxylic acids such as terephthalic acid and naphthalenedicarboxylic acid.
[0009]
The copolymerization of these copolymer components with polylactic acid may be random copolymerization or block copolymerization. However, block copolymerization is often preferred for performing the desired modification without significantly impairing crystallinity and heat resistance, and is particularly suitable for the present invention.
[0010]
In the present invention, the polymer (A) containing lactic acid as a main component is the base material of the composition of the present invention, and a polylactic acid homopolymer and a copolymerized polylactic acid obtained by copolymerizing polylactic acid with other components. Include. The main purpose of the copolymerization is (1) moderately lowering the crystallinity and melting point, lowering the polymerization temperature and molding temperature, and preventing the deterioration of the polymer in those processes. (2) polyester for promoting degradation rate (B ), To facilitate mixing, and to prevent white turbidity of the mixture caused by insufficient affinity, and (3) to plasticize polylactic acid to increase flexibility and impact resistance. The melting point of poly L-lactic acid homopolymer (endothermic peak of DSC curve) is 175 to 180 ° C, but in order to meet the above purpose, the melting point of the copolymer is preferably 120 ° C to 170 ° C, and 130 to 165 ° C. Is particularly preferred. Such modification by copolymerization of polylactic acid is carried out by copolymerizing at least one second component to 50% by weight or less, particularly 1 to 30%, most often 2 to 20%.
[0011]
In the present invention, the polyester (B) having a sulfone group content of 0.1% by weight or more and a melting point of 200 ° C. or less increases and controls the decomposition rate of the composition. ). The feature of the decomposition accelerator (B) is that it has a sulfone group. The sulfone group may be used as it is, but in many cases, a salt neutralized with an alkali metal (Na, K, Li, etc.) is widely used, and the decomposition promoting effect is high and preferable. Salts such as silver, copper, and zinc have antibacterial action and can be applied to medical and hygiene fields. Although the mechanism of action for promoting the degradation of the sulfone group is not clear, (1) the crystallinity of the polylactic acid is reduced by the shape effect of the sulfone group, and (2) the hydrolysis of the polylactic acid by the water absorbed by the water absorption of the sulfone group And two of the acceleration of biodegradation.
[0012]
The higher the sulfone group content of the decomposition accelerator (B), the more remarkable the decomposition promotion action. The sulfone group content of the decomposition accelerator (B) needs to be 0.1% by weight or more, preferably 0.3% or more, and particularly preferably 0.5 to 15%. Here, the content rate of the sulfone group is calculated with the sulfone group as SO 3 and the molecular weight of 80. For example, when S (sulfur, atomic weight 32) in the decomposition accelerator is quantified and it is 1% by weight, the sulfone group content is multiplied by 80/32 = 2.5 to be 2.5%. calculate.
[0013]
In order to introduce a sulfone group into the decomposition accelerator (B), an ester bond-forming compound having a sulfone group, for example, 5-sulfoisophthalic acid or / and a metal salt thereof may be used as a polymerization raw material. Similarly, bishydroxyethylsulfoisophthalic acid (metal salt) that is a derivative thereof and a product obtained by adding an alkylene oxide such as ethylene oxide and / or propylene oxide to the hydroxyl group thereof are also useful. The melting point of the decomposition accelerator (B) needs to be 200 ° C. or less, preferably 180 ° C. or less, and 170 ° C. from the standpoint of melt mixing with the polymer (A) containing lactic acid as a main component, melt molding and the like. The following are most preferred. In the case of an amorphous substance, the melting point of the crystal is not observed, but the melting point is the temperature at which the crystallizing or flow starts sufficiently.
[0014]
Sulfone groups tend to increase the melting point when present at high density. For example, polyethylene sulfoisophthalic acid (sodium salt) has a high sulfone group content of about 24%, but has a melting point of 200 ° C. or higher and is not suitable for the present invention. In order to lower the melting point, a glycol having a long molecular chain (for example, having 4 or more carbon atoms, particularly 6 or more) is used, or other (low melting point) polyester polymerization components such as succinic acid, adipic acid, sebacic acid, What is necessary is just to dilute a sulfone group by making decanedicarboxylic acid etc. react (polymerization or copolymerization). Similarly, low melting point polyesters such as polylactic acid such as polylactic acid, polyglycolic acid, polyhydroxybutyrate, polylactone such as polycaprolactone, polyethylene adipate, polyethylene sebacate, polybutylene succinate, polybutylene adipate, poly Decomposition accelerators having a melting point of 200 ° C. or less by copolymerization of polymers or / and oligomers such as polyalkylene alkylates such as butylene sebacate, polyhexane succinate, polyhexane adipate, and polyhexane sebacate with sulfone group-containing compounds ( B) can be obtained. Similarly, polyalkylene ethers such as polyethylene glycol, polypropylene glycol, polybutylene ether and copolymers thereof, and polymers and oligomers of polyalkylene carbonates such as polyhexane carbonate can also be decomposed with a low melting point in combination with a component having a sulfonic group. An accelerator can be obtained. For example, polymers such as polyalkylene oxide (ether) and polyalkylene carbonate and oligomers having a low polymerization degree, for example, those having a molecular weight of 1,000 or less, particularly 500 or less, can be combined with an aliphatic dicarboxylic acid to obtain a low melting point polyester. In addition, by introducing sulfoisophthalic acid into the molecular chain as a copolymerization component, a low-melting polyester having an arbitrary sulfone group content can be easily obtained.
[0015]
From the standpoint of suppressing deterioration of physical properties of the mixture, a polymer (A) containing lactic acid as a main component (hereinafter sometimes referred to as “matrix polymer (A)”) and a decomposition accelerator (B) as an additive. Preferably have a high mutual affinity. The higher this mutual affinity is, the easier and more uniform the composition can be mixed, and the better the transparency, mechanical properties such as strength, elongation and impact strength. Affinity (miscibility, compatibility, adhesiveness) between the base polymer (A) and the degradation accelerator (B) can be increased by having the same (same) or similar components in both. . For example, if the decomposition accelerator (B) is a block copolymer having a polylactic acid segment (block) in the molecular chain, the affinity with the base material (A) is high. In general, an aliphatic polyester whose molecular structure (for example, the number of atoms between ester bonds in the main chain) is close to that of polylactic acid (the difference in the number of atoms is 4 or less, particularly 2 or less) has an affinity for the base polymer (A). Is expensive. Here, the segment refers to one part of the molecular chain of the polymer.
[0016]
Moreover, when the base polymer (A) is a copolymer, the affinity between the copolymer component and the decomposition accelerator (B) can be increased by using a common or approximate component. For example, if a block copolymer of polylactic acid and polybutylene adipate is used as the base polymer (A) and a block copolymer polyester having a polybutylene adipate segment is used as the decomposition accelerator (B), the affinity between the two is high.
[0017]
Here, even when the polybutylene adipate segment in the decomposition accelerator is replaced with polyethylene sebacate, the molecular structures of both are highly similar and their mutual affinity is high. Thus, the decomposition accelerator (B) has a component (constituent unit or segment) that is common or close to the polylactic acid or / and the copolymer component as the main component of the base polymer (A) in the molecule. From the viewpoint of the affinity between the two, it is particularly preferable.
[0018]
The greater the amount of the sulfone group in the decomposition accelerator (B), the stronger the decomposition promoting action. In order to obtain a practically sufficient sulfone group content, for example, in order to make the sulfone group content 1% or 5%, one sulfone group per molecular weight of about 8,000 or one sulfone group per molecular weight of about 1,600 What is necessary is just to design a molecule to introduce. For example, sulfoisophthalic acid (Na salt) or its ester (methyl ester, ethylene glycol ester, etc.) and polyalkylene glycol (polyethylene glycol etc.) having a hydroxyl group at both ends and a molecular weight of about 600, or polyalkylene alkylate (polybutylene) Polyester having a sulfone group content of about 10% is obtained by condensation (formation of ester bond) with polyalkylene carbonate (such as polyhexane carbonate) or adipate.
[0019]
The degradability of the mixture composed of the base polymer (A) and the degradation accelerator (B) is higher as the weight fraction of the sulfone group relative to the whole composition is larger. In order to show a sufficient decomposition accelerating action, the weight ratio of the sulfone group to the whole composition needs to be at least 0.01%, preferably 0.05% or more, and most widely used is about 0.1% to 5%. It is done. The mixing ratio (weight ratio) of the decomposition accelerator (B) to the entire composition is 50% or less, but may be appropriately mixed so that the amount of the sulfone group in the entire composition falls within the above range. For example, if 10% of a decomposition accelerator having a sulfone group content of 5% is mixed, the sulfone group content of the entire composition is about 0.5%. The effect of promoting the decomposition of is fairly clearly exhibited, and, for example, it can be easily obtained that exhibits, for example, 1.5 times or more, especially 2 times or more of the case where no sulfone group is contained. The mixing ratio of the decomposition accelerator (B) may be arbitrarily selected depending on the purpose within a range of 50% or less, for example, 1 to 40%, particularly 3 to 30% is often used, and 5 to 20% is the widest. Used.
[0020]
The molecular weight of the decomposition accelerator (B) is not particularly limited, but is somewhat large, for example, 1,000 or more, particularly 3,000 or more, preferably 5,000 or more, and in many cases 10,000 to 200,000. The one of the degree is widely used.
[0021]
As described above, the decomposition rate of the composition increases as the sulfone group content of the decomposition accelerator increases and the mixing ratio of the decomposition accelerator in the composition increases. Furthermore, when using a copolymer as a base polymer (A), there exists a tendency for a decomposition rate to become large, so that the weight ratio of a copolymerization component is high. By appropriately selecting and adjusting these factors related to the degradation rate, it is possible to obtain a composition having a very wide variety of degradability depending on the purpose and application.
[0022]
In addition to the base polymer (A) and the decomposition accelerator (B), a secondary additive (C) can be mixed as necessary. Examples of secondary additives include stabilizers, antioxidants, ultraviolet absorbers, colorants, pigments, various inorganic compound particles, fillers, lubricants, antistatic agents, mold release agents, water repellents, hydrophilic agents. , Antibacterial agents, fragrances, foaming agents, plasticizers, and other well-known organic and inorganic additives and fillers.
[0023]
In many cases, the base polymer (A) and the decomposition accelerator (B) are mixed after the polymerization of the base polymer (A) or after the end of the polymerization step. This is because when the decomposition accelerator (B) is mixed with the polymerization raw material or added during the polymerization, they react with each other to cause copolymerization or decomposition, and the target composition may not be obtained. Since the reaction between the two may slightly occur during mixing by the melting method, the time for melt mixing is as short as possible, for example, preferably within 20 minutes, particularly preferably within 10 minutes, Most preferably within 5 minutes. In order to prevent the reaction between the two, at least one of the terminal functional groups, that is, a hydroxyl group or a carboxyl group, is preferably reacted with a monofunctional compound and blocked.
[0024]
Mixing of the base polymer (A) and the decomposition accelerator (B) may be a melting method or a solvent method, but the melting method is preferable because of its high efficiency. That is, the decomposition accelerator can be melt-mixed at the end of the melt polymerization of the base polymer, before molding, or during the molding process. Any mixing method may be used, but a single- or multi-shaft mixer, an extruder, a kneader, a gear pump, or other mechanical stirring, and a static mixer that repeats flow division and combination in multiple stages by a guide device. Is preferable because it can be continuous and has high efficiency.
[0025]
【Example】
In the following examples, “parts”, “%” and the like are “parts by weight” and “% by weight” unless otherwise specified. [Example 1]
Bishydroxyethylsulfoisophthalic acid sodium salt and bishydroxyethyladipic acid are mixed at a molar ratio of 1/2, and 400 ppm of antimony trioxide fine particles are added as a polymerization catalyst. Next, after adding a random copolymer of polybutylene adipate / polyhexane adipate having a hydroxyl group at both ends and a molecular weight of 3,000 (copolymerization molar ratio 1/1) to 60% of the total, The mixture was reacted and heated at 240 ° C. and a pressure of 0.7 Torr for 2 hours to obtain a polyester P1 having a sulfone group. The polymer P1 (decomposition accelerator) has a sulfone group content of about 5.0%, a molecular weight of 18,000, and is amorphous, so the melting point is not clear, but it flows at 160 ° C.
[0026]
Addition of 0.2% of polymerization catalyst tin octylate, 0.05% of antioxidant Ciba Geigy Irganox 1010, 0.05% of titanium oxide particles 0.05mm in diameter to L-lactide with optical purity 99% or more Two-flight type (oval) that continuously mixes and reacts under nitrogen gas at 150 ° C for an average of about 7 minutes in a mixed-feeding machine with twin-screws meshing with each other and then meshing with the screws meshing with each other The mixture was stirred and polymerized in a twin-screw kneader / extruder having a large number of mixing elements at 190 ° C. for 3 minutes on average in a nitrogen stream. Further, from the final vent hole, the polymer P1 melted was supplied and mixed so as to be 10% of the reaction system, and then extruded from the die, cooled in the water, solidified, and cut to obtain a chip C1. Chip C1 was subjected to centrifugal dehydration and air drying, then heated in nitrogen at 120 ° C. for 12 hours, and further heated at 140 ° C. for 4 hours to obtain chip C2.
[0027]
The weight average molecular weight of the chip C2 is 188,000, the sulfone group content is 0.5%, and the residual monomer (lactide) is 0.1%.
[0028]
Chip C2 was melted with a screw extruder at 210 ° C., spun from an orifice with a hole diameter of 0.2 mm and a temperature of 200 ° C., cooled and oiled in air, and wound at a speed of 800 m / min. The film was drawn at 3.9 times and heat-treated at 110 ° C. under tension to obtain a drawn yarn Y1 of 150 denier / 48 filaments. Yarn Y1 has a strength of 4.3 g / d and an elongation of 31.2%.
[0029]
For comparison, an unmodified polylactic acid obtained in substantially the same manner as the polymer C2 except that the polymer P1 was not added at the end of the polymerization of L-lactide was obtained. The drawn yarn obtained by heat treatment is designated Y2. Yarn Y2 has a strength of 4.5 g / d and an elongation of 28.3%.
[0030]
The deterioration test was performed by burying the yarns Y1 and Y2 in the soil. That is, the yarn is aligned and fixed to a metal frame, a sample is taken out every month, and the strength of the yarn is measured. The time during which the intensity is ½ of the initial value is defined as the half-life. The half-life of the yarn Y1 of the present invention is 3.3 months, which is less than half the half-life of 7.4 months of the yarn Y2 of the comparative example, and the effect of the polymer P1 as a degradation accelerator is clear.
[0031]
[Example 2]
95 parts of L-lactide having an optical purity of 99% or more, 5 parts of polybutylene adipate / polyhexane adipate having a molecular weight of 20,000 at both ends and a molecular weight of 20,000, and a copolymer (molar ratio 1/1) are melt mixed. The chips C1 and C2 were polymerized in the same manner, and 5% and 10% of the polymer P1 of Example 1 were mixed at the end of polymerization to obtain chips C3 and C4, respectively. For comparison, a chip obtained in the same manner as the chip C3 but without adding the polymer P1 is referred to as C5.
[0032]
Y3, Y4, and Y5 are yarns obtained by melt spinning and drawing using the chips C3, C4, and C5 in the same manner as the yarn Y1 of Example 1, respectively. For these yarns, the half-life when buried in the soil was determined in the same manner as in Example 1. The half-life of the yarn Y3 according to the present invention is 3.5 months, the half-life of the yarn Y4 is 2.1 months, both of which are considerably shorter than the half-life of 6.0 months of the comparative yarn Y5, and the degradation accelerator P1 The effect of is obvious. Yarns Y3 and Y4 were superior to the yarn Y1 of Example 1 in transparency and gloss, because the base polymer and the decomposition accelerator have the same components, and their mutual affinity is high.
[0033]
【The invention's effect】
According to the present invention, it is possible to effectively increase the degradation rate of polylactic acid having a slow degradation rate. That is, the degradation rate of polylactic acid or a modified product thereof can be controlled fairly freely and over a wide range by adjusting the composition and addition amount of the degradation accelerator according to the purpose and application. Furthermore, by increasing the affinity of the polymer mainly composed of lactic acid, which is the base polymer, and the decomposition accelerator, problems such as white turbidity and strength deterioration due to mixing of both can be reduced.
[0034]
Moreover, the decomposition accelerator having a sulfone group of the present invention also acts as a plasticizer for the base polymer, and improves the flexibility and impact resistance of the molded product. Similarly, the sulfone group, particularly its metal salt, has a high affinity for basic dyes, and the fibers, films and other molded articles according to the present invention can be dyed with basic dyes. Yes.
[0035]
The composition containing the decomposition accelerator according to the present invention can be used for fibers, knitted fabrics, woven fabrics, nonwoven fabrics, paper, ropes, nets, sheets, films, foams, packaging materials, plates, bars, tubes, various parts and other molded products. It can be preferably used.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08989495A JP3608007B2 (en) | 1995-04-17 | 1995-04-17 | Decomposition accelerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08989495A JP3608007B2 (en) | 1995-04-17 | 1995-04-17 | Decomposition accelerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08283558A JPH08283558A (en) | 1996-10-29 |
JP3608007B2 true JP3608007B2 (en) | 2005-01-05 |
Family
ID=13983455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08989495A Expired - Lifetime JP3608007B2 (en) | 1995-04-17 | 1995-04-17 | Decomposition accelerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3608007B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2287952C (en) * | 1997-05-02 | 2006-11-28 | Cargill Incorporated | Degradable polymer fibers; preparation; product; and methods of use |
JP2007270076A (en) * | 2006-03-31 | 2007-10-18 | Tohcello Co Ltd | Polylactic acid type stretched film, stretched laminated film and its use |
-
1995
- 1995-04-17 JP JP08989495A patent/JP3608007B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08283558A (en) | 1996-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3440915B2 (en) | Polylactic acid resin and molded products | |
JP2000017163A (en) | Polylactic acid stereocomplex polymer composition | |
JP3666172B2 (en) | Naturally decomposable resin composition and molded product thereof | |
JP2001335626A (en) | Aliphatic polyester resin and molding | |
JP3443603B2 (en) | Polylactic acid block copolymer composition, method for producing the same, and molded article | |
JP3391133B2 (en) | Plasticized polylactic acid and its molded product | |
JP2001323056A (en) | Aliphatic polyester resin and molded article | |
JP3729565B2 (en) | Method for producing polylactic acid composition | |
JP3304237B2 (en) | Core / sheath type biodegradable composite fiber | |
JP3348752B2 (en) | Plasticized polylactic acid composition and molded article thereof | |
JPH0940761A (en) | Polylactic acid block copolymer, production thereof and molded article made therefrom | |
JP4856913B2 (en) | High-strength polylactic acid fiber and method for producing the same | |
JP3608007B2 (en) | Decomposition accelerator | |
JP3350606B2 (en) | Method for producing polylactic acid | |
JPH08283557A (en) | Plasticized polylactic acid composition and its molded item | |
JP3702410B2 (en) | Polylactic acid composition | |
JP3508678B2 (en) | Polylactic acid composition and molded article thereof | |
JP3258823B2 (en) | Biodegradable polyester copolymer, method for producing the same, and molded article from the copolymer | |
JP2000136300A (en) | Plasticized lactic acid-based polymer composition and its formed product | |
JP6033008B2 (en) | Resin composition and use thereof | |
JP3584579B2 (en) | Plasticized aliphatic polyester composition and molded article thereof | |
JP3261028B2 (en) | Self-adhesive composite fiber | |
JP3471109B2 (en) | Polylactic acid copolymer and molded product thereof | |
JP3423472B2 (en) | Biodegradable polyester composition and molded article thereof | |
JP3694103B2 (en) | Naturally degradable composite fiber and its application products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040406 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040604 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040629 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040921 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040927 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081022 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081022 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081022 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081022 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091022 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091022 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101022 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101022 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111022 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121022 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121022 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121022 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121022 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121022 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |