[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3606828B2 - Ceramic mold and its manufacturing method - Google Patents

Ceramic mold and its manufacturing method Download PDF

Info

Publication number
JP3606828B2
JP3606828B2 JP2001329029A JP2001329029A JP3606828B2 JP 3606828 B2 JP3606828 B2 JP 3606828B2 JP 2001329029 A JP2001329029 A JP 2001329029A JP 2001329029 A JP2001329029 A JP 2001329029A JP 3606828 B2 JP3606828 B2 JP 3606828B2
Authority
JP
Japan
Prior art keywords
weight
mold
parts
molding
gypsum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001329029A
Other languages
Japanese (ja)
Other versions
JP2003127120A (en
Inventor
浩 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga Prefecture
Original Assignee
Saga Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga Prefecture filed Critical Saga Prefecture
Priority to JP2001329029A priority Critical patent/JP3606828B2/en
Publication of JP2003127120A publication Critical patent/JP2003127120A/en
Application granted granted Critical
Publication of JP3606828B2 publication Critical patent/JP3606828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00939Uses not provided for elsewhere in C04B2111/00 for the fabrication of moulds or cores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds, Cores, Or Mandrels (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は陶磁器製品を鋳込み成形等により成形するときに用いる陶磁器成形用型及びその製造方法に関する。
【0002】
【従来の技術】
石膏は古代エジプト時代から構造物の建築助剤として使用されてきて以来、セメント保存時の安定剤、建設資材、農業用、顔料等の各種産業や精密な加工を伴う金属精密鋳造、美術工芸、外科医療、歯科、陶磁器工業等の分野で幅広く使用されている。
【0003】
陶磁器の素地成形に使用される石膏型は半水石膏を出発原料として、これに適量の水を加え攪拌混合し、このスラリーを型成形用母型に鋳込み成形することにより得られる。この場合、スラリ−は水和反応を経て短時間で二水石膏に変態し凝結固化する。当該スラリ−は均質性と流動性が高く、鋳込むことで母型内では均質に充填され固化する特徴がある。このようにして得られた石膏型は型写しが高精度であり、更に、成形や加工等が容易である等の特性により汎用資材として使用されている。
【0004】
近年、陶磁器の素地成形方法が多様化し、成形用型に各種機能が求められている。それらの課題に対して原料石膏に、有機系若しくは無機系繊維を混合したり或いは無機質粉末を混合したりして硬度や耐摩耗性或いは抗折強度等の機械的強度を向上させた製品開発がなされている。
【0005】
例えば、特開平6−157117号、特開平6−155426号には、母材の石膏組織内に炭素繊維を混入分散することにより機械的強度を増大した成形用石膏型等が開示されている。また特開平7−246609号には、石膏にゼオライト粉末を含有させることにより型密度を増大させ、それにより機械的強度を向上させた成形用石膏型が開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、従来の石膏型においては成形面が水に溶解することによる耐久性の低下という問題がある。即ち、石膏は水に対して難溶性ではあるが水に対する溶解性を示すため、陶磁器素地成形の際、成形材料と接する型表面即ち、成形面が成形材料中の水を吸収して僅かに溶解する。そして、同一石膏型による繰り返し成形の回数が増えることにより、その溶解量が次第に増大し、それに伴って成形面の空間内容積が大きくなり、該内容積が変動することになる。その結果、成形体である陶磁器素地の寸法や形状に誤差が生じ、均質なものが得られないという問題がある。例えば、徳利形状の容器を成形するに当たって同一石膏型で100回成形を繰り返し、100個製作した場合、成形回数の増大に伴って容器の外形寸法が次第に大きくなるという不具合を生じる。そのため同一型による成形回数にも自ずと限界があり、比較的早期に型の破棄を余儀なくされ、耐久性に劣るものであった。
【0007】
また、従来の石膏型は耐摩耗性の面でも充分とはいえない。例えばローラーマシン成形法により皿形状の容器を成形するに当たって回転盤上で陶土を円錐ローラー状のヘラで型表面に押し付けながら成形するので、型表面は大きな応力を受ける。そのため型表面が摩耗し、成形回数の増大に伴って型表面の摩耗度は次第に大きくなり、成形精度の低下、成形体の寸法の不均一という問題を生じる。このように従来の石膏型は耐摩耗性が充分ではないという点からも同一型による繰り返し成形回数に自ずと限界があり、耐久性の改善が望まれていた。
【0008】
更に従来においては石膏型の取り扱い時に外力により該石膏型が破損するという問題があり、強度の面で技術改良がなされたといっても決して充分満足できるものではなかった。
【0009】
また、従来の石膏型においては熱特性は41℃以下が安定域で、それ以上の温度域では敏感に半水石膏に変態し強度等の物性が低下するため、素地成形に使用されて湿潤状態にある石膏型を乾燥して再度成形に使用するに当たり、その乾燥温度は41℃以下に制限され、そのため乾燥に時間がかかり、成形サイクルの効率が悪いものであった。
【0010】
本発明は従来の石膏型が有している問題点を解決しようとするものであり、成形面の空間内容積の変動を抑止して耐久性を向上し、且つ耐摩耗性、機械的強度及び耐熱性を向上させた陶磁器成形用型及びその製造方法を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明は珪酸質鉱物、セメント、石膏からなる材料にて形成してなり、珪酸質鉱物とセメントとの反応硬化物がモルタル質を有することを特徴とする陶磁器成形用型である。
【0012】
本発明成形用型を構成する上記材料には、平均粒径が0.1μm以上、2μm未満の珪酸質微粒子及び/又は繊維質鉱物を配合することができる。この珪酸質微粒子及び/又は繊維質鉱物の配合により、硬化速度、気孔率、吸水率及び表面粗さ等の多孔質特性を調整することができると共に、型の寸法精度を調整でき、更には鋳込成形時における陶磁器素地の離型を容易ならしめることができる。
【0013】
本発明成形型における材料組成は、珪酸質鉱物40〜70重量部、セメント10〜40重量部、石膏2〜25重量部である。
【0014】
これらの材料に上記した珪質微粒子及び繊維質鉱物を配合する場合の本発明材料組成は、珪酸質鉱物40〜70重量部、セメント10〜40重量部、石膏2〜25重量部、上記珪酸質微粒子1〜10重量部、繊維質鉱物0.2〜5重量部である。
【0015】
本発明の陶磁器成形用型を製造するに当っては、まず、珪酸質鉱物40〜70重量部、セメント10〜40重量部、石膏2〜25重量部に水35〜60重量部を加えて混合し、スラリーを作る。次いで、得られたスラリーを型成形用母型の成型用空間に鋳込み、硬化させ、脱型して成形体(成形用型)を得る。
【0016】
本発明成形型が上記の珪酸質微粒子及び繊維質鉱物を含む場合において本発明成形型を製造するに当っては、まず、珪酸質鉱物40〜70重量部、セメント10〜40重量部、石膏2〜25重量部、上記珪酸質微粒子1〜10重量部、繊維質鉱物0.2〜5重量部に水35〜60重量部を加えて混合し、スラリーを作る。次いで、得られたスラリーを型成形用母型の成型用空間に鋳込み、硬化させ、脱型して成形体(成形用型)を得る。
【0017】
【発明の実施の形態】
本発明の陶磁器成形用型は珪酸質鉱物、セメント及び石膏からなるが、更にこれらに平均粒径が0.1μm以上、2μm未満の珪酸質微粒子及び/又は繊維質鉱物を配合することが好ましい。即ち、本発明において珪酸質鉱物、セメント及び石膏が基本的な材料成分であり、これらに上記珪酸質微粒子、繊維質鉱物のうちのいずれか一方或いは両方を配合することができる。
【0018】
本発明における珪酸質鉱物としては粘土成分が少ない鉱物が好ましく、珪石や長石等の花崗岩類や蝋石及び珪酸質砂岩等が挙げられる。珪酸質鉱物の主成分はSiOであり、この主成分SiOの含有量としては62%以上が好ましい。
【0019】
本発明において珪酸質鉱物は粒状のものが用いられ、その平均粒子径は2〜100μmが好ましい。平均粒子径が100μmを越えると、本発明成形用型の全細孔比表面積を大きくすることが困難となり、また吸水率を向上することも困難となる。一方、珪酸質鉱物は硬質であるため汎用の粉砕機器で微粉砕することは極めて困難であり、コスト高となるため平均粒子径が2μm未満のものを用いることは経済的に得策ではない。
【0020】
本発明において珪酸質鉱物の更に好ましい平均粒子径は3〜60μmである。
【0021】
本発明におけるセメントとして、ポルトランドセメント、白色ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、高炉セメント、シリカセメント、フライアッシュセメント、アルミナセメント、マグネシアセメント等が挙げられ、なかでもポルトランドセメント、白色ポルトランドセメント、早強ポルトランドセメント、シリカセメントが好ましい。
【0022】
石膏としては従来の石膏型に用いられている材料と同様の材料を用いることができる。
【0023】
平均粒径が0.1μm以上、2μm未満の珪酸質微粒子は本発明成形用型の多孔質特性を調整するために適宜配合される。ここで多孔質特性とは、硬化速度、気孔率、吸水率及び表面粗さ等の性質をいう。この珪酸質微粒子としては、シリカヒューム、ホワイトカーボン等が挙げられるが、シリカヒュームが好ましい。シリカヒュームとしては、シリコン系半導体用素材の製造時に得られる副産物或いはシリコンメタル又はフェロシリコンの製造時に電気炉から収集される副産物を用いることができ、主な結晶相はクリストバライトのみで主成分のSiO含有量は90%以上である。
【0024】
上記珪酸質微粒子の平均粒径を0.1μm以上、2μm未満としたのは、平均粒径が0.1μm未満では吸水率の向上に寄与できず、また工程における粉塵発生など取扱い上の不具合を生じ、一方、平均粒径が2μm以上では全細孔比表面積の増大並びに吸水率の向上に寄与できないからである。上記珪酸質微粒子の好ましい平均粒径は0.1〜0.3μmである。
【0025】
また本発明成形用型の多孔質特性を調整するため繊維質鉱物を配合することが好ましい。この繊維質鉱物としては、セピオライト、アタパルジャイト等が挙げられるが、セピオライトが好ましい。セピオライトはMgO− SiO−HOを主成分とするマグネシウム珪酸塩で微細な粒径を持ち、長さ0.2〜2μmの繊維を束ねた状態の構造を有し、粒子形状としては微細な繊維状形態を有し、水に対して非常に分散性が良い。セピオライト、アタパルジャイトはボールミル等の粉砕機を用いて微細化でき、セピオライトの場合は、微細化により束ねた繊維がほぐされて小繊維化される。
【0026】
本発明成形用型の材料組成は珪酸質鉱物40〜70重量部、セメント10〜40重量部、石膏2〜25重量部である。珪酸質鉱物の配合量が40重量部未満では吸水性を向上できず、また成形型製造時に成形体の収縮を招き、型成形用母型からの脱型が困難で亀裂が発生し易くなる。一方、70重量部を越えるとスラリーの硬化速度が遅くなり且つ強度低下を招く虞がある。
【0027】
セメントの配合量が10重量部未満では耐久性、機械的強度及び耐熱性を向上できず、40重量部を越えると吸水性に劣るものとなる。
【0028】
石膏の配合量が2重量部未満では珪酸質鉱物とセメントの二成分系モルタルの収縮を防止できない上、均質な成形体(成形用型)を得ることができない。一方、25重量部を越えると成形面の空間内容積の変動を抑止できず、成形精度及び耐久性が劣化する。
【0029】
本発明は上記材料組成に、平均粒径が0.1μm以上、2μm未満の珪酸質微粒子及び/又は繊維質鉱物を配合することができる。本発明は上記珪酸質微粒子のみを配合しても或いは繊維質鉱物のみを配合してもよく、更には両者を共に配合してもよい。いずれの場合においても上記珪酸質微粒子の配合量は1〜10重量部、繊維質鉱物の配合量は0.2〜5重量部である。上記珪酸質微粒子の配合量が1重量部未満では吸水性を向上できない。また、10重量部を越えるとスラリーの適正な流動性を付与するために混水量が多量となり、成形体(成形用型)の強度低下に繋がる。また繊維質鉱物の配合量が0.2重量部未満では各材料の均質分散効果がなく、均質な成形体(成形用型)を得ることができず、5重量部を越えると珪酸質微粒子の場合と同様にスラリーの適正な流動性を付与するために混水量が多量となり、成形体(成形用型)の強度低下に繋がり、更に硬化に長時間を要する。本発明成形用型の多孔質特性を良好に調整する意味において上記珪酸質微粒子と繊維質鉱物の両方を配合することが好ましい。
【0030】
本発明成形用型は多孔質体であるが、本発明は珪酸質鉱物を含有することにより、極めて微細な細孔を有する多孔質体を得ることができ、それにより高い吸水性能を得ることができる。また材料組成中に平均粒径が0.1μm以上、2μm未満の珪酸質微粒子を配合すれば,更に一段と微細な細孔構造を有する多孔質体を得ることができ、全細孔比表面積を増大して吸水性能をより一層向上することができる。また珪酸質微粒子を含有させることにより、成形用型の表面粗さを平滑化する。更に珪酸質微粒子とセメントとの間で起こるポゾラン反応は早期に進行するため珪酸質微粒子は成形用型製造工程において成形体(成形用型)の硬化速度を早める作用がある。上記した珪酸質微粒子の作用は特にシリカヒュームにおいて顕著に発揮される。
【0031】
本発明の構成材料である珪酸質鉱物とセメントとのポゾラン反応によって生成する硬化物は水に不溶性の物質であるから、成形精度及び耐久性を向上できる。即ち、本発明成形用型を用いて陶磁器素地を成形する際に、成形用型は陶土、泥漿等の成形用材料からの水を吸収し湿潤状態になるが、成形用型は珪酸質鉱物とセメントとのポゾラン反応硬化物、即ちモルタル質からなるから水に不溶性の性質を示し、そのため成形面が水により溶解することが抑止される。
【0032】
本発明の構成材料は石膏を含んでおり、この石膏は水に対して溶解性を示すが、水に不溶性のモルタル質が成形用型の基本骨格を形作るため石膏が水に溶解しても型の基本骨格は水に溶解せず、物理的に変動しない。従って、同一の成形型を用いて陶磁器素地を繰り返し成形し、その成形回数が多数回になっても型の成形面の空間内容積がほとんど変動することがなく、その結果、多数個製作された陶磁器素地はいずれも形状、寸法において誤差がなく均質なものが得られる。珪酸質鉱物40〜70重量部、セメント10〜40重量部、石膏2〜25重量部という材料組成はこのような作用効果を確実にもたらすものである。
【0033】
本発明は構成材料中に珪酸質鉱物及びセメントを含有するので成形用型の製造工程において水の存在下でポゾラン反応が生起し、水分の減少により針状結晶の硬化体が得られる。このように本発明はモルタル質構造体であるから、上記した水不溶性という性質がある他、耐摩耗性や機械的強度に優れたものとなり、更に耐熱性においても従来の石膏型に比べて格段に向上する。
【0034】
本発明は構成材料中に石膏を含有しており、この石膏は分散性が良いので成形用型の製造工程においてスラリー中の各材料の均一分散を図る作用がある。スラリー中の各材料の分散が不均一だと、得られる成形体(成形用型)も構造的に不均一となり、強度、吸水性能、耐熱性等において劣るものとなる。
【0035】
セメントの硬化には或る程度の時間がかかるが、これに石膏を加えると硬化時間が短縮される。その結果、成形体(成形用型)の保形強度が早期に付与されることになるので製造時間の短縮化が図られ、製造効率を向上できる。本発明において珪酸質鉱物は平均粒子径が2〜100μmという細かい粒径のものであるため、珪酸質鉱物とセメントの二成分系モルタルの収縮が起こるという問題があるが、本発明は構成材料として石膏を加えているためこの石膏の作用によりそのような収縮の発生を防止でき、寸法精度に優れた成形用型を得ることができる。
【0036】
一般に成形用型を用いて鋳込成形により陶磁器素地を製造するに当たり、成形された素地を成形用型より脱型するときの離型性が問題となる。本発明において鋳込成形時に二価のカルシウムイオンが型表面に存在し、この二価のカルシウムイオンは陶土粒子を凝集させる作用があるため成形素地の離型性を良好ならしめる。石膏はこのような二価のカルシウムイオンの供給源となる役割りがある。
【0037】
上記したように石膏は本発明成形用型の製造時にスラリー中の各材料の均一分散を図る作用があるが、本発明において繊維質鉱物を含有せしめることによりこのスラリー中の各材料の均一分散を更に一段と良好なものとする効果がある。即ち繊維質鉱物は比表面積が広く、結晶水を保有し親水性が高いという特性があり、水中での解砕加工で粘稠が高く安定した分散溶液となり、スラリ−中の各材料粒子の動きを拘束するため各材料の均一分散を図ることができ、それにより成形体(成形用型)の均質化及び安定化に寄与できる効果がある。また繊維質鉱物は製造された成形体(成形用型)の収縮を防止する作用もある。このような繊維質鉱物の作用は特にセピオライトにおいて顕著に発揮される。
【0038】
本発明の好ましい実施形態は、珪酸質鉱物、セメント、石膏、平均粒径が0.1μm以上、2μm未満の珪酸質微粒子及び繊維質鉱物からなる材料にて成形用型を形成することである。このような構成によれば、ポゾラン反応に消費される珪酸成分の供給源となる珪酸質鉱物、珪酸質微粒子が極めて微細粒子であるという特徴があり、また石膏及び繊維質鉱物の作用により、水分量を増加してもスラリー中の各材料の均一分散を図れるという特徴があり、これらの特徴により多孔質硬化体(成形用型)として全細孔比表面積の大きなものが得られ、その結果、吸水性能に優れた成形用型を得ることができる。
【0039】
本発明の構成材料として用いることのできる普通ポルトランドセメント、珪石、長石、石膏、シリカヒュ−ム、セピオライト、アタパルジャイトの各化学分析値を表1に示す。
【0040】
【表1】

Figure 0003606828
【0041】
上記の表1において、Ig.lossは灼熱減量を意味し、trは微量を意味する。
【0042】
本発明の成形用型を製造するに当たっては、珪酸質鉱物40〜70重量部、セメント10〜40重量部、石膏2〜25重量部、平均粒径が0.1μm以上、2μm未満の珪酸質微粒子1〜10重量部、繊維質鉱物0.2〜5重量部に水35〜60重量部を加えて混合し、得られたスラリーを型成形用母型の成型用空間に鋳込み、硬化させ、脱型して成形体(成形用型)を得るものである。水の配合量は前記の如く35〜60重量部であり、この水の配合量が35重量部未満ではスラリーの流動性が低下し、脱泡に支障が生じ、気泡の巻込みによる大小の空洞の発生が顕著となる上、スラリーの型(母型)への充填時に未充填部を生じる虞がある。一方、60重量部を越えるとスラリー比重が低くなり、各構成材料が分離してスラリー中の材料の分散が均一に行われず、得られる成形体(成形用型)の均質性が保たれず、成形用型として不適切なものとなる。
【0043】
次に本発明成形用型の製造方法を図1に基づき説明する。本発明成形用型は次の工程に従って製造される。
1)乾式一次調合
まず珪酸質鉱物原料を湿式粉砕、分級、乾燥し、珪酸質鉱物材料とする。これにセメントを混合して乾式一次調合を行う(この調合されたものを一次調合品という)。
2)珪酸質微粒子材料を湿式分散処理し、珪酸質微粒子縣濁液を得る。
3)繊維質鉱物材料を湿式解砕処理し、繊維質鉱物縣濁液を得る。
4)湿式二次混合
上記一次調合品、水、石膏、上記珪酸質微粒子縣濁液及び繊維質鉱物縣濁液を混合し、この湿式二次混合によって均質なスラリーを得る。
5)脱泡工程
真空撹拌によって、スラリー中の気泡を除去する。
6)成形工程
型成形用母型のパーツを組み立てて母型を作り、この母型の型内面に離型剤を塗布し、母型の鋳込口からスラリーを型内に流し込み、一定時間放置してスラリーを硬化させる。
7)脱型
硬化により得られた成形体を母型から取り出す。この場合、母型のパーツを順次取り外すことにより容易に脱型できる。
8)脱型された成形体をバリ取り仕上げした後、乾燥を行う。
【0044】
以上の工程により本発明成形用型が製造されるものである。
【0045】
本発明成形用型のX線回折を行った場合、珪酸質鉱物成分及び石膏成分のピークは明瞭に現れるが、セメント成分のピークは明瞭に現れず、ブロードとなる。
【0046】
本発明成形用型は陶磁器素地成形に当たり成形材料から吸収した水によって成形面が溶解するということがなく、この水不溶化構造により、成形を多数回繰り返しても成形面の空間内容積が次第に大きくなるという現象の発生を抑止できる。また本発明成形用型は耐摩耗性に優れ、ローラーマシン成形やロクロ成形を行ったとき陶土及び陶土押さえ治具のヘラによる大きな応力を受けても容易に摩耗することがない。このような水不溶化特性及び耐摩耗特性により、多数回成形後の成形面の空間内容積はほとんど変動せず、それにより成形精度を向上でき、成形用型としての優れた耐久性を実現できる。
【0047】
また、本発明成形用型は機械的強度が大きく、外力により容易に破損する虞がなく、取り扱い上も便利である。
【0048】
しかも本発明成形用型は耐熱性に優れており、成形により湿潤した本発明成形用型を繰り返し使用するための乾燥温度は特に制限されない。その結果、従来のように41℃以下という乾燥温度の制約がなく、乾燥温度を短縮化でき製造効率を上昇することができる。本発明において好ましい乾燥温度は40℃〜80℃である。
【0049】
本発明は鋳込成形、ローラーマシン成形、ロクロ成形等の成形用型として好適に用いられる。
【0050】
次に本発明の実施例を示す。
【0051】
実施例1
表2に示す如き材料組成により図1に示す工程に従って各材料を調合し、混合スラリーを作った。表2における数値は重量部を示す。また珪石としては、平均粒径が4μmのものを用いた。図1に示す工程に従って混合スラリーを型成形用母型に流し込み、硬化させて成形体を作り、次いで脱型して成形体を型より取り出し、陶磁器成形用型を製作した。表2に示す各種調合により、N型1、N型2、N型3、N型4、N型5、N型6の6種類の本発明成形用型を得た。得られた各成形用型の物性を表3に示す。比較のため、市販の鋳込成形用型である石膏型1(比較例1)及び市販のローラーマシン成形用型である石膏型2(比較例2)のそれぞれの組成を表2に示し、またそれらの物性を表3に示す。
【0052】
【表2】
Figure 0003606828
【0053】
【表3】
Figure 0003606828
【0054】
表3によれば、N型1〜6は石膏型1、2に比べて平均細孔径が小さく且つ全細孔比表面積が大きい。それによって、N型1〜6は石膏型1、2よりも吸水率が著しく大きくなっている。
【0055】
実施例2
N型1〜6及び石膏型1、2を、着色した水を入れた水槽中に浸し、水の拡散速度として浸漬後10分経過後の湿潤高さを測定した。結果を表4に示す。
【0056】
またそれぞれの型を用いて陶磁器の素地を成形した。この成形に当たり、含水率30%の陶磁器製造用泥漿を用い、該泥漿を型に流し込んで、鋳込成形を行った。このときの成形体の着肉厚さを測定した。1つの型で成形体を10個作り、それぞれの着肉厚さを測定し、それらの平均値を求めた。また成形体を脱型するときの離型性について試験した。これらの結果を表4に示す。
【0057】
更に、各型がどのような種類の成形に用いるのが最適であるかについて総合判断を行った。その結果を表4の「成形別用途」の欄に示す。
【0058】
【表4】
Figure 0003606828
【0059】
表4に示す結果から、本発明成形用型は従来の石膏型の場合と同様の成形条件、成形工程によって、陶磁器の素地を製造できることが判った。即ち、従来とは異なる特別な成形条件、成形工程を設けることなく良好な陶磁器素地を製造できることが判った。
【0060】
実施例3
陶磁器素地の成形体が大型の物や厚肉物の場合は、縦方向における着肉厚さが均一であることが必要であり、そのため成形用型の吸水能がどの部位においても均質であること、つまり成形用型の多孔質特性が均質であることが要求される。そこで本発明の成形用型が均質な吸水能を有しているかどうかをみるための試験を行った。
【0061】
この試験に当り、N型6の組成からなる円筒形の成形体を作った。即ち、表2に示すN型6における材料組成のスラリーを型に流し込んで、硬化させ、高さ40cm、直径8cmの円筒形の成形体を作った。この成形体における上部、中部、下部の3つの部位において多孔質体としての各物性を測定した。その結果を表5に示す。
【0062】
【表5】
Figure 0003606828
【0063】
表5によれば、N型6の円筒形体は上部、中部、下部のどの部位においても均質な物性を有することを示している。このことから本発明成形用型は、型の縦方向(上部、中部、下部)における吸水能がどの部位でも均質であり、その結果、縦方向における着肉厚さが均一な成形体を製造できるものであることが確認された。
【0064】
実施例4
表2に示すN型4の材料組成により、図1の工程に従って皿製造用の成形用型を製作した。この成形用型を用いて10インチの皿形状素地を200個成形した。成形を行う前(即ち、成形回数0回)の成形用型の重量と、上記素地を200個成形した後(即ち、成形回数200回)の成形用型の重量を測定し、成形前の重量に対する200個成形後の重量の割合を百分率(%)で示した「成形後の重量率」を求めた。型の重量を測定するに当たっては、型を40℃で乾燥し、この乾燥重量を測定した。比較のため、表2に示す石膏型2の組成からなる皿製造用の石膏型を製作し、上記と同様の試験を行って成形後の重量率を求めた。
【0065】
その結果、N型4においては、成形前の型重量は3926gで、200個成形後の型重量は3924gであった。従って、減量率は0.05%であり、成形前の重量に対する200個成形後の重量%、即ち成形後の重量率は99.95%であった。
【0066】
一方、石膏型2においては、成形前の型重量は3287gで、200個成形後の型重量は3202gであった。従って、減量率は2.59%であり、成形後の重量率は97.41%であった。上記結果に基づき、成形回数と成形後の重量率との関係を図2のグラフに示す。図中、1はN型4を、2は石膏型2をそれぞれ示す。
【0067】
上記の試験は、同一の型を使用して多数の素地を成形したときの摩耗度を測定したものであるが、N型4は実用的に上限とされる200個の素地成形後でも摩耗度は極めて僅かであり、石膏型2に比べて50倍強の耐久性を有しているという結果が得られた。
【0068】
【発明の効果】
本発明は珪酸質鉱物、セメント、石膏からなる材料にて陶磁器成形用型を形成してなり、珪酸質鉱物とセメントとの反応硬化物がモルタル質を有するものであるから、水不溶性の骨格構造を備え、そのため陶磁器素地成形を多数回繰り返しても成形面の空間内容積が増加せず、ほぼ空間内容積を一定に保持することができる。その結果、従来より多数回の素地成形を行っても成形された素地の寸法等にほとんど誤差を生じなく、型としての耐用寿命が伸び、耐久性が著しく向上する。また本発明成形用型は耐摩耗性に優れているため、この面からも成形面の空間内容積の変動が抑止され、水不溶性骨格構造による作用と耐摩耗性による作用との2つの作用により型の耐久性を従来よりも飛躍的に向上できる効果がある。
【0069】
更に本発明成形用型は機械的強度に優れ、外力により容易に破損することがない。また従来よりも耐熱性が向上し、そのため型の乾燥温度を上昇して乾燥時間の短縮を図ることができ、成形サイクルの効率を向上できる。
【0070】
本発明の製造方法によれば、優れた特質を備えた陶磁器成形用型を従来と同様の成形工程により容易に製造することができる。
【図面の簡単な説明】
【図1】本発明陶磁器成形の製造工程を示すブロック図である。
【図2】成形回数と成形後の重量率との関係を示すグラフである。
【符号の説明】
1 N型4
2 石膏型2[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic mold for use in molding ceramic products by casting or the like, and a method for manufacturing the same.
[0002]
[Prior art]
Since plaster has been used as a construction aid for structures since ancient Egypt, various industries such as stabilizers for cement preservation, construction materials, agriculture, pigments, etc., precision metal casting with fine processing, arts and crafts, Widely used in fields such as surgical medicine, dentistry, and ceramic industry.
[0003]
A gypsum mold used for ceramic body molding is obtained by using hemihydrate gypsum as a starting material, adding an appropriate amount of water to the mixture, stirring and mixing, and casting the slurry into a mold mold. In this case, the slurry undergoes a hydration reaction, transforms into dihydrate gypsum in a short time, and solidifies. The slurry has high homogeneity and fluidity, and is characterized by being uniformly filled and solidified in the mother mold by casting. The gypsum mold obtained in this way is used as a general-purpose material because of its high-precision copying, and easy molding and processing.
[0004]
In recent years, ceramic body forming methods have been diversified, and various functions have been required for forming molds. To solve these problems, the development of products with improved mechanical strength such as hardness, wear resistance or bending strength by mixing organic or inorganic fibers or inorganic powders into the raw gypsum Has been made.
[0005]
For example, JP-A-6-157117 and JP-A-6-155426 disclose a gypsum mold for molding whose mechanical strength is increased by mixing and dispersing carbon fibers in a gypsum structure of a base material. Japanese Patent Application Laid-Open No. 7-246609 discloses a gypsum mold for molding in which the mold density is increased by incorporating zeolite powder into gypsum, thereby improving the mechanical strength.
[0006]
[Problems to be solved by the invention]
However, the conventional gypsum mold has a problem that durability is lowered due to dissolution of the molding surface in water. That is, gypsum is slightly soluble in water, but exhibits solubility in water. Therefore, when molding a ceramic body, the mold surface in contact with the molding material, that is, the molding surface absorbs water in the molding material and slightly dissolves. To do. Then, as the number of repeated moldings with the same gypsum mold increases, the amount of dissolution gradually increases, and the space volume on the molding surface increases accordingly, and the volume changes. As a result, there is a problem that an error occurs in the size and shape of the ceramic body that is the molded body, and a homogeneous product cannot be obtained. For example, when forming a bottle with a bottle shape, if the molding is repeated 100 times with the same gypsum mold and 100 pieces are manufactured, the outer dimension of the container gradually increases as the number of moldings increases. Therefore, the number of moldings with the same mold is naturally limited, the mold must be discarded relatively early, and the durability is poor.
[0007]
Further, the conventional gypsum mold is not sufficient in terms of wear resistance. For example, when molding a dish-shaped container by a roller machine molding method, the mold surface is subjected to a large stress because it is molded while pressing the clay on the mold surface with a conical roller-like spatula on a rotating disk. Therefore, the mold surface is worn, and the degree of wear of the mold surface gradually increases as the number of moldings increases, resulting in problems such as a reduction in molding accuracy and non-uniformity in the dimensions of the molded body. As described above, the conventional gypsum mold has its limit in the number of repeated moldings by the same mold from the viewpoint that the wear resistance is not sufficient, and improvement in durability has been desired.
[0008]
Furthermore, in the past, there was a problem that the gypsum mold was damaged by an external force during handling of the gypsum mold, and even though technical improvements were made in terms of strength, it was never satisfactory.
[0009]
Further, in the conventional gypsum mold, the thermal characteristics are 41 ° C. or lower in the stable range, and in the temperature range higher than that, it is transformed into hemihydrate gypsum and the physical properties such as strength are lowered. When the gypsum mold in (1) was dried and used again for molding, the drying temperature was limited to 41 ° C. or lower, so that drying took time and the efficiency of the molding cycle was poor.
[0010]
The present invention seeks to solve the problems of conventional gypsum molds, suppresses fluctuations in the volume of the molding surface space, improves durability, and provides wear resistance, mechanical strength and It is an object of the present invention to provide a ceramic mold for improving heat resistance and a method for producing the same.
[0011]
[Means for Solving the Problems]
The present invention is made of a material composed of siliceous mineral, cement, and gypsum. The reaction hardened product of siliceous mineral and cement has mortar This is a ceramic mold.
[0012]
Silicic fine particles and / or fibrous minerals having an average particle size of 0.1 μm or more and less than 2 μm can be blended with the material constituting the molding die of the present invention. By blending the siliceous fine particles and / or fibrous minerals, it is possible to adjust the porous properties such as curing speed, porosity, water absorption and surface roughness, and to adjust the dimensional accuracy of the mold. It is possible to easily release the ceramic body during the molding.
[0013]
The material composition in the mold of the present invention is 40 to 70 parts by weight of siliceous mineral, 10 to 40 parts by weight of cement, and 2 to 25 parts by weight of gypsum.
[0014]
In the case where the above-mentioned siliceous fine particles and fibrous minerals are blended with these materials, the composition of the present invention is composed of 40 to 70 parts by weight of siliceous mineral, 10 to 40 parts by weight of cement, 2 to 25 parts by weight of gypsum, and silicic acid of the above. 1 to 10 parts by weight of fine particles and 0.2 to 5 parts by weight of fibrous mineral.
[0015]
In producing the ceramic mold according to the present invention, first, 40 to 70 parts by weight of siliceous mineral, 10 to 40 parts by weight of cement, and 2 to 25 parts by weight of gypsum are mixed with 35 to 60 parts by weight of water and mixed. And make a slurry. Next, the obtained slurry is cast into a molding space of a mold molding mother mold, cured, and demolded to obtain a molded body (molding mold).
[0016]
In producing the mold according to the present invention when the mold according to the present invention contains the above siliceous fine particles and fibrous mineral, first, 40 to 70 parts by weight of siliceous mineral, 10 to 40 parts by weight of cement, gypsum 2 A slurry is prepared by adding 35 to 60 parts by weight of water to 25 parts by weight, 1 to 10 parts by weight of the siliceous fine particles, and 0.2 to 5 parts by weight of a fibrous mineral, and mixing them. Next, the obtained slurry is cast into a molding space of a mold molding mother mold, cured, and demolded to obtain a molded body (molding mold).
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The ceramic mold according to the present invention is composed of a siliceous mineral, cement and gypsum, and it is preferable to further blend siliceous fine particles and / or fibrous minerals having an average particle size of 0.1 μm or more and less than 2 μm. That is, in the present invention, siliceous minerals, cement, and gypsum are basic material components, and any one or both of the silicic fine particles and fibrous minerals can be blended therein.
[0018]
As the siliceous mineral in the present invention, a mineral having a small clay component is preferable, and granites such as quartzite and feldspar, wax stone, siliceous sandstone and the like can be mentioned. The main component of siliceous mineral is SiO 2 This main component SiO 2 The content of is preferably 62% or more.
[0019]
In the present invention, a siliceous mineral is used in a granular form, and the average particle diameter is preferably 2 to 100 μm. When the average particle diameter exceeds 100 μm, it becomes difficult to increase the total pore specific surface area of the molding die of the present invention, and it becomes difficult to improve the water absorption rate. On the other hand, since siliceous minerals are hard, it is extremely difficult to finely pulverize them with a general-purpose pulverizing machine, and the cost is high, so it is not economically advantageous to use those having an average particle diameter of less than 2 μm.
[0020]
In the present invention, the more preferable average particle diameter of the siliceous mineral is 3 to 60 μm.
[0021]
Examples of the cement in the present invention include Portland cement, white Portland cement, early-strength Portland cement, moderately hot Portland cement, blast furnace cement, silica cement, fly ash cement, alumina cement, magnesia cement, etc., among which Portland cement, white Portland cement. Of these, preferred are early-strength Portland cement and silica cement.
[0022]
As the gypsum, the same material as that used in the conventional gypsum mold can be used.
[0023]
Silicic fine particles having an average particle size of 0.1 μm or more and less than 2 μm are appropriately blended in order to adjust the porous characteristics of the molding die of the present invention. Here, the porous characteristics refer to properties such as curing speed, porosity, water absorption, and surface roughness. Examples of the siliceous fine particles include silica fume and white carbon. Silica fume is preferable. As silica fume, a by-product obtained at the time of manufacturing a silicon-based semiconductor material or a by-product collected from an electric furnace at the time of manufacturing silicon metal or ferrosilicon can be used, and the main crystal phase is cristobalite alone and the main component is SiO. 2 The content is 90% or more.
[0024]
The reason why the average particle size of the siliceous fine particles is 0.1 μm or more and less than 2 μm is that if the average particle size is less than 0.1 μm, it cannot contribute to the improvement of the water absorption rate, and there is a problem in handling such as generation of dust in the process. On the other hand, if the average particle diameter is 2 μm or more, it cannot contribute to the increase of the total pore specific surface area and the improvement of the water absorption rate. The preferable average particle diameter of the siliceous fine particles is 0.1 to 0.3 μm.
[0025]
In order to adjust the porous characteristics of the molding die of the present invention, it is preferable to blend a fibrous mineral. Examples of the fibrous mineral include sepiolite and attapulgite, and sepiolite is preferable. Sepiolite is MgO-SiO 2 -H 2 Magnesium silicate containing O as a main component, having a fine particle size, having a structure in which fibers having a length of 0.2 to 2 μm are bundled, and having a fine fibrous form as a particle shape, Is very dispersible. Sepiolite and attapulgite can be refined using a pulverizer such as a ball mill. In the case of sepiolite, fibers bundled by the refinement are loosened to become small fibers.
[0026]
The material composition of the molding die of the present invention is 40 to 70 parts by weight of siliceous mineral, 10 to 40 parts by weight of cement, and 2 to 25 parts by weight of gypsum. If the amount of the siliceous mineral is less than 40 parts by weight, the water absorption cannot be improved, and the molded body shrinks during the production of the mold, and it is difficult to remove the mold from the mold mold and cracks are likely to occur. On the other hand, if it exceeds 70 parts by weight, the curing rate of the slurry becomes slow and the strength may be lowered.
[0027]
When the blending amount of the cement is less than 10 parts by weight, the durability, mechanical strength and heat resistance cannot be improved, and when it exceeds 40 parts by weight, the water absorption is inferior.
[0028]
If the blending amount of gypsum is less than 2 parts by weight, it is not possible to prevent shrinkage of the two-component mortar of siliceous mineral and cement, and a homogeneous molded body (molding die) cannot be obtained. On the other hand, if the amount exceeds 25 parts by weight, the variation in the volume of the molding surface space cannot be suppressed, and the molding accuracy and durability deteriorate.
[0029]
In the present invention, siliceous fine particles and / or fibrous minerals having an average particle size of 0.1 μm or more and less than 2 μm can be blended with the material composition. In the present invention, only the above siliceous fine particles may be blended, or only fibrous minerals may be blended, and both may be blended together. In any case, the amount of the siliceous fine particles is 1 to 10 parts by weight, and the amount of the fibrous mineral is 0.2 to 5 parts by weight. If the amount of the siliceous fine particles is less than 1 part by weight, the water absorption cannot be improved. On the other hand, if the amount exceeds 10 parts by weight, the amount of mixed water becomes large in order to impart the proper fluidity of the slurry, leading to a decrease in strength of the molded body (molding mold). Further, if the blending amount of the fiber mineral is less than 0.2 parts by weight, there is no homogeneous dispersion effect of each material, and a homogeneous molded body (molding mold) cannot be obtained. In the same manner as in the case, the amount of mixed water becomes large in order to impart the proper fluidity of the slurry, which leads to a decrease in strength of the molded body (molding mold), and further requires a long time for curing. In order to satisfactorily adjust the porous properties of the molding die of the present invention, it is preferable to blend both the siliceous fine particles and the fibrous mineral.
[0030]
Although the molding die of the present invention is a porous body, the present invention can obtain a porous body having extremely fine pores by containing a siliceous mineral, thereby obtaining high water absorption performance. it can. In addition, if siliceous fine particles with an average particle size of 0.1 μm or more and less than 2 μm are blended in the material composition, a porous material having a finer pore structure can be obtained, and the total specific surface area of the pores is increased. Thus, the water absorption performance can be further improved. Further, the surface roughness of the molding die is smoothed by containing siliceous fine particles. Furthermore, since the pozzolanic reaction that occurs between the siliceous fine particles and the cement proceeds at an early stage, the siliceous fine particles have the effect of increasing the curing rate of the molded body (molding mold) in the molding mold manufacturing process. The action of the siliceous fine particles described above is remarkably exhibited especially in silica fume.
[0031]
Since the cured product produced by the pozzolanic reaction between the siliceous mineral and cement, which is a constituent material of the present invention, is a water-insoluble substance, the molding accuracy and durability can be improved. That is, when a ceramic body is molded using the molding die of the present invention, the molding die absorbs water from the molding material such as porcelain clay and mud and becomes wet, but the molding die is composed of siliceous minerals. Since it consists of a cured product of pozzolanic reaction with cement, that is, mortar, it exhibits insoluble properties in water, so that the molding surface is prevented from being dissolved by water.
[0032]
The constituent material of the present invention contains gypsum, which is soluble in water, but the mortar that is insoluble in water forms the basic skeleton of the mold, so that even if gypsum dissolves in water, the mold The basic skeleton does not dissolve in water and does not physically change. Therefore, the ceramic body was repeatedly formed using the same mold, and the volume of the molding surface of the mold hardly fluctuated even when the number of moldings was increased many times. As a result, a large number were produced. All ceramic bodies are uniform in shape and size without errors. The material composition of 40 to 70 parts by weight of siliceous mineral, 10 to 40 parts by weight of cement, and 2 to 25 parts by weight of gypsum reliably brings about such effects.
[0033]
In the present invention, since the constituent material contains siliceous mineral and cement, a pozzolanic reaction occurs in the presence of water in the manufacturing process of the molding die, and a hardened body of acicular crystals is obtained by reducing the water content. As described above, since the present invention is a mortar structure, it has the above-mentioned water-insoluble properties, and is excellent in wear resistance and mechanical strength, and also in heat resistance, compared to conventional gypsum molds. To improve.
[0034]
In the present invention, gypsum is contained in the constituent material, and since this gypsum has good dispersibility, it has an effect of uniformly dispersing each material in the slurry in the manufacturing process of the molding die. If the dispersion of each material in the slurry is non-uniform, the resulting molded body (molding die) will also be structurally non-uniform and the strength, water absorption performance, heat resistance, etc. will be poor.
[0035]
It takes a certain amount of time to harden the cement, but adding gypsum to this will shorten the hardening time. As a result, the shape retention strength of the molded body (molding mold) is imparted at an early stage, so that the production time can be shortened and the production efficiency can be improved. In the present invention, the siliceous mineral has an average particle diameter of 2 to 100 μm, so that there is a problem that the two-component mortar of the siliceous mineral and cement is shrunk. Since gypsum is added, the occurrence of such shrinkage can be prevented by the action of this gypsum, and a molding die having excellent dimensional accuracy can be obtained.
[0036]
In general, when a ceramic body is manufactured by casting using a mold, releasability when the molded body is removed from the mold is a problem. In the present invention, divalent calcium ions are present on the mold surface during casting, and the divalent calcium ions have the effect of agglomerating the porcelain clay particles, so that the mold release property of the molding substrate is improved. Gypsum serves as a source of such divalent calcium ions.
[0037]
As described above, gypsum has the effect of achieving uniform dispersion of each material in the slurry during the production of the molding die of the present invention, but by incorporating a fibrous mineral in the present invention, uniform dispersion of each material in the slurry is achieved. Furthermore, there is an effect of making it even better. In other words, fibrous minerals have the characteristics that they have a large specific surface area, possess crystallization water, and have high hydrophilicity, resulting in a highly viscous and stable dispersion by crushing in water, and the movement of each material particle in the slurry. Therefore, it is possible to achieve uniform dispersion of each material, thereby contributing to homogenization and stabilization of the molded body (molding mold). The fiber mineral also has an action of preventing shrinkage of the produced molded body (molding mold). Such an action of the fibrous mineral is particularly remarkable in sepiolite.
[0038]
A preferred embodiment of the present invention is to form a mold with a material composed of siliceous mineral, cement, gypsum, siliceous fine particles having an average particle size of 0.1 μm or more and less than 2 μm, and fibrous mineral. According to such a configuration, the siliceous mineral and siliceous fine particles, which are the supply source of the silicic acid component consumed for the pozzolanic reaction, are characterized by being extremely fine particles. Even if the amount is increased, each material in the slurry can be uniformly dispersed. With these characteristics, a porous cured body (molding die) having a large total pore specific surface area is obtained. A molding die excellent in water absorption performance can be obtained.
[0039]
Table 1 shows chemical analysis values of ordinary Portland cement, silica, feldspar, gypsum, silica fume, sepiolite, and attapulgite that can be used as the constituent material of the present invention.
[0040]
[Table 1]
Figure 0003606828
[0041]
In Table 1 above, Ig. “loss” means loss of ignition, and “tr” means a minute amount.
[0042]
In producing the mold for molding of the present invention, siliceous fine particles having 40 to 70 parts by weight of siliceous mineral, 10 to 40 parts by weight of cement, 2 to 25 parts by weight of gypsum, and an average particle size of 0.1 μm or more and less than 2 μm. Add 1 to 10 parts by weight, 0.2 to 5 parts by weight of fibrous minerals and add 35 to 60 parts by weight of water and mix. The resulting slurry is cast into the molding space of the mold for molding, cured, and removed. A molded body (molding mold) is obtained by molding. The amount of water is 35 to 60 parts by weight as described above. If the amount of water is less than 35 parts by weight, the fluidity of the slurry is lowered, hindering defoaming, and large and small cavities due to entrainment of bubbles. In addition to the remarkable occurrence of the above, there is a possibility that an unfilled portion is formed when the slurry is filled into the mold (mother mold). On the other hand, when the amount exceeds 60 parts by weight, the specific gravity of the slurry is lowered, the constituent materials are separated and the material in the slurry is not uniformly dispersed, and the homogeneity of the resulting molded body (molding die) is not maintained, It becomes inappropriate as a mold for molding.
[0043]
Next, a method for producing the mold for molding of the present invention will be described with reference to FIG. The molding die of the present invention is manufactured according to the following steps.
1) Dry primary preparation
First, the siliceous mineral raw material is wet-ground, classified and dried to obtain a siliceous mineral material. Cement is mixed with this to prepare a dry primary preparation (this preparation is called a primary preparation).
2) A siliceous fine particle material is wet-dispersed to obtain a siliceous fine particle suspension.
3) Wet and pulverize the fibrous mineral material to obtain a fibrous mineral suspension.
4) Wet secondary mixing
The primary preparation, water, gypsum, the siliceous fine particle suspension and the fiber mineral suspension are mixed, and a homogeneous slurry is obtained by this wet secondary mixing.
5) Defoaming process
Bubbles in the slurry are removed by vacuum stirring.
6) Molding process
Assemble the mold parts to make a mother mold, apply a mold release agent to the inner surface of the mold, pour the slurry into the mold from the casting port of the mother mold, and leave it for a certain period of time. Harden.
7) Demolding
The molded body obtained by curing is taken out from the mother die. In this case, the mold can be easily removed by sequentially removing the parts of the mother mold.
8) The demolded molded body is deburred and then dried.
[0044]
The molding die of the present invention is manufactured through the above steps.
[0045]
When X-ray diffraction of the molding die of the present invention is performed, the peaks of the siliceous mineral component and the gypsum component appear clearly, but the peak of the cement component does not appear clearly and becomes broad.
[0046]
In the molding die of the present invention, the molding surface is not dissolved by the water absorbed from the molding material when the ceramic body is molded, and this water insolubilized structure gradually increases the volume of the molding surface in space even if molding is repeated many times. Can be prevented. Further, the molding die of the present invention is excellent in wear resistance, and does not easily wear even when subjected to large stress due to the spatula of the porcelain clay and the porcelain clay jig when performing roller machine molding or locomotive molding. Due to such water insolubilization characteristics and wear resistance characteristics, the volume in the space of the molding surface after many moldings hardly fluctuates, thereby improving molding accuracy and realizing excellent durability as a molding die.
[0047]
Further, the molding die of the present invention has a high mechanical strength, is not easily damaged by an external force, and is convenient for handling.
[0048]
Moreover, the mold for molding of the present invention is excellent in heat resistance, and the drying temperature for repeatedly using the mold for molding of the present invention wetted by molding is not particularly limited. As a result, there is no restriction on the drying temperature of 41 ° C. or lower as in the prior art, and the drying temperature can be shortened and the production efficiency can be increased. In the present invention, a preferable drying temperature is 40 ° C to 80 ° C.
[0049]
The present invention is suitably used as a mold for casting, roller machine molding, rock molding, and the like.
[0050]
Next, examples of the present invention will be described.
[0051]
Example 1
Each material was prepared according to the process shown in FIG. 1 according to the material composition shown in Table 2, and a mixed slurry was prepared. Numerical values in Table 2 indicate parts by weight. As the silica stone, one having an average particle diameter of 4 μm was used. According to the process shown in FIG. 1, the mixed slurry was poured into a mold mold and cured to form a molded body, and then demolded to remove the molded body from the mold to produce a ceramic mold. By various preparations shown in Table 2, six types of the molding die of the present invention, N type 1, N type 2, N type 3, N type 4, N type 5, N type 6, were obtained. Table 3 shows the physical properties of the obtained molds. For comparison, Table 2 shows the compositions of gypsum mold 1 (comparative example 1), which is a commercially available mold for casting, and gypsum mold 2 (comparative example 2), which is a mold for commercially available roller machines. Their physical properties are shown in Table 3.
[0052]
[Table 2]
Figure 0003606828
[0053]
[Table 3]
Figure 0003606828
[0054]
According to Table 3, N-type 1 to 6 have a smaller average pore diameter and a larger total pore specific surface area than gypsum types 1 and 2. As a result, the N-type 1 to 6 have significantly higher water absorption than the gypsum molds 1 and 2.
[0055]
Example 2
N-type 1 to 6 and gypsum molds 1 and 2 were immersed in a water tank containing colored water, and the wet height after 10 minutes from immersion was measured as the water diffusion rate. The results are shown in Table 4.
[0056]
Moreover, the ceramic body was molded using each mold. In this molding, a slurry for producing ceramics having a water content of 30% was used, and the slurry was poured into a mold to perform casting molding. The thickness of the molded body at this time was measured. Ten compacts were made with one mold, and the thickness of each piece was measured, and the average value thereof was determined. Moreover, it tested about the mold release property when removing a molded object. These results are shown in Table 4.
[0057]
Furthermore, a comprehensive judgment was made as to what kind of molding each mold is most suitable for. The results are shown in the column “Use by molding” in Table 4.
[0058]
[Table 4]
Figure 0003606828
[0059]
From the results shown in Table 4, it was found that the molding die of the present invention can produce a ceramic body by the same molding conditions and molding process as those of the conventional plaster mold. That is, it has been found that a good ceramic body can be manufactured without providing special molding conditions and a molding process different from those of the prior art.
[0060]
Example 3
When the ceramic body molded body is large or thick, it is necessary that the wall thickness in the vertical direction is uniform, so that the water absorption capacity of the molding die is uniform in any part. That is, it is required that the porous characteristics of the mold are uniform. Therefore, a test was conducted to see whether the molding die of the present invention has a uniform water absorption capacity.
[0061]
For this test, a cylindrical shaped body having the composition of N-type 6 was produced. That is, a slurry having a material composition in the N mold 6 shown in Table 2 was poured into a mold and cured to form a cylindrical molded body having a height of 40 cm and a diameter of 8 cm. Each physical property as a porous body was measured at three parts, an upper part, a middle part, and a lower part, in the molded body. The results are shown in Table 5.
[0062]
[Table 5]
Figure 0003606828
[0063]
According to Table 5, it is shown that the cylindrical body of the N type 6 has uniform physical properties at any of the upper, middle and lower portions. From this, the mold for molding of the present invention has a uniform water absorption capacity in the vertical direction (upper, middle, lower) of the mold at any part, and as a result, it is possible to produce a molded body having a uniform wall thickness in the vertical direction. It was confirmed to be a thing.
[0064]
Example 4
According to the material composition of the N-type 4 shown in Table 2, a mold for producing a dish was manufactured according to the process of FIG. 200 pieces of 10-inch dish-shaped substrates were formed using this mold. Measure the weight of the mold before molding (that is, the number of moldings is 0) and the weight of the mold after molding the above-mentioned 200 bases (that is, the number of moldings is 200), and then the weight before molding The “weight percentage after molding” was calculated by indicating the ratio of the weight after molding 200 pieces to the percentage (%). In measuring the weight of the mold, the mold was dried at 40 ° C., and the dry weight was measured. For comparison, a gypsum mold for producing a dish having the composition of the gypsum mold 2 shown in Table 2 was manufactured, and the weight ratio after molding was determined by performing the same test as described above.
[0065]
As a result, in N-type 4, the mold weight before molding was 3926 g, and the mold weight after molding 200 was 3924 g. Therefore, the weight loss rate was 0.05%, and the weight percentage after molding 200 pieces with respect to the weight before molding, that is, the weight percentage after molding was 99.95%.
[0066]
On the other hand, in the gypsum mold 2, the mold weight before molding was 3287 g, and the mold weight after molding 200 pieces was 3202 g. Therefore, the weight loss rate was 2.59%, and the weight percentage after molding was 97.41%. Based on the above results, the relationship between the number of moldings and the weight percentage after molding is shown in the graph of FIG. In the figure, 1 indicates an N type 4 and 2 indicates a gypsum mold 2.
[0067]
The above test is a measurement of the degree of wear when a large number of substrates are molded using the same mold, but the N-type 4 has a degree of wear even after molding of 200 substrates, which is practically the upper limit. The result was that the durability was 50 times that of the plaster mold 2.
[0068]
【The invention's effect】
In the present invention, a ceramic mold is formed of a material composed of siliceous mineral, cement, and gypsum. The reaction hardened product of siliceous mineral and cement has mortar Therefore, it has a water-insoluble skeletal structure, and therefore the space volume of the molding surface does not increase even if the ceramic body molding is repeated many times, and the space volume can be kept almost constant. As a result, even if the base molding is performed many times than before, there is almost no error in the dimensions of the molded base, the service life as a mold is extended, and the durability is remarkably improved. The mold for molding of the present invention is Abrasion resistance Therefore, the surface volume fluctuation of the molding surface is also suppressed from this surface, and the action and resistance to water-insoluble skeleton structure are suppressed. Abrasion There is an effect that the durability of the mold can be remarkably improved as compared with the conventional one by the two actions of the above.
[0069]
Furthermore, the molding die of the present invention is excellent in mechanical strength and is not easily damaged by an external force. Further, the heat resistance is improved as compared with the prior art, so that the drying temperature of the mold can be raised to shorten the drying time, and the efficiency of the molding cycle can be improved.
[0070]
According to the manufacturing method of the present invention, a ceramic molding die having excellent characteristics can be easily manufactured by a molding process similar to the conventional one.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a block diagram showing a production process of a ceramic molding of the present invention.
FIG. 2 is a graph showing the relationship between the number of moldings and the weight percentage after molding.
[Explanation of symbols]
1 N type 4
2 Plaster mold 2

Claims (6)

珪酸質鉱物、セメント、石膏からなる材料にて形成してなり、珪酸質鉱物とセメントとの反応硬化物がモルタル質を有することを特徴とする陶磁器成形用型。A ceramic molding die, characterized in that it is formed of a material consisting of siliceous mineral, cement, and gypsum , and a reaction hardened product of siliceous mineral and cement has a mortar quality . 平均粒径が0.1μm以上、2μm未満の珪酸質微粒子及び/又は繊維質鉱物を配合してなることを特徴とする請求項1記載の陶磁器成形用型。The ceramic mold according to claim 1, wherein siliceous fine particles and / or fibrous minerals having an average particle size of 0.1 µm or more and less than 2 µm are blended. 珪酸質鉱物40〜70重量部、セメント10〜40重量部、石膏2〜25重量部からなる材料にて形成してなることを特徴とする陶磁器成形用型。A ceramic molding die formed of a material comprising 40 to 70 parts by weight of a siliceous mineral, 10 to 40 parts by weight of cement, and 2 to 25 parts by weight of gypsum. 珪酸質鉱物40〜70重量部、セメント10〜40重量部、石膏2〜25重量部、平均粒径が0.1μm以上、2μm未満の珪酸質微粒子1〜10重量部、繊維質鉱物0.2〜5重量部からなる材料にて形成してなることを特徴とする陶磁器成形用型。40 to 70 parts by weight of siliceous mineral, 10 to 40 parts by weight of cement, 2 to 25 parts by weight of gypsum, 1 to 10 parts by weight of siliceous fine particles having an average particle size of 0.1 μm or more and less than 2 μm, 0.2 of fibrous mineral A ceramic molding die formed of a material consisting of ˜5 parts by weight. 珪酸質鉱物40〜70重量部、セメント10〜40重量部、石膏2〜25重量部に水35〜60重量部を加えて混合し、得られたスラリーを型成形用母型に鋳込み、硬化させ、脱型して成形体を得るようにしたことを特徴とする陶磁器成形用型の製造方法。Silica mineral 40 to 70 parts by weight, cement 10 to 40 parts by weight, gypsum 2 to 25 parts by weight and water 35 to 60 parts by weight are added and mixed, and the resulting slurry is cast into a mold base and cured. A method for producing a ceramic mold, wherein the molded article is obtained by demolding. 珪酸質鉱物40〜70重量部、セメント10〜40重量部、石膏2〜25重量部、平均粒径が0.1μm以上、2μm未満の珪酸質微粒子1〜10重量部、繊維質鉱物0.2〜5重量部に水35〜60重量部を加えて混合し、得られたスラリーを型成形用母型に鋳込み、硬化させ、脱型して成形体を得るようにしたことを特徴とする陶磁器成形用型の製造方法。40 to 70 parts by weight of siliceous mineral, 10 to 40 parts by weight of cement, 2 to 25 parts by weight of gypsum, 1 to 10 parts by weight of siliceous fine particles having an average particle size of 0.1 μm or more and less than 2 μm, 0.2 of fibrous mineral Ceramics characterized in that 35-60 parts by weight of water is added to -5 parts by weight and mixed, and the resulting slurry is cast into a molding die, cured, and removed to obtain a molded product. A method for manufacturing a mold for molding.
JP2001329029A 2001-10-26 2001-10-26 Ceramic mold and its manufacturing method Expired - Fee Related JP3606828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001329029A JP3606828B2 (en) 2001-10-26 2001-10-26 Ceramic mold and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001329029A JP3606828B2 (en) 2001-10-26 2001-10-26 Ceramic mold and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2003127120A JP2003127120A (en) 2003-05-08
JP3606828B2 true JP3606828B2 (en) 2005-01-05

Family

ID=19144995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001329029A Expired - Fee Related JP3606828B2 (en) 2001-10-26 2001-10-26 Ceramic mold and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3606828B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2890021A1 (en) * 2005-09-01 2007-03-02 Livbag Soc Par Actions Simplif Cement based casing for the gas generator of a automobile safety system incorporating an inflatable cushion or curtain for driver and passenger protection
KR102022258B1 (en) * 2017-10-23 2019-09-18 한국도자기주식회사 Ceramic ware composition for binder jetting 3D printing and manufacturing method of ceramic ware using the composition
CN116003091B (en) * 2023-02-07 2024-07-16 河北优胜洁具有限公司 High-strength ceramic gypsum mold and preparation method thereof
CN116082014B (en) * 2023-02-07 2024-07-05 河北优胜洁具有限公司 Preparation method of polymer hydrogel composite mineral fiber reinforced gypsum mold

Also Published As

Publication number Publication date
JP2003127120A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JP3215839B2 (en) Synthetic clay for ceramics and method for producing the same
JP3606828B2 (en) Ceramic mold and its manufacturing method
US5096865A (en) High density fused silica process and product
KR100353162B1 (en) The preparation of porous ceramics by using foaming process
JP2002037653A (en) Cement slurry
CN106554186B (en) Utilize the accurate measurement platform and its method of the preparation of superhigh intensity silicate material
JP4556235B2 (en) Composition for sanitary ware body, method for producing the same, and method for producing sanitary ware using the composition
JP2022063147A (en) Method for producing ceramic molded body
JPH0636954B2 (en) Composition for easily disintegrating mold
JP6678871B2 (en) Refractory fiber powder, refractory forming composition and refractory
Cao et al. Study on Molding of Fused-Silica Material by Pressure Slip-Casting from Alcohol-Based Slurry
JPH0569783B2 (en)
JPH0620579B2 (en) Foundry sand for resin coated sand
JP2025024750A (en) Manufacturing method for cylindrical concrete piles
JP2003246667A (en) Pottery
KR101011078B1 (en) Manufacturing method of castable block to improve corrosion resistance and oxidation resistance
CN116986847A (en) Mineral composite material and preparation process thereof
JP4812983B2 (en) Surface plate
RU2062770C1 (en) Ceramoconcrete mix and method of manufacture of building products from it
JP2004323282A (en) Artificial aggregate
KR920009971B1 (en) Method for preparing mullite-alumina composite having excellent wear resistance
JPS61214930A (en) Constructional element for machine tool
WO2025028078A1 (en) Pottery base material
JPH0569784B2 (en)
JPH0548724B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees