JP3602151B2 - Method for producing Nb (3) Sn compound superconducting wire - Google Patents
Method for producing Nb (3) Sn compound superconducting wire Download PDFInfo
- Publication number
- JP3602151B2 JP3602151B2 JP01289393A JP1289393A JP3602151B2 JP 3602151 B2 JP3602151 B2 JP 3602151B2 JP 01289393 A JP01289393 A JP 01289393A JP 1289393 A JP1289393 A JP 1289393A JP 3602151 B2 JP3602151 B2 JP 3602151B2
- Authority
- JP
- Japan
- Prior art keywords
- based alloy
- wire
- compound
- rods
- rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Wire Processing (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、Nb3Sn化合物超電導線の製造方法に関するものであり、さらに詳しくは本発明は、Nb3Sn化合物超電導線の非常に高い臨界電流密度を維持しながら、極小ヒステリシスロスの超電導線が得られる、Nb3Sn化合物超電導線の製造方法に関するものである。
【0002】
【従来の技術】
Nb3Sn化合物超電導線は、臨界温度、臨界磁場、臨界電流などの超電導特性が優れているため、例えば高磁界発生用電磁石の巻線材料として使われている。
【0003】
一般にNb3Sn化合物超電導線は、多数のNb3Snフィラメントとその周囲に存在するブロンズマトリックスの複合体が、TaまたはTa基合金、あるいはNbまたはNb基合金を介して、安定化銅に接触する横断面を有している。
従来の熱処理および断面縮少加工後のNb3Sn化合物超電導線の横断面の一例を図11に示す。図11において、3は安定化銅、4はTaまたはTa基合金、あるいはNbまたはNb基合金からなる拡散バリヤ、5はNb3Snフィラメント、6はブロンズマトリックスである。外形は円形の場合もあれば矩形で使用される場合もある。無論Nb3Snフィラメント5が超電導相である。
【0004】
しかしNb3Sn化合物超電導体は、金属間化合物であるため機械的に脆弱であるから、合金系超電導体のように塑性加工の方法によって複合線とすることは困難である。そのためNb3Sn化合物超電導線の製造には、その1つとして図12に断面縮少加工後で熱処理前の線材横断面を示すように、多数のNbフィラメント1とCu−Sn合金、いわゆるブロンズマトリックス6からなる複合体と、さらにSnの拡散を防止するための前記拡散バリヤ4、安定化銅3を組み合わせ、これらを複合加工して所望の断面形状に仕上げた後に熱処理し、Nb3Sn化合物を生成させる方法(ブロンズ法)が採られていた。しかし、この方法によると冷間の減面加工において、ブロンズマトリックス中のSn濃度が約13%までと高いので、Cu−Snブロンズマトリックスの加工硬化がはなはだ大きく、加工途中で多数の軟化熱処理を必要とし、その軟化熱処理のために、多くの費用、時間を必要とし、またブロンズ中Sn濃度が約13%と上限があるため、多くのSn量を得ることが困難で、そのため生成されるNb3Sn化合物量が少なく、例えば臨界電流は12Tで650A/mm2と低い値にとどまっていた。なおSn濃度を13%以上とすると、ブロンズマトリックス中に化合物が発生し、ブロンズマトリックスの加工ははなはだ困難なものとなってしまう。
【0005】
このような欠点を解決するために、その一例として、図13に示すように次の方法がとられていた。CuとNbからなる押出複合ビレットからCu/Nb複合パイプを作成する。中央部の縦穴にSnを挿入し、スェージング、圧延、引抜加工、その他の方法で断面縮少加工して、細径の線材を得る。これを複数本束ねて、別のCuパイプに入れ、これに引抜加工等を施して、超電導素線を得る。これにNb3Sn生成熱処理を施すと、Snが拡散しNb3Snマトリックスが生成しNb3Sn化合物超電導線として使用できるものになる。
この方法は、ブロンズ法のようにSn量が13%以下という限度がないために、Sn量を多くとることができ、従って、生成されるNb3Sn化合物量を多くすることができるので、ブロンズ法に比べて臨界電流密度は非常に高いものが得られる。
【0006】
【発明が解決しようとする課題】
しかしながら、上記のように高い臨界電流密度(Jc)のものが得られたとしても、中央部のSn中にはNbが配置できないことがあいまって、Nbフィラメント間隔が小さくなるため、隣接するNb3Sn化合物のフィラメント同士の連接が生じ易くなり、ヒステリシスロスの増大が見られていた。例えば、12TでJcが950A/mm2の線材では、ヒステリシスロスに関して、有効フィラメント径は15〜20μmであった。このような超電導線を使用した超電導パルスコイルでは発熱量が大きく、強大な冷凍機を必要としていた。
【0007】
本発明は上記のような問題点を解消するためになされたもので、Nb3Sn化合物超電導線の非常に高い臨界電流密度を維持しながら、隣接するNb3Sn化合物のフィラメント同士の連接がない極小ヒステリシスロスの超電導線が得られる、Nb3Sn化合物超電導線の製造方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明者らは鋭意検討の結果、上記のような従来の課題を解決することができた。
【0009】
すなわち本発明は、1本のNbまたはNb基合金棒または密接して配置した複数のNbまたはNb基合金棒、前記NbまたはNb基合金棒の周囲に配置したSnまたはSn基合金棒およびこれらの周囲に配置したCuまたはCu基合金からなる複合線材を、複数本束ねてシース材に挿入した後、断面縮小加工して素線を得、該素線を熱処理することを特徴とする、Nb3Sn化合物超電導線の製造方法を提供するものである。
【0010】
また、本発明は、1本のNbまたはNb基合金棒または密接して配置した複数のNbまたはNb基合金棒およびこれらの周囲に配置したCuまたはCu基合金からなる第1の複合線材と、1本のSnまたはSn基合金棒または密接して配置した複数のSnまたはSn基合金棒およびこれらの周囲に配置したCuまたはCu基合金からなる第2の複合線材と、を分散するように配置してシース材に挿入した後、断面縮小加工して素線を得、該素線を熱処理することを特徴とする、Nb3Sn化合物超電導線の製造方法を提供するものである。
【0011】
さらに本発明は、銅または銅基合金棒材に設けた複数の縦穴に、1本のNbまたはNb基合金棒または密接して配置した複数のNbまたはNb基合金棒と、1本のSnまたはSn基合金棒または密接して配置した複数のSnまたはSn基合金棒と、を別々または一体に挿入し、断面縮小加工して素線を得、該素線を熱処理することを特徴とする、Nb3Sn化合物超電導線の製造方法を提供するものである。
【0012】
【作用】
本発明において、Snの配置は集中的なものではなく、各々のNbの周囲に分散して配置しているため、Nb棒(Nbフィラメント)配置についてのデッドゾーンがなくなり、そのためNbフィラメント間隔を長く改良でき、Nb3Sn化合物生成によるフィラメントの膨脹があっても、Nb3Sn化合物のフィラメント同士が連接しなくなり、結果としてヒステリシスロスを小さくでき、高性能超電導線が製造可能となる。
【0013】
【実施例】
以下、本発明を実施例によって説明する。
実施例1.
図1は、複合線材としてNb棒の周囲にSn棒を配置した態様を示すものである。図1において、1はNb棒、2はSn棒、3はCu管である。直径10mmのNb棒1に1.5mm厚のSn板をまきつけ、内面に凹溝を有するCu管3に挿入した。これを引抜加工し、対辺距離3.0mm、長さ1.0mの六角棒(複合線材)を253本製作した。このときの六角棒を束ねたときの断面形状は図1の如くであり、Sn棒2は、Cu管3の内面の凹溝に流れ、埋め込まれた形になっている。
次にこの253本を束ねて別の円形Cu管(シース材)に入れ、引抜加工し、対辺距離3.5mm、長さ1.0mの六角棒を55本製作した。これを別の円形Cu管にTaバリヤと共に挿入し、引抜加工にて外径0.95mmの超電導素線を作製した。
加工中は軟化熱処理をせずとも、良好に加工を進めることができた。
【0014】
作製した素線から切り出した約1.5mの長さのサンプルの両端を加熱してSn封止処理をし、Nb3Sn化合物生成熱処理を行った。熱処理は675℃×100時間であった。これにより得られたNb3Sn化合物超電導線の臨界電流を測定した結果、12Tの磁場中、約4.2°Kの温度で、臨界電流密度は非銅当たり1040A/mm2と非常に高いものであった。また、走査型電子顕微鏡観察を行った結果、生成されたNb3Sn化合物同士の連接した部分が皆無であり、ヒステリシスロスが極小であることが判った。同じ熱処理を施したサンプルのコイル状での有効フィラメント径測定結果は、5μmであり臨界電流密度、ヒステリシスロス両特性において優れた性能のNb3Sn化合物超電導線であることが判った。
【0015】
なお、上記の断面縮小加工は、とくに制限されるものではなく、スェージング、圧延、引抜加工、その他の方法を適当に選択することができる。
さらに、上記の熱処理は675℃×100時間で行ったが、本発明はこの熱処理条件に限定されるものではなく、例えば500〜900℃×1000時間以下の条件で行うことができる。好ましくは、600〜750℃×300時間以下である。
【0016】
実施例2.
直径10mmのNb棒を外径15.5mm、内径10.5mmのCu管に入れ引抜加工し、対辺距離3.0mm、長さ1.0mの六角棒(第1の複合線材)を84本製作した。また直径10mmのSn棒を外径15.5mm、内径10.5mmの別のCu管に入れ、引抜加工し、同じく対辺距離3.0mm、長さ1.0mの六角棒(第2の複合線材)を169本製作した。以上の合計253本を分散するように束ねて、別の円形Cu管(シース材)に入れ引抜加工し、対辺距離3.5mm、長さ1.0mの六角棒を55本作製した。これをさらに別に用意した円形Cu管にTaバリヤと共に挿入し、引抜加工し、外径0.95mmの超電導素線を得た。素線の断面形状の拡大図を図2に示す。図2から判るように、第1の複合線材と第2の複合線材は、均等分散されて配置している。
加工中は、ブロンズ法のような軟化熱処理は必要とせず、良好に加工を進めることができた。
この素線の一部を切り取り、675℃×100時間のNb3Sn化合物生成熱処理を加えた。コイル状で熱処理したこのサンプルを、12Tの磁界中、4.2°Kの温度で臨界電流を測定した結果、1010A/mm2と高い臨界電流密度を得た。
実施例1と同様に、走査型電子顕微鏡観察では、生成されたNb3Sn化合物同士の連接はみあたらず、またヒステリシスロスについて、有効フィラメント径は約5μmであり、臨界電流密度、ヒステリシスロス両特性において優れた性能を有していることが実証された。
【0017】
実施例3.
上記および下記の実施例においては、使用した金属が各々Nb、Sn、Cu、Ta等純金属の場合について述べているが、臨界電流密度向上のため、または加工性を良くするために別元素の添加があっても同様の効果がある。例えばNb基合金としては、Nb−Ti(Ti5%以下)、Nb−Ta(Ta7%以下)等、Sn基合金としてはSn−Ti(Ti5%以下)、Sn−In(In10%以下)、Sn−Ta(Ta7%以下)等を用いることができる。
【0018】
実施例4.
また、Nb3Sn化合物超電導線の仕上がり線径、安定化銅の有無、拡散バリヤの材質の如何にかかわらず、基本的に超電導化合物を構成するNbまたは上記のようなNb基合金、Snまたは上記のようなSn基合金、そしてCuの構成が本発明の如くであれば同様の効果を奏する。
【0019】
実施例5.
また実施例1および2では、1回目253本、2回目55本を集束し、Cu管(シース材)に入れ加工する例について述べたが、必要に応じて集束は1回のみ、あるいは3回以上行っても同様の効果が得られる。さらに上記の集束本数はとくに制限されるものではなく、集束本数の多少にかかわらず、同様の効果が得られる。
【0020】
実施例6.
また、実施例1においては、1本のNbまたはNb基合金棒の周囲のSnまたはSn基合金の配置の1例を述べたにすぎず、別の配置にしてもよい。
例えば、NbまたはNb合金棒は1本ではなく、密接して配置した複数本を用いることもできる。また、図3のように円形のCu管3の中にNbまたはNb基合金棒1およびSnまたはSn基合金棒2を配置しても同様の効果が得られる。
【0021】
実施例7.
実施例2では、第1および第2の複合線材を六角形に成形して集束した場合について述べたが、別の線材形状でも同様に効果がある。
例えば、図4のように第1および第2の複合線材各々を、円形のCu管3の中に配置しても同様の効果が得られる。
また、第1および第2の複合線材に含まれるNbまたはNb合金棒およびSnまたはSn合金棒は、それぞれ密接して配置した複数本であってもよい。
【0022】
実施例8.
また、実施例2における第1および第2の複合線材の配置を、図5のように、第2の複合線材を第1の複合線材で囲むような配置に変更しても、同様の効果が得られる。
【0023】
実施例9.〜13.
また、図6に示すように、銅または銅基合金棒材(シース材)、例えば円形の棒材中に、複数の円形の縦穴をあけて、その中にNb棒1およびSn棒2を各々挿入し、前記実施例と同様の熱処理および断面縮少加工を行ってもよい。図6は、同じ大きさの円形縦穴を7ケ設け、Nb棒1およびSn棒1を互いに隣接して配置した場合を示したが、その他、同じ大きさの円形の縦穴を7ケ設け、その中にNb棒の周囲にSnを設けた棒を挿入した場合(図7)、同じ大きさの円形の縦穴を19ケ設け、その中にNb棒の周囲にSnを設けた棒を挿入した場合(図8)、同じ大きさの円形の縦穴を19ケ設け、その中にNb棒1およびSn棒1を互いに隣接して挿入した場合(図9)、中央の大きな円形の縦穴にNb棒1を挿入し、その周囲の小さな円形の縦穴にSn棒を挿入した場合(図10)各々についても同様の効果が得られる。
なお、上記においては、シース材の縦穴を円形としたが、その形状はとくに制限されず、様々な形状とすることができる。また、上記においては縦穴の数が7ケまたは19ケの場合について述べたが、この数もとくに制限されず、必要に応じてこれ以外の数にすることができる。
【0024】
【発明の効果】
以上のように、本発明によれば、Snの配置を集中的なものではなく、Nb各々の周囲に分散的に配置したので、Nb配置についてのデッドゾーンが解消され、Nbフィラメント間隔を長くすることができた。従って、Nb3Sn化合物フィラメント同士の連接が生じないため、有効フィラメント径が小さくなり、臨界電流密度を高く保持しつつ、ヒステリシスロスを低く改良でき、例えばパルスコイルの超電導線において発熱量を小さく押さえることができる効果がある。また超電導線の製造においても、硬質のブロンズマトリックス等を使用せず、軟らかい純金属で構成しているので、製造が容易でしかも安価に製造できる効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例におけるNb3Sn化合物超電導複合線材を束ねたときの一部拡大横断面図である。
【図2】本発明の一実施例におけるNb3Sn化合物超電導素線の一部拡大横断面図である。
【図3】本発明の一実施例におけるNb3Sn化合物超電導複合線材を束ねたときの一部拡大横断面図である。
【図4】本発明の一実施例におけるNb3Sn化合物超電導素線の一部拡大横断面図である。
【図5】本発明の一実施例におけるNb3Sn化合物超電導素線の一部拡大横断面図である。
【図6】本発明の一実施例におけるNb3Sn化合物超電導素線の一部拡大横断面図である。
【図7】本発明の一実施例におけるNb3Sn化合物超電導素線の一部拡大横断面図である。
【図8】本発明の一実施例におけるNb3Sn化合物超電導素線の一部拡大横断面図である。
【図9】本発明の一実施例におけるNb3Sn化合物超電導素線の一部拡大横断面図である。
【図10】本発明の一実施例におけるNb3Sn化合物超電導素線の一部拡大横断面図である。
【図11】従来の方法において製造されたNb3Sn化合物超電導線の横断面図である。
【図12】従来の方法における加工途中のNb3Sn化合物超電導素線の横断面図である。
【図13】従来の方法における加工途中のNb3Sn化合物超電導素線の横断面図である。
【符号の説明】
1 NbまたはNb合金棒
2 SnまたはSn合金棒
3 Cu管
4 拡散バリヤ
5 Nb3Snフィラメント
6 ブロンズマトリックス[0001]
[Industrial applications]
The present invention relates to a method for producing a Nb 3 Sn compound superconducting wire, and more particularly, the present invention relates to a method for producing a superconducting wire having an extremely small hysteresis loss while maintaining a very high critical current density of the Nb 3 Sn compound superconducting wire. The present invention relates to a method for producing an obtained Nb 3 Sn compound superconducting wire.
[0002]
[Prior art]
Nb 3 Sn compound superconducting wires have excellent superconducting properties such as critical temperature, critical magnetic field, and critical current, and are therefore used, for example, as winding materials for electromagnets for generating high magnetic fields.
[0003]
In general, an Nb 3 Sn compound superconducting wire is a composite of a large number of Nb 3 Sn filaments and a bronze matrix present around the Nb 3 Sn filament, and contacts the stabilized copper via Ta or a Ta-based alloy or Nb or Nb-based alloy. It has a cross section.
FIG. 11 shows an example of a cross-section of a conventional Nb 3 Sn compound superconducting wire after heat treatment and cross-section reduction processing. In FIG. 11, reference numeral 3 denotes stabilized copper, 4 denotes a diffusion barrier made of Ta or a Ta-based alloy, or Nb or Nb-based alloy, 5 denotes an Nb 3 Sn filament, and 6 denotes a bronze matrix. The outer shape may be circular or rectangular. Of course, the Nb 3 Sn filament 5 is a superconducting phase.
[0004]
However, since the Nb 3 Sn compound superconductor is an intermetallic compound and is mechanically fragile, it is difficult to form a composite wire by a plastic working method like an alloy superconductor. Therefore, in the production of the Nb 3 Sn compound superconducting wire, as shown in FIG. 12, as shown in FIG. 12, a cross section of the wire after the cross-section reduction processing and before the heat treatment, a large number of Nb filaments 1 and a Cu—Sn alloy, so-called bronze matrix 6, the diffusion barrier 4 for preventing the diffusion of Sn, and the stabilized copper 3 are combined. These are processed into a composite to obtain a desired cross-sectional shape, and then heat-treated to reduce the Nb 3 Sn compound. The method of producing (bronze method) was adopted. However, according to this method, since the Sn concentration in the bronze matrix is as high as about 13% in cold area reduction processing, the work hardening of the Cu-Sn bronze matrix is extremely large, and many softening heat treatments are required during the processing. and then, because of its softening heat treatment, many costs, and requires time and since the Sn concentration in the bronze is approximately 13% and the upper limit, it is difficult to get a lot of Sn amount, Nb 3 produced for the The amount of the Sn compound was small, for example, the critical current was as low as 650 A / mm 2 at 12 T. If the Sn concentration is 13% or more, a compound is generated in the bronze matrix, and the processing of the bronze matrix becomes extremely difficult.
[0005]
In order to solve such a drawback, as an example, the following method has been adopted as shown in FIG. A Cu / Nb composite pipe is made from an extruded composite billet composed of Cu and Nb. Sn is inserted into the vertical hole at the center, and the cross-section is reduced by swaging, rolling, drawing, or other methods to obtain a thin wire. A plurality of these are bundled, put into another Cu pipe, and subjected to drawing or the like to obtain a superconducting element wire. If Nb 3 Sn heat treatment is performed on this, Sn is diffused to form an Nb 3 Sn matrix, which can be used as an Nb 3 Sn compound superconducting wire.
In this method, the amount of Sn can be increased because the amount of Sn is not limited to 13% or less unlike the bronze method. Therefore, the amount of the generated Nb 3 Sn compound can be increased. An extremely high critical current density can be obtained as compared with the method.
[0006]
[Problems to be solved by the invention]
However, even as a high critical current density as described above (Jc) is obtained, during Sn of the central portion Aima' can not be placed Nb is, since the Nb filament spacing is small, adjacent Nb 3 The connection of the Sn compound filaments was likely to occur, and an increase in hysteresis loss was observed. For example, in the case of a wire having a Jc of 950 A / mm 2 at 12 T, the effective filament diameter was 15 to 20 μm with respect to hysteresis loss. A superconducting pulse coil using such a superconducting wire generates a large amount of heat and requires a powerful refrigerator.
[0007]
The present invention has been made to solve the above problems, and there is no connection between filaments of adjacent Nb 3 Sn compounds while maintaining a very high critical current density of the Nb 3 Sn compound superconducting wire. It is an object of the present invention to provide a method for producing an Nb 3 Sn compound superconducting wire from which a superconducting wire having an extremely small hysteresis loss can be obtained.
[0008]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors were able to solve the above-mentioned conventional problems.
[0009]
That is, the present invention provides a single Nb or Nb-based alloy rod or a plurality of closely arranged Nb or Nb-based alloy rods, an Sn or Sn-based alloy rod disposed around the Nb or Nb-based alloy rod, and Nb 3 is obtained by bundling a plurality of composite wires made of Cu or a Cu-based alloy disposed around and inserting them into a sheath material, reducing the cross section to obtain a wire, and heat-treating the wire. An object of the present invention is to provide a method for producing a Sn compound superconducting wire.
[0010]
The present invention also provides a first composite wire made of one Nb or Nb-based alloy rod or a plurality of closely arranged Nb or Nb-based alloy rods and Cu or a Cu-based alloy disposed around them. A single Sn or Sn-based alloy rod or a plurality of closely arranged Sn or Sn-based alloy rods and a second composite wire made of Cu or a Cu-based alloy disposed around these rods so as to be dispersed. A method for producing an Nb 3 Sn compound superconducting wire, characterized in that after the wire is inserted into a sheath material, a wire is obtained by reducing the cross section and the wire is heat-treated.
[0011]
Further, the present invention provides a method for forming one Nb or Nb-based alloy rod or a plurality of Nb or Nb-based alloy rods closely arranged in a plurality of vertical holes provided in a copper or copper-based alloy rod, and one Sn or Sn-based alloy rods or a plurality of closely arranged Sn or Sn-based alloy rods are separately or integrally inserted, a cross-section is reduced to obtain a strand, and the strand is heat-treated. An object of the present invention is to provide a method for producing an Nb 3 Sn compound superconducting wire.
[0012]
[Action]
In the present invention, the arrangement of Sn is not concentrated, but is distributed around each Nb, so that there is no dead zone in the arrangement of Nb rods (Nb filaments). improvements can, even if there is expansion of the filament due to Nb 3 Sn compound produced, no longer connected the filaments of Nb 3 Sn compound, as a result it is possible to reduce the hysteresis loss, high-performance superconducting wire is manufacturable.
[0013]
【Example】
Hereinafter, the present invention will be described with reference to examples.
Embodiment 1 FIG.
FIG. 1 shows an embodiment in which an Sn bar is disposed around an Nb bar as a composite wire. In FIG. 1, 1 is an Nb bar, 2 is a Sn bar, and 3 is a Cu tube. A 1.5 mm thick Sn plate was spread on an Nb rod 1 having a diameter of 10 mm and inserted into a Cu tube 3 having a concave groove on the inner surface. This was subjected to a drawing process to produce 253 hexagonal rods (composite wire rods) having a distance to the opposite side of 3.0 mm and a length of 1.0 m. The cross-sectional shape when the hexagonal rods are bundled at this time is as shown in FIG. 1, and the Sn rods 2 flow into the concave grooves on the inner surface of the Cu tube 3 and are embedded.
Next, these 253 pieces were bundled, put into another circular Cu tube (sheath material), and subjected to drawing processing, thereby producing 55 hexagonal rods having a distance of 3.5 mm across sides and a length of 1.0 m. This was inserted into another circular Cu tube together with a Ta barrier, and a superconducting wire having an outer diameter of 0.95 mm was produced by drawing.
During the processing, the processing could be favorably advanced without performing the softening heat treatment.
[0014]
Both ends of a sample having a length of about 1.5 m cut out from the prepared strand were heated to perform Sn sealing treatment, and Nb 3 Sn compound generation heat treatment was performed. The heat treatment was 675 ° C. × 100 hours. As a result of measuring the critical current of the Nb 3 Sn compound superconducting wire thus obtained, the critical current density was as high as 1040 A / mm 2 per non-copper at a temperature of about 4.2 ° K in a magnetic field of 12 T. Met. Further, as a result of scanning electron microscope observation, it was found that there was no connected portion between the generated Nb 3 Sn compounds, and the hysteresis loss was extremely small. The measurement result of the effective filament diameter in a coil shape of the sample subjected to the same heat treatment was 5 μm, and it was found that the Nb 3 Sn compound superconducting wire was excellent in both critical current density and hysteresis loss characteristics.
[0015]
The cross-sectional reduction processing is not particularly limited, and swaging, rolling, drawing, and other methods can be appropriately selected.
Furthermore, the above heat treatment was performed at 675 ° C. × 100 hours, but the present invention is not limited to this heat treatment condition. For example, the heat treatment can be performed at 500 to 900 ° C. × 1000 hours or less. Preferably, it is 600 to 750 ° C. × 300 hours or less.
[0016]
Embodiment 2. FIG.
An Nb rod with a diameter of 10 mm is put into a Cu tube with an outer diameter of 15.5 mm and an inner diameter of 10.5 mm and drawn, and 84 hexagonal rods (first composite wire) with a distance of 3.0 mm across sides and a length of 1.0 m are manufactured. did. Also, a Sn rod having a diameter of 10 mm is put into another Cu tube having an outer diameter of 15.5 mm and an inner diameter of 10.5 mm, and is subjected to a drawing process. Similarly, a hexagonal rod having a distance to opposite side of 3.0 mm and a length of 1.0 m (second composite wire rod) ) Were manufactured. The above total 253 pieces were bundled so as to be dispersed, placed in another circular Cu tube (sheath material), and subjected to a drawing process, thereby producing 55 hexagonal rods having a distance of 3.5 mm across sides and a length of 1.0 m. This was further inserted into a separately prepared circular Cu tube together with a Ta barrier and subjected to drawing to obtain a superconducting element wire having an outer diameter of 0.95 mm. FIG. 2 is an enlarged view of the cross-sectional shape of the strand. As can be seen from FIG. 2, the first composite wire and the second composite wire are evenly distributed.
During the processing, a softening heat treatment such as the bronze method was not required, and the processing could be favorably advanced.
A part of this element wire was cut off, and a heat treatment for forming an Nb 3 Sn compound at 675 ° C. × 100 hours was applied. As a result of measuring the critical current of this coil-heat-treated sample at a temperature of 4.2 ° K in a magnetic field of 12 T, a high critical current density of 1010 A / mm 2 was obtained.
As in Example 1, in the observation with a scanning electron microscope, no connection between the generated Nb 3 Sn compounds was found. Regarding hysteresis loss, the effective filament diameter was about 5 μm, and both critical current density and hysteresis loss characteristics It has been proved that it has excellent performance.
[0017]
Embodiment 3 FIG.
In the above and the following examples, the case where each of the metals used is a pure metal such as Nb, Sn, Cu, Ta is described. However, in order to improve the critical current density or to improve the processability, another element is used. The same effect can be obtained even if it is added. For example, Nb-Ti (Ti 5% or less), Nb-Ta (Ta 7% or less), etc. as Nb-based alloys, Sn-Ti (Ti 5% or less), Sn-In (In 10% or less), Sn as Sn-based alloys -Ta (Ta 7% or less) or the like can be used.
[0018]
Embodiment 4. FIG.
Also, regardless of the finished wire diameter of the Nb 3 Sn compound superconducting wire, the presence or absence of stabilizing copper, and the material of the diffusion barrier, Nb or an Nb-based alloy as described above, which constitutes the superconducting compound, Sn or the above. Similar effects can be obtained if the Sn-based alloy and Cu are configured as in the present invention.
[0019]
Embodiment 5 FIG.
Further, in the first and second embodiments, an example in which the first 253 pieces and the second 55 pieces are bundled and put in a Cu tube (sheath material) is described, but the focusing is performed only once or three times as necessary. The same effect can be obtained by performing the above. Furthermore, the above-mentioned number of convergence is not particularly limited, and the same effect can be obtained regardless of the number of convergence.
[0020]
Embodiment 6 FIG.
In the first embodiment, only one example of the arrangement of Sn or Sn-based alloy around one Nb or Nb-based alloy rod is described, and another arrangement may be adopted.
For example, not one Nb or Nb alloy rod but a plurality of closely arranged Nb or Nb alloy rods can be used. Similar effects can be obtained by disposing the Nb or Nb-based alloy rod 1 and the Sn or Sn-based alloy rod 2 in the circular Cu tube 3 as shown in FIG.
[0021]
Embodiment 7 FIG.
In the second embodiment, the case where the first and second composite wires are formed into a hexagon and converged is described, but another wire shape is also effective.
For example, the same effect can be obtained by arranging each of the first and second composite wires in the circular Cu tube 3 as shown in FIG.
Further, the Nb or Nb alloy rod and the Sn or Sn alloy rod included in the first and second composite wires may each be a plurality of closely arranged rods.
[0022]
Embodiment 8 FIG.
The same effect can be obtained even if the arrangement of the first and second composite wires in the second embodiment is changed to an arrangement in which the second composite wire is surrounded by the first composite wire as shown in FIG. can get.
[0023]
Embodiment 9 FIG. ~ 13.
As shown in FIG. 6, a plurality of circular vertical holes are made in a copper or copper-based alloy rod (sheath), for example, a circular rod, and an Nb rod 1 and a Sn rod 2 are respectively formed therein. The heat treatment and the cross-section reduction processing may be performed in the same manner as in the above embodiment. FIG. 6 shows a case where seven circular vertical holes having the same size are provided and the Nb bar 1 and the Sn bar 1 are arranged adjacent to each other. In addition, seven circular vertical holes having the same size are provided, and When a bar having Sn provided around the Nb bar is inserted therein (FIG. 7), 19 circular vertical holes of the same size are provided, and a bar having Sn provided around the Nb bar is inserted therein. (FIG. 8), when Nb rods 1 and Sn rods 1 are inserted adjacent to each other in 19 circular vertical holes of the same size (FIG. 9), the Nb rod 1 is inserted into the central large circular vertical hole. Is inserted, and the same effect can be obtained in each case where an Sn bar is inserted into a small circular vertical hole around the hole (FIG. 10).
In the above description, the vertical hole of the sheath material is circular, but the shape is not particularly limited and can be various shapes. Further, in the above description, the case where the number of the vertical holes is 7 or 19 is described, but the number is not particularly limited, and other numbers can be used as necessary.
[0024]
【The invention's effect】
As described above, according to the present invention, the arrangement of Sn is not concentrated, but is distributed around each Nb, so that the dead zone for Nb arrangement is eliminated and the interval between Nb filaments is lengthened. I was able to. Therefore, since the connection between the Nb 3 Sn compound filaments does not occur, the effective filament diameter is reduced, and the hysteresis loss can be reduced while the critical current density is kept high. For example, the calorific value in the superconducting wire of the pulse coil can be suppressed. There are effects that can be. Also in the production of the superconducting wire, since it is made of a soft pure metal without using a hard bronze matrix or the like, there is an effect that the production is easy and inexpensive.
[Brief description of the drawings]
FIG. 1 is a partially enlarged cross-sectional view of a bundle of Nb 3 Sn compound superconducting composite wires according to one embodiment of the present invention.
FIG. 2 is a partially enlarged cross-sectional view of an Nb 3 Sn compound superconducting element wire according to an embodiment of the present invention.
FIG. 3 is a partially enlarged cross-sectional view when the Nb 3 Sn compound superconducting composite wires according to one embodiment of the present invention are bundled.
FIG. 4 is a partially enlarged cross-sectional view of an Nb 3 Sn compound superconducting element wire according to an embodiment of the present invention.
FIG. 5 is a partially enlarged cross-sectional view of an Nb 3 Sn compound superconducting element wire according to an embodiment of the present invention.
FIG. 6 is a partially enlarged cross-sectional view of an Nb 3 Sn compound superconducting element wire according to an embodiment of the present invention.
FIG. 7 is a partially enlarged cross-sectional view of an Nb 3 Sn compound superconducting element wire according to an embodiment of the present invention.
FIG. 8 is a partially enlarged cross-sectional view of an Nb 3 Sn compound superconducting element wire according to one embodiment of the present invention.
FIG. 9 is a partially enlarged cross-sectional view of an Nb 3 Sn compound superconducting element wire according to an embodiment of the present invention.
FIG. 10 is a partially enlarged cross-sectional view of an Nb 3 Sn compound superconducting element wire according to an example of the present invention.
FIG. 11 is a cross-sectional view of an Nb 3 Sn compound superconducting wire manufactured by a conventional method.
FIG. 12 is a cross-sectional view of an Nb 3 Sn compound superconducting element wire being processed in a conventional method.
FIG. 13 is a cross-sectional view of an Nb 3 Sn compound superconducting element wire being processed in a conventional method.
[Explanation of symbols]
1 Nb or Nb alloy rod 2 Sn or Sn alloy rod 3 Cu tube 4 Diffusion barrier 5 Nb 3 Sn filament 6 Bronze matrix
Claims (3)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01289393A JP3602151B2 (en) | 1993-01-28 | 1993-01-28 | Method for producing Nb (3) Sn compound superconducting wire |
CA002114333A CA2114333A1 (en) | 1993-01-28 | 1994-01-27 | Tyrosine kinase inhibitors and benzoylacrylamide derivatives |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01289393A JP3602151B2 (en) | 1993-01-28 | 1993-01-28 | Method for producing Nb (3) Sn compound superconducting wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06223653A JPH06223653A (en) | 1994-08-12 |
JP3602151B2 true JP3602151B2 (en) | 2004-12-15 |
Family
ID=11818076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01289393A Expired - Lifetime JP3602151B2 (en) | 1993-01-28 | 1993-01-28 | Method for producing Nb (3) Sn compound superconducting wire |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3602151B2 (en) |
CA (1) | CA2114333A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5588303B2 (en) * | 2010-10-28 | 2014-09-10 | 株式会社Shカッパープロダクツ | Precursor of Nb3Sn superconducting wire and Nb3Sn superconducting wire using the same |
JP5642727B2 (en) * | 2012-03-27 | 2014-12-17 | ジャパンスーパーコンダクタテクノロジー株式会社 | Precursor for producing internal Sn method Nb3Sn superconducting wire, Nb3Sn superconducting wire, and production method thereof |
-
1993
- 1993-01-28 JP JP01289393A patent/JP3602151B2/en not_active Expired - Lifetime
-
1994
- 1994-01-27 CA CA002114333A patent/CA2114333A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
CA2114333A1 (en) | 1994-07-29 |
JPH06223653A (en) | 1994-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101097714B1 (en) | Method for producing NbTi3Sn wire by use of Ti source rods | |
JP6847914B2 (en) | Manufacture of reinforced superconducting wire | |
US4959279A (en) | Superconducting wire containing multifilamentary superconducting alloy | |
US4917965A (en) | Multifilament Nb3 Al superconducting linear composite articles | |
JP3602151B2 (en) | Method for producing Nb (3) Sn compound superconducting wire | |
US4153986A (en) | Method for producing composite superconductors | |
JPH08180752A (en) | Nb3sn superconductive wire and manufacture thereof | |
JPH09167531A (en) | Manufacture of multi-conductor nb3sn superconducting wire | |
JP2562435B2 (en) | Superfine superconducting wire | |
JP2910586B2 (en) | Nb (3) Sn superconducting wire | |
JP3445307B2 (en) | Superconducting composite billet | |
JPH10149729A (en) | Oxide superconductive wire rod and manufacture thereof | |
JP3182978B2 (en) | Nb (3) Sn Superconducting Wire for Magnet Operated by Permanent Current and Manufacturing Method Thereof | |
JPH04301322A (en) | Manufacture of niobium-tin superconducting wire | |
JP2719155B2 (en) | Superconducting stranded wire manufacturing method | |
JP2003045247A (en) | Superconductive cable | |
JP2749136B2 (en) | Aluminum stabilized superconducting wire | |
JPH087681A (en) | A3b type compound superconductive wire rod and manufacture thereof | |
JP3603565B2 (en) | Nb (3) Sn superconducting wire capable of obtaining high critical current density and method for producing the same | |
JP3086487B2 (en) | Method for manufacturing Nb3Sn AC superconducting wire | |
JPH0636331B2 (en) | Nb (bottom 3) A1 compound superconducting wire manufacturing method | |
RU96116402A (en) | METHOD FOR PRODUCING COMPOSITE SUPERCONDUCTOR BASED ON NB3SN CONNECTION | |
JPH09171727A (en) | Manufacture of metal-based superconductive wire | |
JPS6113508A (en) | Method of producing low copper ratio nb3sn superconductive wire | |
Shimada et al. | Development of Nb-Ti-Ta ternary alloy multifilamentary superconducting wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040921 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040922 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071001 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081001 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091001 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101001 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111001 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121001 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131001 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131001 Year of fee payment: 9 |