[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3694638B2 - Coherent multiwavelength signal generator - Google Patents

Coherent multiwavelength signal generator Download PDF

Info

Publication number
JP3694638B2
JP3694638B2 JP2000218424A JP2000218424A JP3694638B2 JP 3694638 B2 JP3694638 B2 JP 3694638B2 JP 2000218424 A JP2000218424 A JP 2000218424A JP 2000218424 A JP2000218424 A JP 2000218424A JP 3694638 B2 JP3694638 B2 JP 3694638B2
Authority
JP
Japan
Prior art keywords
wavelength
light
signal
intensity
coherent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000218424A
Other languages
Japanese (ja)
Other versions
JP2002031786A (en
Inventor
光啓 手島
克寛 荒谷
正満 藤原
謙一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000218424A priority Critical patent/JP3694638B2/en
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to CA2487177A priority patent/CA2487177C/en
Priority to CA002487187A priority patent/CA2487187C/en
Priority to CA002352680A priority patent/CA2352680C/en
Priority to CA002487181A priority patent/CA2487181C/en
Priority to US09/900,613 priority patent/US6831774B2/en
Publication of JP2002031786A publication Critical patent/JP2002031786A/en
Priority to US10/655,675 priority patent/US6924924B2/en
Priority to US10/826,571 priority patent/US7068412B2/en
Application granted granted Critical
Publication of JP3694638B2 publication Critical patent/JP3694638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多波長光源から出力されるコヒーレントな多波長光をスペクトルスライスし、複数の光変調器で各波長のコヒーレント光を変調し、波長多重して出力するコヒーレント多波長信号発生装置に関する。特に、光変調器の入出力の雑音特性が設計値になるように、多波長光源から出力される多波長光の光スペクトル形状を制御するコヒーレント多波長信号発生装置に関する。
【0002】
【従来の技術】
図17は、従来の波長多重伝送システムの構成例を示す。図において、光送信部50は、伝送仕様(例えばITU−T G.692勧告)により規定されたそれぞれ異なる波長を有する半導体レーザ(例えば分布帰還型レーザ:DFB−LD)51−1〜51−nと、各半導体レーザの出力光を送信信号により変調する光変調器52−1〜52−nと、各変調信号光を合波して波長多重信号光を出力する合波器53と、光増幅器54により構成される。伝送路光ファイバ60を介して光送信部50に接続される光受信部70は、伝送された波長多重信号光を増幅する光増幅器71と、波長多重信号光を各波長の信号光に分波する分波器72と、各波長の信号光をそれぞれ受信する受信器73−1〜73−nにより構成される。
【0003】
ここで、半導体レーザは、温度変化および注入電流変化により発振波長シフトが生じ、また経時変化に伴って発振波長が変化する性質を有することから、伝送仕様上の波長精度を維持するには波長安定化回路が必要になる。この波長安定化は、個々の半導体レーザに対して実施する必要があるので、波長多重数の増加および波長多重間隔の高密度化に伴い、波長安定化回路の装置全体に占める割合が増加することになる。
【0004】
このような複数の半導体レーザを用いる構成に対して、平坦な光スペクトルを有する多波長光を分波器でフィルタリング(スペクトルスライス)して複数の波長の光を生成する方法がある。この多波長光を発生する光源としては、光ファイバ増幅器から出力される増幅された自然放出光(ASE光)を利用するものや、繰り返し短光パルスを利用するものがある。しかし、ASE光をスペクトルスライスした光はインコヒーレント光であり、高密度・多波長の波長多重伝送には不向きである。
【0005】
一方、繰り返し短光パルスを利用する場合には、スペクトルスライス後の各波長チャネルのパワーレベル偏差を解消するために、例えば非線形光ファイバ透過によるスーパーコンティニウム発生により広帯域スペクトル発生に伴う光スペクトル平坦化を行う手法や、逆特性をもつ光フィルタを用いたパワーレベル偏差抑制により光スペクトル平坦化を行う手法が提案されている。
【0006】
【発明が解決しようとする課題】
しかし、スーパーコンティニウム発生に伴う平坦化では、用いる非線形光ファイバは、与えられた種パルスのスペクトルが広帯域かつ平坦になるように、分散プロファイルとファイバ長が設計される。そのため、得られる光スペクトル形状はその非線形光ファイバの特性で決まり、各モードのパワーレベル偏差を動的に制御することができなかった。また、逆特性をもつ光フィルタによる平坦化では、光フィルタ透過後の光スペクトル形状がその光フィルタのもつ透過特性によって決定され、同様に各モードのパワーレベル偏差を動的に制御することができなかった。
【0007】
これに対して、単一の中心波長を有する光を特定の繰り返し周期を有する電気信号で変調し、光スペクトルが平坦化された多波長光を発生させることができるとともに、光スペクトル形状(各モードのパワーレベル偏差)を制御することができる多波長光源(光スペクトル平坦化方法及び光スペクトル平坦化装置(特願2000−207475)、多波長一括発生装置(特願2000−207494)、以下「先願」という。)が出願されている。
【0008】
本発明は、先願の多波長光源を用いて多波長光を発生させ、多波長光の光スペクトル形状の制御が可能な構成において、従来の半導体レーザを用いた光送信部に求める性能仕様との整合を図る設計が可能なコヒーレント多波長信号発生装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明のコヒーレント多波長信号発生装置は、多波長光をスペクトルスライスして得られた各波長のコヒーレント光を変調する光変調器入力の相対強度雑音RINまたは光変調器出力の信号雑音比SNRについて、伝送システム(光ファイバ品種、距離、中継段数)のパラメータから要請される所定のRINまたはSNRが得られるように、多波長光の光スペクトル形状を制御することを特徴とする
【0010】
多波長光源は、単一の中心波長を有する光を発生する光源と、その出力光を所定の周期信号により強度変調または位相変調して多波長光を発生させる光変調器とを備え、周期信号の電圧または光変調器のバイアス電圧を調整し、発生する多波長光の光スペクトル形状を制御する構成である(請求項1)。
【0011】
また、多波長光源は、周期信号の位相を制御して発生する多波長光の光スペクトル形状を制御する構成である(請求項2)。また、多波長光源は、周期信号周波数の逓倍数を制御して発生する多波長光の光スペクトル形状を制御する構成である(請求項3)。
【0012】
【発明の実施の形態】
図1は、本発明のコヒーレント多波長信号発生装置の第1の実施形態を示す。図において、コヒーレント多波長信号発生装置は、先願の多波長光源11と、多波長光を各波長にスペクトルスライスする分波器12と、各スペクトルスライス光を送信信号により変調する光変調器52−1〜52−nと、各変調信号光を合波してコヒーレント多波長信号を出力する合波器53と、光増幅器54と、多波長光源11から出力される多波長光の一部を分岐する光カプラ13と、分岐した多波長光を入力し、光変調器入力の相対強度雑音RINまたは光変調器出力の信号雑音比SNRが設計値になるように、多波長光源11の光スペクトル形状制御を行う制御回路14により構成される。
【0013】
図2は、本発明のコヒーレント多波長信号発生装置の第2の実施形態を示す。本実施形態のコヒーレント多波長信号発生装置は、第1の実施形態の構成における多波長光源11と分波器12との間に、多波長光を増幅する光増幅器15を備え、増幅された多波長光の一部を制御回路14に導く構成になっている。
【0014】
図3は、本発明のコヒーレント多波長信号発生装置を用いた波長多重伝送システムの構成例を示す。図において、伝送路光ファイバ60を介してコヒーレント多波長信号発生装置10に接続される光受信部70は、伝送された波長多重信号光を増幅する光増幅器71と、波長多重信号光を各波長の信号光に分波する分波器72と、各波長の信号光をそれぞれ受信する受信器73−1〜73−nにより構成される。
【0015】
図4は、多波長光源11の第1の構成例を示す。図において、多波長光源11は、単一の中心波長を有する光を発生する光源21と、光源21の出力光を振幅変調または位相変調を行う複数の光変調器22−1,22−2を有する光変調部23と、所定の周期信号を発生する周期信号発生器24と、所定の周期信号電圧を調整して各光変調器22−1〜22−2に印加するパワー調整部25−1〜25−2と、各光変調器22−1〜22−2にパワー調整されたバイアス電圧を印加するパワー可変直流電源26−1〜26−2から構成される。なお、光変調部23は、例えばマッハツェンダ強度変調器を用いて分岐されたパスで位相変調を行い、全体として振幅変調動作させる構成としてもよい。
【0016】
光変調部23の光変調器22−1では、光源11の出力光(連続光)の時間波形の振幅または位相を変調することにより、その出力光の離散光スペクトルの各モードの位相に一定の相関を与える(図5(a))。さらに、光変調器22−2では、その変調波の振幅または位相を変調することにより、離散光スペクトルを周波数軸上で上下側波帯に偏移させる(図5(b))。ここで、周波数偏移量を調節することにより、離散光スペクトルが重なって各モードのパワーレベル偏差を一定に制御することができる(図5(c))。
【0017】
図6は、光変調部23として強度変調器と位相変調器を用いた場合の光スペクトル形状制御例を示す。図6(a),(b),(c) は、LiNbO3 マッハツェンダ強度変調器の印加電圧(Vπ電圧換算)を変化させた場合のスペクトル例であり、図6(d),(e),(f) は、位相変調器の印加電圧(Vπ電圧換算)を変化させた場合のスペクトル例であり、図6(g),(h),(i) は、両変調器をそれぞれの印加電圧ごとに組み合わせたときの多波長光の光スペクトル例である。この多波長光の光スペクトルには、コヒーレント光である複数のキャリア41と、広帯域に広がった自然放出光42が存在する。
【0018】
図7は、光増幅器で増幅した多波長光の光スペクトルを模式的に示す。多波長光の光スペクトルには、コヒーレント光である複数のキャリア41と、広帯域に広がった自然放出光42と、光増幅器で発生した自然放出光(増幅された自然放出光:ASE光)43が存在する。
【0019】
この光スペクトル形状を変化させるための制御パラメータは、強度変調器および位相変調器の変調指数(周期信号電圧)および強度変調器のバイアス電圧となる。すなわち、パワー調整部25−1〜25−2およびパワー可変直流電源26−1〜26−2に制御信号を入力し、周期信号電圧やバイアス電圧を調整することにより、所定の光スペクトル形状が得られるように制御することができる。
【0020】
図8は、多波長光源11の第2の構成例を示す。本構成は、第1の構成例のパワー調整部25−1〜25−2の前段に、位相調整器27や逓倍器28を配置したものである。この位相調整器27で光変調器22−1,22−2に印加する周期信号の位相差を調整し、逓倍器28で周期信号周波数の逓倍数を制御することにより、所定の光スペクトル形状が得られるように制御することができる。
【0021】
図9は、周期信号の位相調整による光スペクトル形状の制御例を示す。図9(a),(b),(c) は、それぞれ位相差を0,+X,−Xに設定した場合の光スペクトル形状である。
【0022】
図10は、周期信号の周波数逓倍による光スペクトル形状の制御例を示す。図10(a),(b),(c) は、それぞれ逓倍数を1,2,3に設定した場合の光スペクトル形状である。
【0023】
図11は、多波長光源11の第3の構成例を示す。本構成は、第1の構成例の光変調部23として電界吸収型強度変調器29を用いたものである。この電界吸収型強度変調器の印加電圧に対する吸収係数(透過率)の指数関数的な特性を利用し、周期信号電圧に対して矩形の出力光強度を示し、かつバイアス点を変化させることによりデューティ比を変化させ、光スペクトル形状を変化させることができる。
【0024】
図12は、電界吸収型強度変調器を用いた場合の多波長光の光スペクトルを模式的に示す。多波長光の光スペクトルには、コヒーレント光である複数のキャリア41と、広帯域に広がった自然放出光42が存在する。
【0025】
図13は、多波長光源11の第4の構成例を示す。図において、多波長光源11は、パルス光源31と、パルス光源31の出力パルス光のスペクトル形状を制御するスペクトル形状制御手段32から構成される。スペクトル形状制御手段32では、パルス光の周波数領域でのスペクトル形状(パルス幅、チャープ量に関係)を、例えば分散減少ファイバを用いた断熱圧縮などのパルス圧縮により所定のスペクトル形状に制御する。この場合の制御パラメータは、図14に示すように、分散減少ファイバの入力側の分散値D0 と出力側の分散値D1 によって決まる圧縮率となる。
【0026】
図15は、多波長光のコヒーレント成分の光スペクトルと分波器12の透過特性との関係を示す。図において、レベル1は多波長光のコヒーレント成分であり、レベル2、レベル3の2倍が波長チャネル間隔に等しいビート周波数の雑音分となる。したがって、分波器12の透過帯域幅を多波長光の波長チャネル間隔に比べて十分に小さくすることにより、所望波長成分を切り出す際に隣接チャネルからの漏れ込みを抑圧することができる。これにより、多波長光がパルス光のような場合でも、連続光を出力することができる。
【0027】
以下、多波長光の光スペクトル形状を制御する構成において、従来の半導体レーザを用いた光送信部に求める性能仕様との整合を図るための設計について説明する。
【0028】
(変調器入力の相対強度雑音RIN(i) を設計する例)
図16は、半導体レーザの誘導放出光と自然放出光の関係を示す。半導体レーザは、閾値以下までは注入電流(固体レーザなどであれば励起光強度)の増加に伴って光出力強度は緩やかに変化し、閾値において誘導放出する状態となり、光出力は急激に増加する。自然放出光はインコヒーレント光であり、閾値における光出力強度PSEとして与えられ、誘導放出光はコヒーレント光であり、注入電流に応じて光出力強度PLAS で与えられる。
【0029】
ここで、自然放出に対する誘導放出確率比γは、
γ=10log10(PLAS/PSE)
で定義される。
【0030】
一方、自然放出光帯域をBWSE[Hz]、分波器によるスペクトルスライス前の相対強度雑音RIN[dB/Hz] 、分波器でスペクトルスライスされたi番目の波長成分の光強度をPi とすると、その相対強度雑音RIN(i) は、
RIN(i) =RIN+10log10(Pi/ΣPi)
RIN=−γ−10log10BWSE+3
と表される。
【0031】
図1の制御回路14は、多波長光の相対強度雑音RINを測定し、分波器12でスペクトルスライスされたi番目の出力光強度をPi を推定することにより、i番目の波長成分の相対強度雑音RIN(i) を算定する。そして、各波長成分の相対強度雑音RIN(i) が設計値なるように、多波長光源11のパワー調整部25、パワー可変直流電源26、位相調整器27、逓倍器28などを制御する。
【0032】
また、分波器12のi番目の出力光強度Pi は、光変調器52−1〜52−nの入力パワーモニタ機能により測定されたものを制御回路14に入力するようにしてもよい。また、制御回路14は、分波器12でスペクトルスライスされた各波長成分の相対強度雑音RIN(i) を直接測定するようにしてもよい。
【0033】
また、図2の制御回路14には、光増幅器15で増幅された多波長光が入力される。この多波長光には、図7に示すように、光増幅器15で発生した自然放出光(増幅された自然放出光:ASE光)43が存在する。
【0034】
ここで、光増幅器15の利得をg、光増幅帯域をBWAMP [Hz]、横モードの総数をm、反転分布パラメータをnsp、多波長光源11の中心光周波数をν[Hz]とすると、自然放出に対する誘導放出確率比γは、
γ=10log10〔gPLAS/{gPSE(BWSE/BWAMP)+hν(g−1)nsp ・m・BWAMP}〕
と表される。
【0035】
(変調器出力の信号対雑音比SNRを設計する例1)
図1または図2に示すコヒーレント多波長信号発生装置において、図3に示す波長多重伝送システムの受信器73の帯域をBe [Hz]、分波器72の分波帯域をBo [Hz]、信号のマーク率をM、i番目の変調器出力の信号光強度をP(i)[dBm]、この変調器出力の誘導放出光強度をPc(i) [dBm]、この変調器出力の自然放出光強度をPs(i)[dBm] 、受信器における等価的電流をIeq[A] 、信号成分のショット雑音をNs 、信号成分と自然放出光のビート雑音をNs-sp、自然放出光間のビート雑音をNsp-sp 、受信器の熱雑音をNthとすると、変調器出力の信号対雑音比SNRは、
SNR=S/(Ns+Ns-sp+Nsp-sp+Nth
Ps(i)=RIN(i)+10log10Be+Pc(i)+10log10
S=((eη/hν)Pc(i))2
Ns=2e((eη/hν)P(i))Be
Ns-sp=4(eη/hν)2Pc(i)Ps(i)Be/Bo
th=Ieq2 Be
と表される。ただし、S,Ns ,Ns-spにおけるP(i) ,Pc(i),Ps(i)はリニア表記、単位はWである。
【0036】
コヒーレント多波長信号発生装置の制御回路14は、変調器出力の信号対雑音比SNRが上式に従うように、多波長光源11のパワー調整部25、パワー可変直流電源26、位相調整器27、逓倍器28などを制御する。
【0037】
(変調器出力の信号対雑音比SNRを設計する例2)
図1または図2に示すコヒーレント多波長信号発生装置において、図3に示す波長多重伝送システムの受信器73の帯域をBe [Hz]、分波器72の分波帯域をBo [Hz]、信号のマーク率をM、i番目の変調器出力の信号光強度をP(i)[dBm]、この変調器出力の誘導放出光強度をPc(i) [dBm]、この変調器出力の自然放出光強度をPs(i) [dBm]、受信器における等価的電流をIeq[A] 、合波器におけるj番目のポートからi番目のポートに漏れ込む割合をXT(j) 、合波器におけるクロストーク信号光強度をPx(i)[dBm] 、信号成分のショット雑音をNs 、信号成分と自然放出光のビート雑音をNs-sp、信号成分とクロストーク信号光のビート雑音をNs-x 、自然放出光間のビート雑音をNsp-sp 、クロストーク信号光と自然放出光のビート雑音をNx-sp、受信器の熱雑音をNthとすると、変調器出力の信号対雑音比SNRは、
SNR=S/(Ns+Ns-sp+Nx-sp+Nsp-sp+Ns-x+Nth
Ps(i)=RIN(i)+10log10Be +Pc(i)+10log10
Px(i)=ΣP(j)・XT(j)
S=((eη/hν)Pc(i))2
Ns=2e((eη/hν)P(i))Be
Ns-sp=4(eη/hν)2Pc(i)Ps(i)Be/Bo
Nx-sp=4(eη/hν)2Px(i)Ps(i)Be/Bo
Ns-x = (eη/hν)2Pc(i)Px(i)
th=Ieq2 Be
と表される。ただし、S,Ns ,Ns-sp,Nx-sp,Ns-x におけるP(i) ,Pc (i) ,Ps (i) はリニア表記、単位はWである。
【0038】
コヒーレント多波長信号発生装置の制御回路14は、変調器出力の信号対雑音比SNRが上式に従うように、多波長光源11のパワー調整部25、パワー可変直流電源26、位相調整器27、逓倍器28などを制御する。
【0039】
【発明の効果】
以上説明したように、本発明のコヒーレント多波長信号発生装置は、多波長光源を構成する光変調器に印加する周期信号の電圧またはバイアス電圧を調整し、発生する多波長光の光スペクトル形状を制御する構成により、多波長光をスペクトルスライスして得られた各波長のコヒーレント光を変調する光変調器入力の相対強度雑音RINまたは光変調器出力の信号雑音比SNRを定量的に設計することができる。
【0040】
また、多波長光源を構成する光変調器に印加する周期信号の位相または周波数の逓倍数を制御して発生する多波長光の光スペクトル形状を制御する構成においても同様である。
【0041】
これにより、従来の半導体レーザを用いた光送信部に求める性能仕様との整合を図ることができるコヒーレント多波長信号発生装置を設計することができる。
【図面の簡単な説明】
【図1】本発明のコヒーレント多波長信号発生装置の第1の実施形態を示す図。
【図2】本発明のコヒーレント多波長信号発生装置の第2の実施形態を示す図。
【図3】本発明のコヒーレント多波長信号発生装置を用いた波長多重伝送システムの構成例を示す図。
【図4】多波長光源11の第1の構成例を示す図。
【図5】多波長光源11における多波長光発生原理を説明する図。
【図6】光変調部23として強度変調器と位相変調器を用いた場合の光スペクトル形状制御例を示す図。
【図7】光増幅器で増幅した多波長光の光スペクトルを示す図。
【図8】多波長光源11の第2の構成例を示す図。
【図9】周期信号の位相調整による光スペクトル形状の制御例を示す図。
【図10】周期信号の周波数逓倍による光スペクトル形状の制御例を示す図。
【図11】多波長光源11の第3の構成例を示す図。
【図12】電界吸収型強度変調器を用いた場合の多波長光の光スペクトルを示す図。
【図13】多波長光源11の第4の構成例を示す図。
【図14】分散減少ファイバによる断熱圧縮の原理を説明する図。
【図15】多波長光のコヒーレント成分の光スペクトルと分波器12の透過特性との関係を説明する図。
【図16】半導体レーザの誘導放出光と自然放出光の関係を説明する図。
【図17】従来の波長多重伝送システムの構成例を示す図。
【符号の説明】
10 コヒーレント多波長信号発生装置
11 多波長光源
12 分波器
13 光カプラ
14 制御回路
15 光増幅器
21 光源
22 光変調器
23 光変調部
24 周期信号発生器
25 パワー調整部
26 パワー可変直流電源
27 位相調整器
28 逓倍器
29 電界吸収型強度変調器
31 パルス光源
32 スペクトル形状制御手段
50 光送信部
51 半導体レーザ(DFB−LD)
52 光変調器
53 合波器
54 光増幅器
60 伝送路光ファイバ
70 光受信部
71 光増幅器
72 分波器
73 受信器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coherent multi-wavelength signal generator that spectrally slices coherent multi-wavelength light output from a multi-wavelength light source, modulates coherent light of each wavelength with a plurality of optical modulators, and multiplexes and outputs the result. In particular, the present invention relates to a coherent multi-wavelength signal generator that controls the optical spectrum shape of multi-wavelength light output from a multi-wavelength light source so that the input / output noise characteristics of the optical modulator become a design value.
[0002]
[Prior art]
FIG. 17 shows a configuration example of a conventional wavelength division multiplexing transmission system. In the figure, the optical transmitter 50 includes semiconductor lasers (for example, distributed feedback laser: DFB-LD) 51-1 to 51-n having different wavelengths defined by transmission specifications (for example, ITU-T G.692 recommendation). An optical modulator 52-1 to 52-n that modulates the output light of each semiconductor laser with a transmission signal, a multiplexer 53 that combines the modulated signal light and outputs wavelength multiplexed signal light, and an optical amplifier 54. An optical receiver 70 connected to the optical transmitter 50 via the transmission line optical fiber 60, an optical amplifier 71 that amplifies the transmitted wavelength multiplexed signal light, and demultiplexes the wavelength multiplexed signal light into signal light of each wavelength. And a receiver 73-1 to 73-n for receiving signal light of each wavelength.
[0003]
Here, the semiconductor laser has the property that the oscillation wavelength shifts due to changes in temperature and injection current, and the oscillation wavelength changes with time. Circuit is required. Since this wavelength stabilization needs to be performed for each semiconductor laser, the ratio of the wavelength stabilization circuit to the entire device increases as the number of wavelength multiplexing increases and the wavelength multiplexing interval increases in density. become.
[0004]
For such a configuration using a plurality of semiconductor lasers, there is a method of generating light of a plurality of wavelengths by filtering (spectral slicing) multi-wavelength light having a flat light spectrum with a demultiplexer. As a light source that generates this multi-wavelength light, there are a light source that uses amplified spontaneous emission light (ASE light) output from an optical fiber amplifier and a light source that repeatedly uses short light pulses. However, light obtained by spectrally slicing ASE light is incoherent light and is not suitable for high-density, multi-wavelength wavelength multiplex transmission.
[0005]
On the other hand, when using short optical pulses repeatedly, in order to eliminate the power level deviation of each wavelength channel after spectrum slicing, for example, optical spectrum flattening accompanying wideband spectrum generation by supercontinuum generation by nonlinear optical fiber transmission There have been proposed a method of performing optical spectrum flattening by suppressing power level deviation using an optical filter having an inverse characteristic.
[0006]
[Problems to be solved by the invention]
However, in the flattening associated with supercontinuum generation, the dispersion profile and the fiber length of the nonlinear optical fiber to be used are designed so that the spectrum of a given seed pulse becomes wide and flat. For this reason, the obtained optical spectrum shape is determined by the characteristics of the nonlinear optical fiber, and the power level deviation of each mode cannot be dynamically controlled. In addition, in flattening using an optical filter with reverse characteristics, the optical spectrum shape after transmission through the optical filter is determined by the transmission characteristics of the optical filter, and the power level deviation of each mode can be controlled dynamically as well. There wasn't.
[0007]
On the other hand, light having a single central wavelength can be modulated with an electrical signal having a specific repetition period to generate multiwavelength light with a flattened optical spectrum, and the shape of the optical spectrum (each mode). Multi-wavelength light source (optical spectrum flattening method and optical spectrum flattening device (Japanese Patent Application No. 2000-207475), multi-wavelength batch generation device (Japanese Patent Application No. 2000-207494)), which can be controlled "Application" is filed.
[0008]
The present invention generates performance of multi-wavelength light using a multi-wavelength light source of the prior application, and has a performance specification required for an optical transmitter using a conventional semiconductor laser in a configuration capable of controlling the optical spectrum shape of the multi-wavelength light. An object of the present invention is to provide a coherent multi-wavelength signal generator that can be designed to match the above.
[0009]
[Means for Solving the Problems]
The coherent multi-wavelength signal generator according to the present invention relates to the relative intensity noise RIN of the optical modulator input or the signal-to-noise ratio SNR of the optical modulator output that modulates the coherent light of each wavelength obtained by spectral slicing the multi-wavelength light. The optical spectrum shape of the multi-wavelength light is controlled so as to obtain a predetermined RIN or SNR required from the parameters of the transmission system (type of optical fiber, distance, number of relay stages) .
[0010]
The multi-wavelength light source includes a light source that generates light having a single center wavelength, and an optical modulator that generates multi-wavelength light by intensity-modulating or phase-modulating the output light with a predetermined periodic signal. adjust the voltage or bias voltage of the optical modulator, which is configured to control the optical spectral shape of the multi-wavelength light generated (claim 1).
[0011]
Moreover, multi-wavelength light source is configured to control the multi-wavelength light of the light spectrum shape which occurs by controlling the phase of the periodic signal (claim 2). Moreover, multi-wavelength light source is configured to control the multi-wavelength light of the light spectrum shape which occurs by controlling the multiplication number of the periodic signal frequency (Claim 3).
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a first embodiment of a coherent multi-wavelength signal generator according to the present invention. In the figure, a coherent multiwavelength signal generator includes a multiwavelength light source 11 of the prior application, a duplexer 12 that spectrally slices multiwavelength light into each wavelength, and an optical modulator 52 that modulates each spectral slice light with a transmission signal. -1 to 52-n, a multiplexer 53 that combines each modulated signal light and outputs a coherent multiwavelength signal, an optical amplifier 54, and a part of the multiwavelength light output from the multiwavelength light source 11. The optical spectrum of the multi-wavelength light source 11 is inputted so that the branched multi-wavelength light is inputted to the branched optical coupler 13 and the relative intensity noise RIN of the optical modulator input or the signal-to-noise ratio SNR of the optical modulator output becomes the design value. It is comprised by the control circuit 14 which performs shape control.
[0013]
FIG. 2 shows a second embodiment of the coherent multi-wavelength signal generator of the present invention. The coherent multi-wavelength signal generator of this embodiment includes an optical amplifier 15 that amplifies multi-wavelength light between the multi-wavelength light source 11 and the duplexer 12 in the configuration of the first embodiment. A part of the wavelength light is guided to the control circuit 14.
[0014]
FIG. 3 shows a configuration example of a wavelength division multiplexing transmission system using the coherent multi-wavelength signal generator of the present invention. In the figure, an optical receiver 70 connected to the coherent multi-wavelength signal generator 10 via a transmission line optical fiber 60 includes an optical amplifier 71 that amplifies the transmitted wavelength multiplexed signal light, and wavelength multiplexed signal light at each wavelength. Is composed of a demultiplexer 72 that demultiplexes the signal light and receivers 73-1 to 73-n that receive the signal light of each wavelength.
[0015]
FIG. 4 shows a first configuration example of the multi-wavelength light source 11. In the figure, a multi-wavelength light source 11 includes a light source 21 that generates light having a single center wavelength, and a plurality of light modulators 22-1 and 22-2 that perform amplitude modulation or phase modulation on output light of the light source 21. An optical modulation unit 23, a periodic signal generator 24 that generates a predetermined periodic signal, and a power adjustment unit 25-1 that adjusts a predetermined periodic signal voltage and applies the voltage to each of the optical modulators 22-1 to 22-2. ˜25-2 and power variable DC power sources 26-1 to 26-2 that apply bias voltages adjusted in power to the optical modulators 22-1 to 22-2. The optical modulation unit 23 may be configured to perform phase modulation by a path branched using, for example, a Mach-Zehnder intensity modulator and perform an amplitude modulation operation as a whole.
[0016]
In the optical modulator 22-1 of the optical modulator 23, the phase or amplitude of the time waveform of the output light (continuous light) of the light source 11 is modulated, so that the phase of each mode of the discrete light spectrum of the output light is constant. Correlation is given (FIG. 5 (a)). Further, the optical modulator 22-2 modulates the amplitude or phase of the modulated wave to shift the discrete light spectrum to the upper and lower sidebands on the frequency axis (FIG. 5 (b)). Here, by adjusting the frequency shift amount, the discrete light spectra can be overlapped to control the power level deviation of each mode to be constant (FIG. 5 (c)).
[0017]
FIG. 6 shows an example of optical spectrum shape control when an intensity modulator and a phase modulator are used as the optical modulator 23. FIGS. 6A, 6B and 6C are spectrum examples when the applied voltage (Vπ voltage conversion) of the LiNbO 3 Mach-Zehnder intensity modulator is changed, and FIGS. (f) is a spectrum example when the applied voltage (converted to Vπ voltage) of the phase modulator is changed, and FIGS. 6 (g), (h), and (i) show the applied voltages of both modulators. It is an example of the optical spectrum of the multi-wavelength light when combining each. In the optical spectrum of this multi-wavelength light, there are a plurality of carriers 41 that are coherent light and spontaneous emission light 42 that spreads over a wide band.
[0018]
FIG. 7 schematically shows an optical spectrum of the multi-wavelength light amplified by the optical amplifier. In the optical spectrum of multi-wavelength light, there are a plurality of carriers 41 that are coherent light, spontaneous emission light 42 that spreads over a wide band, and spontaneous emission light (amplified spontaneous emission light: ASE light) 43 generated by an optical amplifier. Exists.
[0019]
The control parameters for changing the optical spectrum shape are the modulation index (periodic signal voltage) of the intensity modulator and the phase modulator and the bias voltage of the intensity modulator. That is, a predetermined optical spectrum shape is obtained by inputting a control signal to the power adjusting units 25-1 to 25-2 and the power variable DC power sources 26-1 to 26-2 and adjusting the periodic signal voltage and the bias voltage. Can be controlled.
[0020]
FIG. 8 shows a second configuration example of the multi-wavelength light source 11. In this configuration, a phase adjuster 27 and a multiplier 28 are arranged in front of the power adjustment units 25-1 to 25-2 of the first configuration example. The phase adjuster 27 adjusts the phase difference of the periodic signals applied to the optical modulators 22-1 and 22-2, and the multiplier 28 controls the multiplication number of the periodic signal frequency, whereby a predetermined optical spectrum shape is obtained. It can be controlled to obtain.
[0021]
FIG. 9 shows an example of controlling the optical spectrum shape by adjusting the phase of the periodic signal. FIGS. 9A, 9B, and 9C show optical spectrum shapes when the phase differences are set to 0, + X, and −X, respectively.
[0022]
FIG. 10 shows an example of control of the optical spectrum shape by frequency multiplication of the periodic signal. 10A, 10B, and 10C show the optical spectrum shapes when the multiplication numbers are set to 1, 2, and 3, respectively.
[0023]
FIG. 11 shows a third configuration example of the multi-wavelength light source 11. In this configuration, an electroabsorption-type intensity modulator 29 is used as the light modulation unit 23 of the first configuration example. Utilizing the exponential characteristics of the absorption coefficient (transmittance) with respect to the applied voltage of this electroabsorption-type intensity modulator, the output light intensity of a rectangle is shown with respect to the periodic signal voltage, and the duty is changed by changing the bias point. The ratio can be changed and the optical spectrum shape can be changed.
[0024]
FIG. 12 schematically shows an optical spectrum of multi-wavelength light when an electroabsorption intensity modulator is used. In the optical spectrum of multi-wavelength light, there are a plurality of carriers 41 that are coherent light and spontaneous emission light 42 that spreads over a wide band.
[0025]
FIG. 13 shows a fourth configuration example of the multi-wavelength light source 11. In the figure, the multi-wavelength light source 11 includes a pulse light source 31 and a spectrum shape control means 32 that controls the spectrum shape of the output pulse light of the pulse light source 31. The spectrum shape control means 32 controls the spectrum shape (related to the pulse width and chirp amount) in the frequency region of the pulsed light to a predetermined spectrum shape by pulse compression such as adiabatic compression using a dispersion reducing fiber, for example. As shown in FIG. 14, the control parameter in this case is a compression ratio determined by the dispersion value D 0 on the input side and the dispersion value D 1 on the output side of the dispersion reducing fiber.
[0026]
FIG. 15 shows the relationship between the optical spectrum of the coherent component of the multi-wavelength light and the transmission characteristics of the duplexer 12. In the figure, level 1 is a coherent component of multi-wavelength light, and twice the level 2 and level 3 is a noise component having a beat frequency equal to the wavelength channel interval. Therefore, by making the transmission bandwidth of the demultiplexer 12 sufficiently smaller than the wavelength channel spacing of multi-wavelength light, leakage from adjacent channels can be suppressed when a desired wavelength component is cut out. As a result, continuous light can be output even when the multi-wavelength light is pulsed light.
[0027]
Hereinafter, in the configuration for controlling the optical spectrum shape of multi-wavelength light, a design for matching with performance specifications required for an optical transmission unit using a conventional semiconductor laser will be described.
[0028]
(Example of designing the modulator input relative intensity noise RIN (i))
FIG. 16 shows the relationship between stimulated emission light and spontaneous emission light of a semiconductor laser. In the semiconductor laser, the light output intensity gradually changes as the injection current (pumping light intensity in the case of a solid-state laser or the like) increases until the threshold is lower than the threshold, and the light emission increases rapidly at the threshold. . Spontaneous emission light is incoherent light, provided as the optical output intensity P SE at the threshold, stimulated emission light is coherent light, is provided in the optical output intensity P LAS according to the injection current.
[0029]
Here, the stimulated emission probability ratio γ to the spontaneous emission is
γ = 10log 10 (P LAS / P SE )
Defined by
[0030]
On the other hand, the spontaneous emission light band is BW SE [Hz], the relative intensity noise RIN [dB / Hz] before the spectrum slice by the demultiplexer, and the light intensity of the i-th wavelength component spectrum-sliced by the demultiplexer is Pi. Then, the relative intensity noise RIN (i) is
RIN (i) = RIN + 10log 10 (Pi / ΣPi)
RIN = -γ-10log 10 BW SE +3
It is expressed.
[0031]
The control circuit 14 in FIG. 1 measures the relative intensity noise RIN of the multi-wavelength light and estimates the i-th output light intensity spectrum-sliced by the demultiplexer 12 to give Pi, thereby comparing the i-th wavelength component relative. Intensity noise RIN (i) is calculated. Then, the power adjustment unit 25, the power variable DC power source 26, the phase adjuster 27, the multiplier 28, and the like of the multi-wavelength light source 11 are controlled so that the relative intensity noise RIN (i) of each wavelength component becomes a design value.
[0032]
The i-th output light intensity Pi of the branching filter 12 may be input to the control circuit 14 as measured by the input power monitoring function of the optical modulators 52-1 to 52-n. In addition, the control circuit 14 may directly measure the relative intensity noise RIN (i) of each wavelength component spectrally sliced by the duplexer 12.
[0033]
Further, the multi-wavelength light amplified by the optical amplifier 15 is input to the control circuit 14 of FIG. As shown in FIG. 7, the multi-wavelength light includes spontaneous emission light (amplified spontaneous emission light: ASE light) 43 generated by the optical amplifier 15.
[0034]
Here, when the gain of the optical amplifier 15 is g, the optical amplification band is BW AMP [Hz], the total number of transverse modes is m, the inversion distribution parameter is nsp, and the center optical frequency of the multi-wavelength light source 11 is ν [Hz]. The stimulated emission probability ratio γ for spontaneous emission is
γ = 10 log 10 [gP LAS / {gP SE (BW SE / BW AMP ) + hν (g−1) nsp · m · BW AMP }]
It is expressed.
[0035]
(Example 1 of designing signal-to-noise ratio SNR of modulator output)
In the coherent multiwavelength signal generator shown in FIG. 1 or FIG. 2, the band of the receiver 73 of the wavelength multiplexing transmission system shown in FIG. 3 is Be [Hz], the demultiplexing band of the demultiplexer 72 is Bo [Hz], and the signal , The signal light intensity of the i-th modulator output is P (i) [dBm], the stimulated emission light intensity of this modulator output is Pc (i) [dBm], and the spontaneous emission of this modulator output The light intensity is Ps (i) [dBm], the equivalent current at the receiver is Ieq [A], the shot noise of the signal component is Ns, the beat noise of the signal component and the spontaneous emission light is Ns-sp, and between the spontaneous emission light beat noise and Nsp-sp, the thermal noise of the receiver and N th, the signal-to-noise ratio SNR of the modulator output,
SNR = S / (Ns + Ns -sp + Nsp-sp + N th)
Ps (i) = RIN (i) +10 log 10 Be + Pc (i) +10 log 10 M
S = ((eη / hν) Pc (i)) 2
Ns = 2e ((eη / hν) P (i)) Be
Ns-sp = 4 (eη / hν) 2 Pc (i) Ps (i) Be / Bo
N th = Ieq 2 Be
It is expressed. However, P (i), Pc (i), and Ps (i) in S, Ns, and Ns-sp are linear notation and the unit is W.
[0036]
The control circuit 14 of the coherent multi-wavelength signal generator is configured such that the power adjustment unit 25, the power variable DC power supply 26, the phase adjuster 27, and the multiplication of the multi-wavelength light source 11 so that the signal-to-noise ratio SNR of the modulator output follows the above equation. The device 28 and the like are controlled.
[0037]
(Example 2 of designing signal-to-noise ratio SNR of modulator output)
In the coherent multiwavelength signal generator shown in FIG. 1 or FIG. 2, the band of the receiver 73 of the wavelength multiplexing transmission system shown in FIG. 3 is Be [Hz], the demultiplexing band of the demultiplexer 72 is Bo [Hz], and the signal , The signal light intensity of the i-th modulator output is P (i) [dBm], the stimulated emission light intensity of this modulator output is Pc (i) [dBm], and the spontaneous emission of this modulator output The optical intensity is Ps (i) [dBm], the equivalent current at the receiver is Ieq [A], the rate of leakage from the jth port to the ith port in the multiplexer is XT (j), Crosstalk signal light intensity is Px (i) [dBm], shot noise of signal component is Ns, beat noise of signal component and spontaneous emission light is Ns-sp, beat noise of signal component and crosstalk signal light is Ns-x , Beat noise between spontaneously emitted light, Nsp-sp, beat noise between crosstalk signal light and spontaneously emitted light, Nx-sp, receiver thermal noise When N th, the signal-to-noise ratio SNR of the modulator output,
SNR = S / (Ns + Ns -sp + Nx-sp + Nsp-sp + Ns-x + N th)
Ps (i) = RIN (i) +10 log 10 Be + Pc (i) +10 log 10 M
Px (i) = ΣP (j) · XT (j)
S = ((eη / hν) Pc (i)) 2
Ns = 2e ((eη / hν) P (i)) Be
Ns-sp = 4 (eη / hν) 2 Pc (i) Ps (i) Be / Bo
Nx-sp = 4 (eη / hν) 2 Px (i) Ps (i) Be / Bo
Ns-x = (eη / hν) 2 Pc (i) Px (i)
N th = Ieq 2 Be
It is expressed. However, P (i), Pc (i), and Ps (i) in S, Ns, Ns-sp, Nx-sp, and Ns-x are linear notations and the unit is W.
[0038]
The control circuit 14 of the coherent multi-wavelength signal generator is configured such that the power adjustment unit 25, the power variable DC power supply 26, the phase adjuster 27, and the multiplication of the multi-wavelength light source 11 so that the signal-to-noise ratio SNR of the modulator output follows the above equation. The device 28 and the like are controlled.
[0039]
【The invention's effect】
As described above, the coherent multi-wavelength signal generator of the present invention adjusts the voltage or bias voltage of the periodic signal applied to the optical modulator constituting the multi-wavelength light source, and changes the optical spectrum shape of the generated multi-wavelength light. Quantitatively design the relative intensity noise RIN of the optical modulator input or the signal-to-noise ratio SNR of the optical modulator output that modulates the coherent light of each wavelength obtained by spectrum slicing multi-wavelength light, depending on the configuration to be controlled Can do.
[0040]
The same applies to the configuration for controlling the optical spectrum shape of the multi-wavelength light generated by controlling the phase or frequency multiplication number of the periodic signal applied to the optical modulator constituting the multi-wavelength light source.
[0041]
Thereby, it is possible to design a coherent multi-wavelength signal generator capable of matching with performance specifications required for an optical transmitter using a conventional semiconductor laser.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of a coherent multi-wavelength signal generator according to the present invention.
FIG. 2 is a diagram showing a second embodiment of the coherent multi-wavelength signal generator according to the present invention.
FIG. 3 is a diagram showing a configuration example of a wavelength division multiplexing transmission system using the coherent multi-wavelength signal generator of the present invention.
4 is a diagram showing a first configuration example of a multi-wavelength light source 11. FIG.
FIG. 5 is a diagram for explaining the principle of multiwavelength light generation in the multiwavelength light source 11;
6 is a diagram showing an example of optical spectrum shape control in the case where an intensity modulator and a phase modulator are used as the optical modulation unit 23. FIG.
FIG. 7 is a diagram showing an optical spectrum of multi-wavelength light amplified by an optical amplifier.
FIG. 8 is a diagram showing a second configuration example of the multi-wavelength light source 11;
FIG. 9 is a diagram illustrating an example of controlling the shape of an optical spectrum by adjusting the phase of a periodic signal.
FIG. 10 is a diagram illustrating an example of control of an optical spectrum shape by frequency multiplication of a periodic signal.
11 is a diagram showing a third configuration example of the multi-wavelength light source 11. FIG.
FIG. 12 is a diagram showing an optical spectrum of multiwavelength light when an electroabsorption intensity modulator is used.
13 is a diagram showing a fourth configuration example of the multi-wavelength light source 11. FIG.
FIG. 14 is a diagram for explaining the principle of adiabatic compression using a dispersion-reducing fiber.
15 is a view for explaining the relationship between the optical spectrum of coherent components of multi-wavelength light and the transmission characteristics of the duplexer 12. FIG.
FIG. 16 is a diagram for explaining the relationship between stimulated emission light and spontaneous emission light of a semiconductor laser.
FIG. 17 is a diagram illustrating a configuration example of a conventional wavelength division multiplexing transmission system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Coherent multiwavelength signal generator 11 Multiwavelength light source 12 Demultiplexer 13 Optical coupler 14 Control circuit 15 Optical amplifier 21 Light source 22 Optical modulator 23 Optical modulator 24 Periodic signal generator 25 Power adjuster 26 Power variable direct-current power supply 27 Phase Adjuster 28 Multiplier 29 Electroabsorption-type intensity modulator 31 Pulse light source 32 Spectral shape control means 50 Optical transmitter 51 Semiconductor laser (DFB-LD)
52 optical modulator 53 multiplexer 54 optical amplifier 60 transmission line optical fiber 70 optical receiver 71 optical amplifier 72 duplexer 73 receiver

Claims (6)

複数の波長成分を有するコヒーレントな多波長光を発生する多波長光源と、
前記多波長光を各波長に分離する分波器と、
前記分波器で分離された各波長のコヒーレント光を送信信号により変調する光変調器と、
前記光変調器で変調された各変調信号光を合波してコヒーレント多波長信号を出力する合波器と
を備えたコヒーレント多波長信号発生装置において、
前記多波長光源は、単一の中心波長を有する光を発生する光源と、その出力光を所定の周期信号により強度変調または位相変調して多波長光を発生させる光変調器とを備え、
前記多波長光源から出力される多波長光の相対強度雑音をRIN[dB/Hz] を測定し、前記分波器でスペクトルスライスされたi番目の波長成分(i番目の変調器入力)の光強度をPi を推定または前記分波器の出力から測定し、自然放出に対する誘導放出確率比をγ[dB]、誘導放出光強度をPLAS [dBm] 、自然放出光強度をPSE[dBm] 、自然放出光帯域をBWSE[Hz]とすると、前記i番目の波長成分の光強度P i の相対強度雑音RIN(i) が、 RIN(i) =RIN+10log10(Pi/ΣPi)
RIN=−γ−10log10BWSE+3
γ=10log10(PLAS/PSE)
で示される設計値になるように、前記周期信号の電圧または前記光変調器のバイアス電圧の少なくとも一方を調整し、前記多波長光源から出力される多波長光の光スペクトル形状を制御する制御回路を備えた
ことを特徴とするコヒーレント多波長信号発生装置。
A multi-wavelength light source for generating coherent multi-wavelength light having a plurality of wavelength components;
A duplexer that separates the multi-wavelength light into wavelengths;
An optical modulator that modulates the coherent light of each wavelength separated by the duplexer with a transmission signal;
A coherent multi-wavelength signal generator comprising: a multiplexer that multiplexes each modulated signal light modulated by the optical modulator and outputs a coherent multi-wavelength signal;
The multi-wavelength light source includes a light source that generates light having a single center wavelength, and an optical modulator that generates multi-wavelength light by intensity-modulating or phase-modulating the output light with a predetermined periodic signal,
RIN [dB / Hz] is measured for the relative intensity noise of the multi-wavelength light output from the multi-wavelength light source, and the light of the i-th wavelength component (i-th modulator input) spectrally sliced by the duplexer Intensity Pi is estimated or measured from the output of the duplexer, the stimulated emission probability ratio for spontaneous emission is γ [dB], the stimulated emission intensity is P LAS [dBm], and the spontaneous emission intensity is P SE [dBm]. If the spontaneous emission band is BW SE [Hz], the relative intensity noise RIN (i) of the light intensity P i of the i-th wavelength component is RIN (i) = RIN + 10 log 10 (Pi / ΣPi)
RIN = -γ-10log 10 BW SE +3
γ = 10log 10 (P LAS / P SE )
A control circuit that adjusts at least one of the voltage of the periodic signal or the bias voltage of the optical modulator to control the optical spectrum shape of the multi-wavelength light output from the multi-wavelength light source so that the design value shown in FIG. coherent WDM signal generating apparatus characterized by comprising a.
複数の波長成分を有するコヒーレントな多波長光を発生する多波長光源と、
前記多波長光を各波長に分離する分波器と、
前記分波器で分離された各波長のコヒーレント光を送信信号により変調する光変調器と、
前記光変調器で変調された各変調信号光を合波してコヒーレント多波長信号を出力する合波器と
を備えたコヒーレント多波長信号発生装置において、
前記多波長光源は、単一の中心波長を有する光を発生する光源と、その出力光を所定の周期信号により強度変調または位相変調して多波長光を発生させる光変調器とを備え、
前記多波長光源から出力される多波長光の相対強度雑音をRIN[dB/Hz] を測定し、前記分波器でスペクトルスライスされたi番目の波長成分(i番目の変調器入力)の光強度をPi を推定または前記分波器の出力から測定し、自然放出に対する誘導放出確率比をγ[dB]、誘導放出光強度をPLAS [dBm] 、自然放出光強度をPSE[dBm] 、自然放出光帯域をBWSE[Hz]とすると、前記i番目の波長成分の光強度P i の相対強度雑音RIN(i) が、 RIN(i) =RIN+10log10(Pi/ΣPi)
RIN=−γ−10log10BWSE+3
γ=10log10(PLAS/PSE)
で示される設計値になるように、前記周期信号の電圧または前記光変調器のバイアス電圧の少なくとも一方を調整するとともに、前記周期信号の位相を制御し、前記多波長光源から出力される多波長光の光スペクトル形状を制御する制御回路を備えた
ことを特徴とするコヒーレント多波長信号発生装置。
A multi-wavelength light source for generating coherent multi-wavelength light having a plurality of wavelength components;
A duplexer that separates the multi-wavelength light into wavelengths;
An optical modulator that modulates the coherent light of each wavelength separated by the duplexer with a transmission signal;
A coherent multi-wavelength signal generator comprising: a multiplexer that multiplexes each modulated signal light modulated by the optical modulator and outputs a coherent multi-wavelength signal;
The multi-wavelength light source includes a light source that generates light having a single center wavelength, and an optical modulator that generates multi-wavelength light by intensity-modulating or phase-modulating the output light with a predetermined periodic signal,
RIN [dB / Hz] is measured for the relative intensity noise of the multi-wavelength light output from the multi-wavelength light source, and the light of the i-th wavelength component (i-th modulator input) spectrally sliced by the duplexer Intensity Pi is estimated or measured from the output of the duplexer, the stimulated emission probability ratio for spontaneous emission is γ [dB], the stimulated emission intensity is P LAS [dBm], and the spontaneous emission intensity is P SE [dBm]. If the spontaneous emission band is BW SE [Hz], the relative intensity noise RIN (i) of the light intensity P i of the i-th wavelength component is RIN (i) = RIN + 10 log 10 (Pi / ΣPi)
RIN = -γ-10log 10 BW SE +3
γ = 10log 10 (P LAS / P SE )
The wavelength of the periodic signal or the bias voltage of the optical modulator is adjusted to control the phase of the periodic signal so that the design value is represented by the multiple wavelength output from the multiple wavelength light source. A coherent multi-wavelength signal generator comprising a control circuit for controlling the shape of an optical spectrum of light.
複数の波長成分を有するコヒーレントな多波長光を発生する多波長光源と、
前記多波長光を各波長に分離する分波器と、
前記分波器で分離された各波長のコヒーレント光を送信信号により変調する光変調器と、
前記光変調器で変調された各変調信号光を合波してコヒーレント多波長信号を出力する合波器と
を備えたコヒーレント多波長信号発生装置において、
前記多波長光源は、単一の中心波長を有する光を発生する光源と、その出力光を所定の周期信号により強度変調または位相変調して多波長光を発生させる光変調器とを備え、
前記多波長光源から出力される多波長光の相対強度雑音をRIN[dB/Hz] を測定し、前記分波器でスペクトルスライスされたi番目の波長成分(i番目の変調器入力)の光強度をPi を推定または前記分波器の出力から測定し、自然放出に対する誘導放出確率比をγ[dB]、誘導放出光強度をPLAS [dBm] 、自然放出光強度をPSE[dBm] 、自然放出光帯域をBWSE[Hz]とすると、前記i番目の波長成分の光強度P i の相対強度雑音RIN(i) が、 RIN(i) =RIN+10log10(Pi/ΣPi)
RIN=−γ−10log10BWSE+3
γ=10log10(PLAS/PSE)
で示される設計値になるように、前記周期信号の電圧または前記光変調器のバイアス電圧の少なくとも一方を調整するとともに、前記周期信号周波数の逓倍数を制御し、前記多波長光源から出力される多波長光の光スペクトル形状を制御する制御回路を備えた
ことを特徴とするコヒーレント多波長信号発生装置。
A multi-wavelength light source for generating coherent multi-wavelength light having a plurality of wavelength components;
A duplexer that separates the multi-wavelength light into wavelengths;
An optical modulator that modulates the coherent light of each wavelength separated by the duplexer with a transmission signal;
A coherent multi-wavelength signal generator comprising: a multiplexer that multiplexes each modulated signal light modulated by the optical modulator and outputs a coherent multi-wavelength signal;
The multi-wavelength light source includes a light source that generates light having a single center wavelength, and an optical modulator that generates multi-wavelength light by intensity-modulating or phase-modulating the output light with a predetermined periodic signal,
RIN [dB / Hz] is measured for the relative intensity noise of the multi-wavelength light output from the multi-wavelength light source, and the light of the i-th wavelength component (i-th modulator input) spectrally sliced by the duplexer Intensity Pi is estimated or measured from the output of the duplexer, the stimulated emission probability ratio for spontaneous emission is γ [dB], the stimulated emission intensity is P LAS [dBm], and the spontaneous emission intensity is P SE [dBm]. If the spontaneous emission band is BW SE [Hz], the relative intensity noise RIN (i) of the light intensity P i of the i-th wavelength component is RIN (i) = RIN + 10 log 10 (Pi / ΣPi)
RIN = -γ-10log 10 BW SE +3
γ = 10log 10 (P LAS / P SE )
And adjusting at least one of the voltage of the periodic signal or the bias voltage of the optical modulator so as to be a design value represented by the following, and controlling the multiplication number of the periodic signal frequency to output from the multi-wavelength light source A coherent multi-wavelength signal generator comprising a control circuit for controlling the optical spectrum shape of multi-wavelength light.
前記多波長光源から出力された前記多波長光を増幅して前記分波器に入力する光増幅器を含む請求項1〜請求項3のいずれかに記載のコヒーレント多波長信号発生装置において、
前記制御回路は、前記光増幅器の利得をg、光増幅帯域をBWAMP [Hz]、横モード総数をm、反転分布パラメータをnsp、前記多波長光源の中心光周波数をν[Hz]としたときに、前記分波器でスペクトルスライスされたi番目の波長成分(i番目の変調器入力)の相対強度雑音RIN(i) が、
RIN(i) =RIN+10log10(Pi/ΣPi)
RIN=−γ−10log10BWSE+3
γ=10log10〔gPLAS/{gPSE(BWSE/BWAMP)+hν
・(g−1)nsp・m・BWAMP}〕
で示される設計値になるように、前記多波長光源から出力される多波長光の光スペクトル形状を制御する構成である
ことを特徴とするコヒーレント多波長信号発生装置。
The coherent multiwavelength signal generator according to any one of claims 1 to 3, further comprising an optical amplifier that amplifies the multiwavelength light output from the multiwavelength light source and inputs the amplified light to the duplexer.
The control circuit has a gain of the optical amplifier as g, an optical amplification band as BW AMP [Hz], a total number of transverse modes as m, an inversion distribution parameter as n sp , and a center optical frequency of the multi-wavelength light source as ν [Hz]. When the relative intensity noise RIN (i) of the i-th wavelength component (i-th modulator input) spectrally sliced by the duplexer is
RIN (i) = RIN + 10log 10 (Pi / ΣPi)
RIN = -γ-10log 10 BW SE +3
γ = 10log 10 [gP LAS / {gP SE (BW SE / BW AMP ) + hν
· (G-1) n sp · m · BW AMP} ]
The coherent multi-wavelength signal generator is configured to control the optical spectrum shape of the multi-wavelength light output from the multi-wavelength light source so as to have a design value represented by the following .
請求項1〜請求項4のいずれかに記載のコヒーレント多波長信号発生装置において、
前記制御回路は、受信器の帯域をBe [Hz]、受信器前段の分波器の分波帯域をBo [Hz]、信号のマーク率をM、i番目の変調器出力の信号光強度をP(i)[dBm]、この変調器出力の誘導放出光強度をPc(i) [dBm]、この変調器出力の自然放出光強度をPs(i) [dBm]、前記受信器における等価的電流をIeq[A] 、信号成分のショット雑音をNs 、信号成分と自然放出光のビート雑音をNs-sp、自然放出光間のビート雑音をNsp-sp 、前記受信器の熱雑音をNthとすると、前記変調器出力の信号対雑音比SNRが、
SNR=S/(Ns+Ns-sp+Nsp-sp+Nth
Ps(i)=RIN(i)+10log10Be+Pc(i)+10log10
S=((eη/hν)Pc(i))2
Ns=2e((eη/hν)P(i))Be
Ns-sp=4(eη/hν)2Pc(i)Ps(i)Be/Bo
th=Ieq2 Be
(ただし、S,Ns,Ns-spにおけるP(i),Pc(i),Ps(i)は
リニア表記、単位はW)
で示される設計値になるように、前記多波長光源から出力される多波長光の光スペクトル形状を制御する構成である
ことを特徴とするコヒーレント多波長信号発生装置。
In the coherent multiwavelength signal generator according to any one of claims 1 to 4 ,
The control circuit sets the receiver band to Be [Hz], the demultiplexer band of the pre-receiver duplexer to Bo [Hz], the signal mark ratio to M, and the signal light intensity of the i-th modulator output. P (i) [dBm], the stimulated emission light intensity of this modulator output is Pc (i) [dBm], the spontaneous emission light intensity of this modulator output is Ps (i) [dBm], and the equivalent in the receiver The current is Ieq [A], the shot noise of the signal component is Ns, the beat noise of the signal component and the spontaneous emission light is Ns-sp, the beat noise between the spontaneous emission light is Nsp-sp, and the thermal noise of the receiver is N th Then, the signal-to-noise ratio SNR of the modulator output is
SNR = S / (Ns + Ns -sp + Nsp-sp + N th)
Ps (i) = RIN (i) +10 log 10 Be + Pc (i) +10 log 10 M
S = ((eη / hν) Pc (i)) 2
Ns = 2e ((eη / hν) P (i)) Be
Ns-sp = 4 (eη / hν) 2 Pc (i) Ps (i) Be / Bo
N th = Ieq 2 Be
(However, P (i), Pc (i), and Ps (i) in S, Ns, and Ns-sp are linear notation and the unit is W)
The coherent multi-wavelength signal generator is configured to control the optical spectrum shape of the multi-wavelength light output from the multi-wavelength light source so as to have a design value represented by the following .
請求項1〜請求項4のいずれかに記載のコヒーレント多波長信号発生装置において、
前記制御回路は、受信器の帯域をBe [Hz]、受信器前段の分波器の分波帯域をBo [Hz]、信号のマーク率をM、i番目の変調器出力の信号光強度をP(i)[dBm]、この変調器出力の誘導放出光強度をPc(i) [dBm]、この変調器出力の自然放出光強度をPs(i)[dBm] 、前記受信器における等価的電流をIeq[A] 、前記合波器におけるj番目のポートからi番目のポートに漏れ込む割合をXT(j) 、前記合波器におけるクロストーク信号光強度をPx (i)[dBm]、信号成分のショット雑音をNs 、信号成分と自然放出光のビート雑音をNs-sp、信号成分とクロストーク信号光のビート雑音をNs-x 、自然放出光間のビート雑音をNsp-sp 、クロストーク信号光と自然放出光のビート雑音をNx-sp、前記受信器の熱雑音をNthとすると、前記変調器出力の信号対雑音比SNRが、
SNR=S/(Ns+Ns-sp+Nx-sp+Nsp-sp+Ns-x+Nth
Ps(i)=RIN(i)+10log10Be +Pc(i)+10log10
Px(i)=ΣP(j)・XT(j)
S=((eη/hν)Pc(i))2
Ns=2e((eη/hν)P(i))Be
Ns-sp=4(eη/hν)2Pc(i)Ps(i)Be/Bo
Nx-sp=4(eη/hν)2Px(i)Ps(i)Be/Bo
Ns-x = (eη/hν)2Pc(i)Px(i)
th=Ieq2 Be
(ただし、S,Ns ,Ns-sp,Nx-sp,Ns-x におけるP(i) ,Pc(i),
Ps(i)はリニア表記、単位はW)
で示される設計値になるように、前記多波長光源から出力される多波長光の光スペクトル形状を制御する構成である
ことを特徴とするコヒーレント多波長信号発生装置。
In the coherent multiwavelength signal generator according to any one of claims 1 to 4 ,
The control circuit sets the receiver band to Be [Hz], the demultiplexer band of the pre-receiver duplexer to Bo [Hz], the signal mark ratio to M, and the signal light intensity of the i-th modulator output. P (i) [dBm], the stimulated emission light intensity of this modulator output is Pc (i) [dBm], the spontaneous emission light intensity of this modulator output is Ps (i) [dBm], and the equivalent in the receiver The current is Ieq [A], the rate of leakage from the j-th port to the i-th port in the multiplexer is XT (j), the crosstalk signal light intensity in the multiplexer is Px (i) [dBm], Shot noise of signal component is Ns, beat noise of signal component and spontaneous emission light is Ns-sp, beat noise of signal component and crosstalk signal light is Ns-x, beat noise between spontaneous emission light is Nsp-sp, cross When the beat noise of the talk signal light and spontaneous emission light is Nx-sp and the thermal noise of the receiver is N th , the signal-to-noise ratio SNR of the modulator output is
SNR = S / (Ns + Ns -sp + Nx-sp + Nsp-sp + Ns-x + N th)
Ps (i) = RIN (i) +10 log 10 Be + Pc (i) +10 log 10 M
Px (i) = ΣP (j) · XT (j)
S = ((eη / hν) Pc (i)) 2
Ns = 2e ((eη / hν) P (i)) Be
Ns-sp = 4 (eη / hν) 2 Pc (i) Ps (i) Be / Bo
Nx-sp = 4 (eη / hν) 2 Px (i) Ps (i) Be / Bo
Ns-x = (eη / hν) 2 Pc (i) Px (i)
N th = Ieq 2 Be
(However, P (i), Pc (i) in S, Ns, Ns-sp, Nx-sp, Ns-x,
Ps (i) is linear notation, unit is W)
The coherent multi-wavelength signal generator is configured to control the optical spectrum shape of the multi-wavelength light output from the multi-wavelength light source so as to have a design value represented by the following .
JP2000218424A 2000-07-07 2000-07-19 Coherent multiwavelength signal generator Expired - Fee Related JP3694638B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2000218424A JP3694638B2 (en) 2000-07-19 2000-07-19 Coherent multiwavelength signal generator
CA002487187A CA2487187C (en) 2000-07-07 2001-07-05 Multi-wavelength generating method and apparatus based on flattening of optical spectrum
CA002352680A CA2352680C (en) 2000-07-07 2001-07-05 Multi-wavelength generating method and apparatus based on flattening of optical spectrum
CA002487181A CA2487181C (en) 2000-07-07 2001-07-05 Multi-wavelength generating method and apparatus based on flattening of optical spectrum
CA2487177A CA2487177C (en) 2000-07-07 2001-07-05 Multi-wavelength generating method and apparatus based on flattening of optical spectrum
US09/900,613 US6831774B2 (en) 2000-07-07 2001-07-06 Multi-wavelength generating method and apparatus based on flattening of optical spectrum
US10/655,675 US6924924B2 (en) 2000-07-07 2003-09-04 Multi-wavelength generating method and apparatus based on flattening of optical spectrum
US10/826,571 US7068412B2 (en) 2000-07-07 2004-04-16 Multi-wavelength generating method and apparatus based on flattening of optical spectrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000218424A JP3694638B2 (en) 2000-07-19 2000-07-19 Coherent multiwavelength signal generator

Publications (2)

Publication Number Publication Date
JP2002031786A JP2002031786A (en) 2002-01-31
JP3694638B2 true JP3694638B2 (en) 2005-09-14

Family

ID=18713374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000218424A Expired - Fee Related JP3694638B2 (en) 2000-07-07 2000-07-19 Coherent multiwavelength signal generator

Country Status (1)

Country Link
JP (1) JP3694638B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8401390B2 (en) 2007-03-06 2013-03-19 Nec Corporation Optical connecting apparatus
JP4963462B2 (en) * 2007-11-05 2012-06-27 日本電信電話株式会社 Multi-wavelength light source device
JP4889661B2 (en) * 2008-01-29 2012-03-07 日本電信電話株式会社 Optical multicarrier generator and optical multicarrier transmitter using the same
JP5476697B2 (en) * 2008-09-26 2014-04-23 富士通株式会社 Optical signal transmitter
JP4908483B2 (en) * 2008-11-20 2012-04-04 日本電信電話株式会社 Signal transmitting apparatus and signal transmitting method
JP5122499B2 (en) * 2009-01-23 2013-01-16 日本電信電話株式会社 Optical signal transmission method, optical communication system, optical transmitter and optical receiver
JP5303323B2 (en) * 2009-03-16 2013-10-02 日本電信電話株式会社 Variable optical multicarrier generation apparatus, variable optical multicarrier transmission apparatus, and variable multicarrier generation method
JP5411538B2 (en) * 2009-03-16 2014-02-12 日本電信電話株式会社 Optical multicarrier generation apparatus and method, and optical multicarrier transmission apparatus using optical multicarrier generation apparatus
JP5773328B2 (en) * 2011-02-10 2015-09-02 株式会社ニコン Method for adjusting electro-optic modulator in laser device, and laser device
JP5945241B2 (en) * 2013-04-17 2016-07-05 日本電信電話株式会社 Optical orthogonal frequency division division signal generator

Also Published As

Publication number Publication date
JP2002031786A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
US6831774B2 (en) Multi-wavelength generating method and apparatus based on flattening of optical spectrum
US7127168B2 (en) Multi-wavelength optical modulation circuit and wavelength-division multiplexed optical signal transmitter
KR100575953B1 (en) Optical signal transmitter with reflective gain clamped semiconductor optical amplifier and optical communicating system using thereof
US6654561B1 (en) Method and apparatus for measuring optical signal-to-noise ratio, and pre-emphasis method and optical communication system each utilizing the method
US7068412B2 (en) Multi-wavelength generating method and apparatus based on flattening of optical spectrum
US20120219285A1 (en) In-band optical signal to noise ratio monitoring technique
JP3694638B2 (en) Coherent multiwavelength signal generator
US20030165286A1 (en) Wavelength division multiplex transmission system
US6607311B1 (en) Method and system transmitting optical signals generated by multi-line sources via WDM optical network
Shea et al. Architecture to integrate multiple PONs with long reach DWDM backhaul
US11309973B2 (en) Optical burst monitoring
JP2002296629A (en) Method for converting wavelength using optical four wave mixing and considering noise, wavelength converter and light source
JP2002082323A (en) Multiple wavelength batch generator
JP2004279589A (en) Method and device for developing multiple wavelength light source
US7848652B2 (en) Wavelength division multiplexing passive optical network system and method of generating optical source
US6826207B2 (en) Multi-wavelength laser source based on two optical laser beat signal and method
US7660535B2 (en) Optical transmission apparatus
US20120263472A1 (en) System and Method for Mitigating Four-Wave-Mixing Effects
US6211981B1 (en) Optical wavelength multiplex transmission system using repeaters
JP2001298424A (en) Multi-wavelength optical signal generator
JP2000258809A (en) Multi-wavelength pulsed light generating system
US20090016741A1 (en) Optical communication
Karasek et al. 10 Gb/s and 40 Gb/s multi-wavelength conversion based on nonlinear effects in HNLF
CA2487177A1 (en) Multi-wavelength generating method and apparatus based on flattening of optical spectrum
Maeda et al. Wavelength Reuse in WDM-PON Using Gain Saturation of Semiconductor Optical Amplifier Assisted by Spectral Trimming Through Fabry-Perot Etalon

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees