[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3693373B2 - Isopropylmalonaldehyde derivative - Google Patents

Isopropylmalonaldehyde derivative Download PDF

Info

Publication number
JP3693373B2
JP3693373B2 JP02971495A JP2971495A JP3693373B2 JP 3693373 B2 JP3693373 B2 JP 3693373B2 JP 02971495 A JP02971495 A JP 02971495A JP 2971495 A JP2971495 A JP 2971495A JP 3693373 B2 JP3693373 B2 JP 3693373B2
Authority
JP
Japan
Prior art keywords
isopropyl
group
derivative
polymer
isopropylmalonaldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02971495A
Other languages
Japanese (ja)
Other versions
JPH08217715A (en
Inventor
黒田  靖
正樹 伏見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP02971495A priority Critical patent/JP3693373B2/en
Publication of JPH08217715A publication Critical patent/JPH08217715A/en
Application granted granted Critical
Publication of JP3693373B2 publication Critical patent/JP3693373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/41Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by hydrogenolysis or reduction of carboxylic groups or functional derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/30Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with halogen containing compounds, e.g. hypohalogenation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は新規なイソプロピルマロンアルデヒド誘導体およびその製造方法に関する。
【0002】
【従来の技術】
従来ポリオレフィン製造のために用いられている、主として有機アルミニウム化合物、3〜5族の遷移金属化合物から構成されるチーグラーナッタ触媒は、それによって得られる重合体の立体規則性を向上させるため電子供与性の基を有する化合物を配合して用いられている。その立体規則性の向上の詳細な理由は、現在のところ不明であるが、最近の研究によれば、該触媒の性能を向上させるためには、
用いる電子供与性化合物が、
(1)分子内にカルボニル基を有すること
(2)分子内に立体障害となる大きな置換基を有すること
が必要であると思われてきた。
これまでに上記の条件を満たす化合物が多数提案されてきた(例えば、特開昭56-41206、特開昭57-63311、特開昭60-4505 、特開昭60-4508 、特開昭61-133206 )。しかしながら、これらの方法では、現在の触媒性能に求められている活性、立体規則性などの高い工業的要求を必ずしも満足するものではなかった。
【0003】
ところで、本発明者らは、チーグラーナッタ触媒の性能をより向上させるためには、分子内にカルボニル基、とりわけアルデヒド基を有し、かつアルデヒド基のα位の炭素原子上にバルキーなアルキル基を二つ有する化合物を電子供与性化合物として用いることが一つの有力な解決方法であると推定した。これらの化合物はアルデヒド基のα位に置換されるバルキーなアルキル基が立体障害のためか、あるいは用途が全く想像もされなかったためか、文献上報告されていない。
【0004】
【発明が解決しようとする課題】
本発明の課題は、高活性及び高立体規則性を発現するチーグラーナッタ触媒の電子供与性化合物として有用なアルデヒド基を有する化合物とその製造方法を提供することである。
【0005】
【課題を解決するための手段】
本発明の課題は、一般式(1)
【化2】

Figure 0003693373
(式中、Rは炭素数が1〜20の直鎖状、分枝状あるいは環状アルキル基である。)
で示されるイソプロピルマロンアルデヒド誘導体、2−イソプロピルマロン酸エステル誘導体を還元することを特徴とする前記イソプロピルマロンアルデヒド誘導体の製造方法及び2−イソプロピル−1,3−プロパンジオール誘導体を酸化することを特徴とする前記イソプロピルマロンアルデヒド誘導体の製造方法によって達成された。
【0006】
本発明で示されるイソプロピルマロンアルデヒド誘導体は一般式(1)で示される。
一般式(1)
【化3】
Figure 0003693373
式中、Rは炭素数が1〜20の直鎖状、分枝状あるいは環状アルキル基であり、好ましくは炭素数が1〜10の直鎖状、分枝状あるいは環状アルキル基であり、さらに好ましくは炭素数が1〜10の分枝状あるいは環状アルキル基である。
この様な置換基の具体例としては、イソプロピル基、イソブチル基、sec-ブチル基、tert- ブチル、イソペンチル基、シクロペンチル基、シクロヘキシル基、2−エチルヘキシル基等である。
【0007】
以下本発明を、2−イソプロピル−2−イソペンチルマロンアルデヒドを代表として説明する。
該アルデヒドは、対応するジエステル化合物の還元反応により合成することができる。具体的方法としては、2−イソプロピル−2−イソペンチルマロン酸エステルを溶媒中、有機金属化合物と反応させることで目的物を製造することが可能である。
溶媒としては、エーテル等の極性溶媒、ヘキサン等の炭化水素溶媒あるいはトルエン等の芳香族炭化水素溶媒等が使用できる。
有機金属化合物としては、ナトリウムアルミニウムハイドライド、リチウムアルミニウムハイドライド、リチウムアルミニウムアルコキサイド、ジイソブチルアルミニウムハイドライド、ヒドロシラン、ヒドロスズ等を使用することができるが、ジイソブチルアルミニウムハイドライドが好ましい。
有機金属化合物を接触させるときの温度は、−100℃〜50℃、好ましくは−78℃〜20℃の温度である。反応時間は、用いる有機金属化合物の種類により異なるが、通常は1時間〜24時間である。
【0008】
また、2−イソプロピル−2−イソペンチルマロンアルデヒド合成の別法としては、2−イソプロピル−2−イソペンチル−1,3−プロパンジオール等の対応するアルコールを、溶媒中で酸化剤を反応させることで粗生成物を得ることができる。
溶媒としては、エーテル、ハロゲン化炭化水素等の極性溶媒あるいは炭化水素等が有効である
酸化法としては、既存のすべての方法を用いることができるが、好ましくは、Jones 酸化、Collins 酸化、PCC 、 PDC、KMnO4 、SeO2等の方法である。通常は、酸化剤を添加した後、0℃〜100℃の温度で1〜48時間反応させればよい。
【0009】
このようにして得られた粗生成物を蒸留精製することで目的物を得ることができる。
精製された2−イソプロピル−2−イソペンチルマロンアルデヒドは、沸点が73−75℃/0.25mmHgの無色の液体であり、IR、1H-NMR、13C-NMR、GC-MS 等により確認することができる。
例えば、1H-NMRを用いて分析すると、
(1)δ=9.91ppm にアルデヒド水素原子のシグナル
(2)δ=2.34ppm にイソプロピル基中の3級炭素上の水素原子のシグナル
(3)δ=1.86ppm にイソペンチル基中のメチレン炭素上の水素原子のシグナル
(4)δ=1.57ppm にイソペンチル基中の3級炭素上の水素原子のシグナル
(5)δ=1.15-1.10ppmにイソペンチル基中のメチレン炭素上の水素原子のシグナル
(6)δ=1.08ppm にイソプロピル基中のメチル基上の水素原子のシグナル
(7)δ=0.94ppm にイソペンチル基中のメチル基上の水素原子のシグナルが観察された。
また、13C-NMRを用いた分析では、
δ=203.5, 66.4, 33.2, 31.9, 28.8, 27.1, 22.3, 17.7 ppm にシグナルが観察された。
【0010】
【実施例】
(実施例1)
2−イソプロピル−2−イソペンチルマロンアルデヒドの合成
(1)イソペンチルマロン酸ジエチルの合成
撹拌装置、ジムロート及び滴下ロートを付した2Lフラスコに、窒素気流下にて乾燥エタノール300ml 、ナトリウムエトキサイド200ml(21wt%、 Aldrich社製) を充填した。マロン酸ジエチル128g(0.8mol)を加え、室温で30分撹拌した。次いで、臭化イソペンチル92g(0.61mol)及びエタノール50mlを加え、ガスクロマトグラフィーにより反応を追跡しながら混合物を加熱還流した。反応が完結した後、反応混合液を希塩酸500ml に注いだ。ペンタン200ml ×3回で抽出した。有機相を飽和炭酸水素ナトリウム溶液で中和し、飽和塩化アンモニウム溶液及び水で洗浄した後、硫酸ナトリウム下で乾燥した。ロータリーエバポレーターにより溶媒を留去し、減圧蒸留することで目的物を116g得た。マロン酸ジエチルを基準とした反応収率は63%であった。
bp 127-132℃ / 11mmHg GC > 98.4 %
1H-NMR ( 400MH、CDCl3、 TMS )
4.105( m, 4H) 、3.19(t, 1H) 、1.798(q, 1H)、1.483(p, 1H)、1.183(t, 6H)、1.144-1.086(m, t 2H)、 0.798(d, 6H)
13C-NMR( 100 MH、 CDCl3 )
169.40、 61.05、52.09 、36.22 、27.69 、26.56 、22.21、13.91ppm
(2)イソプロピルイソペンチルマロン酸ジエチルの合成
撹拌装置、ジムロート及び滴下ロートを付した2Lフラスコに、窒素気流下にて乾燥エタノール500ml 、ナトリウムエトキサイド250ml(21wt%、Aldrich 社製) を充填した。イソペンチルマロン酸ジエチル69g(0.3 mol)を加え、室温で30分撹拌した。次いで、臭化イソプロピル73g(0.6mol) 及びエタノール50mlを加え、ガスクロマトグラフィーにより反応を追跡しながら混合物を24時間加熱還流した。ナトリウムエトキサイド300ml 及び臭化イソプロピル80g(0.7mol) を加え、更に48時間加熱還流した。反応が完結した後、反応混合液を希塩酸500ml に注いだ。ペンタン200ml ×3回で抽出した後、無水硫酸ナトリウム下で乾燥した。ロータリーエバポレーターにより溶媒を留去し、減圧蒸留することで目的物を9.3g得た。イソペンチルマロン酸ジエチルを基準とした反応収率は32%であった。
bp 141-148℃ / 8 mmHg 、GC > 98.0 %
1H-NMR(400MH、 CDCl3、TMS)
4.127(q, 4H)、2.257(p, 1H)、1.844-1.802(m, 2H)、1.438(p, 1H)、1.999(t, 6H)、1.049-0.990(m, 2H)、 0.926(d, 6H) 、 0.797(d, 6H)
13C-NMR(100MH 、 CDCl3)
171.19、 61.489 、60.466、 33.262 、31.490、31.362、28.366、22.272、18.482、14.079 ppm
(3)2−イソプロピル−2−イソペンチルマロンアルデヒドの合成
撹拌装置、ジムロート及び滴下ロートを付した500ml フラスコに、窒素気流下にてトルエン100ml 、イソプロピルイソペンチルマロン酸ジエチル10g(37mmol) を加え、-78 ℃に冷却した。これにジイソブチルアルミニウムハイドライドの1.0Mトルエン溶液74ml(74mmol)を1時間かけて滴下した。混合物を-78 ℃で30分撹拌した後、メタノール100ml を加えて反応を停止した。続いて、酒石酸カリウムナトリウムの0.5M水溶液100ml を加え、室温で激しく撹拌した。反応液をペンタン200ml ×3回で抽出した後、無水硫酸ナトリウム下で乾燥した。ロータリーエバポレーターにより溶媒を留去し、減圧蒸留することで目的物を3.7g得た。イソプロピルイソペンチルマロン酸ジエチルを基準とした反応収率は55%であった。
bp 73-75℃/0.25mmHg, GC>98.5 %
1H-NMR(400MH, CDCl3, TMS) ; 9.91(s, 2H), 2.34(sept, 1H), 1.86(dd, 2H), 1.57(sept, 1H), 1.14-1.10(m, 2H), 1.08(d, 6H), 0.94(d, 6H)
13C-NMR(100MH, CDCl3) ; 203.5, 66.4, 33.2, 31.9, 28.8, 27.1, 22.3, 17.7 ppm
【0011】
(実施例2)
300ml ナス型フラスコに、無水ジクロロメタン100ml 、ピリジニウムクロロクロメート30g を入れた。European Patent Application 487035に記載された方法により得られた2−イソプロピル−2−イソペンチル−1,3−プロパンジオール10g を該フラスコに加え、室温で5時間、マグネチックスターラーを用いて撹拌した。乾燥エチルエーテル100ml を加え、上澄み液をデカンテーションで分離し、不溶のガム状物質をさらに乾燥エチルエーテル50mlで、3回洗浄した。有機層を合わせ、フロリジルの短いカラムを通した後、減圧蒸留することで目的物5.1gを得た。2−イソプロピル−2−イソペンチル−1,3−プロパンジオールを基準とした反応収率は、51%であった。
【0012】
[参考実施例、参考比較例]
参考実施例及び参考比較例においてメルトフローレート(MFRと略す)は、JIS-7210-1976 :表1、試験条件14(試験温度230 ℃、試験荷重2.16 Kg )に従って測定した。
ヘプタンインデックス(H.R.と略す)は、得られた重合体を沸騰n-ヘプタンで6時間抽出した後の残量を%で表したものである。
参考実施例及び参考比較例に於て、固体触媒成分の製造及び重合に使用した各原材料(有機溶媒、オレフィン、水素、チタン化合物、マグネシウム化合物等)はすべて実質的に水分を除去したものである。
また、固体触媒成分の製造及び重合は、実質的に水分を存在させず、かつ窒素等の不活性雰囲気下で行なった。
【0013】
(参考実施例1)
(1)固体触媒成分の調製
無水塩化マグネシウム(市販の無水塩化マグネシウムを乾燥塩化水素ガス気流中で約500 ℃において15時間焼成乾燥することによって得られたもの)20g(0.21mol )、2−イソプロピル−2−イソペンチルマロンアルデヒド3.7 g(0.02mol)を乾燥窒素気流下、振動ボールミル用の容器(ステンレス製の円筒型、内容積1L)に入れ、直径が10mmの磁器製ボールを加え、振動ボールミルに取り付け、15時間粉砕を行った。得られた粉砕物15g を四塩化チタン150ml 中に懸濁させ、100 ℃で2時間撹拌した後、固体部を漉過によって採取し、ヘキサン150ml にて6回洗浄した。これを30℃〜40℃にて減圧乾燥し、ヘキサンを除去して固体触媒成分を得た。得られた固体触媒成分を分析したところ、この固体触媒成分中のチタン原子の含有量は2.4 重量%であった。
(重合及び生成重合体の物性)
内容積3Lのステンレス製オートクレーブに上記により製造された固体触媒成分を10mg、トリエチルアルミニウムの1M ヘキサン溶液3ml(3mmol)を入れ、次いで、760gのプロピレン及び0.1g の水素を仕込んだ後、オートクレーブを昇温し、内温を70℃に保った。1時間後、未反応ガスを放出して重合を終結させた。
得られた重合体を60℃の真空乾燥器中で6 時間乾燥させた。その結果、重合体の重量は、180 g であり、固体触媒成分単位重量あたり、単位時間あたりの重合活性は、18,000g-ポリマー/g-cat・hであった。また、この重合体のMFRは220g/10minであり、H.R.は64%であった。
【0014】
参考比較例1
電子供与性化合物として、2−イソプロピル−2−イソペンチルマロンアルデヒドに代え、ジブチルフタレート5.6g(0.02 mol)を使用した以外は実施例1と同様な方法により固体触媒成分を調製し、同一条件で重合評価を行なった。その結果、重合体の重量は、150gであり、固体触媒成分単位重量あたり、単位時間あたりの重合活性は、15,000g-ポリマー/g-cat・hであった。また、この重合体のMFRは490g/10 min であり、H.R.は46%であった。
【0015】
(参考実施例2)
参考実施例1にて調製した固体触媒成分を用い、重合時にジシクロペンチルジメトキシシランの0.1Mヘキサン溶液9ml(0.9mmol) を添加した以外は参考実施例1と同様な方法で重合評価を行った。その結果、重合体の重量は、90g であり、固体触媒成分単位重量あたり、単位時間あたりの重合活性は、9,000g- ポリマー/g-cat・hであった。また、この重合体のMFRは18g/10 minであり、H.R.は97%であった。
【0016】
(参考比較例2)
参考比較例1にて調製した固体触媒成分を用い、参考実施例2と同一条件で重合評価を行った。その結果、重合体の重量は、105gであり、固体触媒成分単位重量あたり、単位時間あたりの重合活性は、10,500g-ポリマー/g-cat・hであった。また、この重合体のMFRは20g/10 minであり、H.R.は95%であった。
【0017】
【発明の効果】
分子内にアルデヒド基を二つ有し、かつアルデヒド基から数えてα位の炭素原子上にアルキル基、とりわけ嵩高い置換基を二つ有し、チーグラーナッタの電子供与性化合物として有効な新規なアルデヒド化合物を提供することが可能となった。
【図面の簡単な説明】
【図1】実施例1で製造した2−イソプロピル−2−イソペンチルマロンアルデヒドのIRチャート。
【図2】実施例1で製造した2−イソプロピル−2−イソペンチルマロンアルデヒドの1H-NMRチャート。
【図3】実施例1で製造した2−イソプロピル−2−イソペンチルマロンアルデヒドの13C-NMRチャート。[0001]
[Industrial application fields]
The present invention relates to a novel isopropylmalonaldehyde derivative and a method for producing the same.
[0002]
[Prior art]
The Ziegler-Natta catalyst, which is mainly composed of organoaluminum compounds and group 3-5 transition metal compounds, used for the production of polyolefins in the past, has an electron donating property to improve the stereoregularity of the resulting polymer. It is used by blending a compound having the following group. The detailed reason for the improvement of the stereoregularity is currently unknown, but according to recent research, in order to improve the performance of the catalyst,
The electron donating compound used is
(1) Having a carbonyl group in the molecule (2) It has been considered necessary to have a large substituent that causes steric hindrance in the molecule.
Many compounds satisfying the above conditions have been proposed so far (for example, JP-A 56-41206, JP-A 57-63311, JP-A 60-4505, JP-A 60-4508, JP-A 61-61). -133206). However, these methods do not always satisfy high industrial demands such as activity and stereoregularity required for current catalyst performance.
[0003]
By the way, in order to further improve the performance of the Ziegler-Natta catalyst, the present inventors have a carbonyl group, particularly an aldehyde group in the molecule, and a bulky alkyl group on the α-position carbon atom of the aldehyde group. It was estimated that the use of a compound having two as an electron-donating compound was one effective solution. These compounds have not been reported in the literature as to whether the bulky alkyl group substituted at the α-position of the aldehyde group is due to steric hindrance or the use was never imagined.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a compound having an aldehyde group useful as an electron donating compound of a Ziegler-Natta catalyst that exhibits high activity and high stereoregularity, and a method for producing the same.
[0005]
[Means for Solving the Problems]
The subject of this invention is general formula (1).
[Chemical formula 2]
Figure 0003693373
(In the formula, R is a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms.)
Wherein the isopropyl malonaldehyde derivative and 2-isopropyl malonate derivative are reduced, and the 2-isopropyl-1,3-propanediol derivative is oxidized. It was achieved by the manufacturing method of the isopropyl malonaldehyde derivative.
[0006]
The isopropylmalonaldehyde derivative represented by the present invention is represented by the general formula (1).
General formula (1)
[Chemical 3]
Figure 0003693373
In the formula, R is a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, preferably a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, A branched or cyclic alkyl group having 1 to 10 carbon atoms is preferred.
Specific examples of such a substituent include isopropyl group, isobutyl group, sec-butyl group, tert-butyl, isopentyl group, cyclopentyl group, cyclohexyl group, 2-ethylhexyl group and the like.
[0007]
Hereinafter, the present invention will be described with 2-isopropyl-2-isopentylmalonaldehyde as a representative.
The aldehyde can be synthesized by a reduction reaction of the corresponding diester compound. As a specific method, the target product can be produced by reacting 2-isopropyl-2-isopentylmalonic acid ester with an organometallic compound in a solvent.
As the solvent, a polar solvent such as ether, a hydrocarbon solvent such as hexane, an aromatic hydrocarbon solvent such as toluene, or the like can be used.
As the organometallic compound, sodium aluminum hydride, lithium aluminum hydride, lithium aluminum alkoxide, diisobutyl aluminum hydride, hydrosilane, hydrotin, and the like can be used, and diisobutyl aluminum hydride is preferable.
The temperature at which the organometallic compound is brought into contact is −100 ° C. to 50 ° C., preferably −78 ° C. to 20 ° C. The reaction time varies depending on the type of organometallic compound used, but is usually 1 hour to 24 hours.
[0008]
Another method for synthesizing 2-isopropyl-2-isopentylmalonaldehyde is to react a corresponding alcohol such as 2-isopropyl-2-isopentyl-1,3-propanediol with an oxidizing agent in a solvent. A crude product can be obtained.
As the solvent, polar solvents such as ethers, halogenated hydrocarbons or hydrocarbons and the like can be used as the oxidation method, and all existing methods can be used. Preferably, Jones oxidation, Collins oxidation, PCC, PDC, KMnO 4 , SeO 2 and other methods. Usually, after adding an oxidizing agent, the reaction may be performed at a temperature of 0 ° C. to 100 ° C. for 1 to 48 hours.
[0009]
The target product can be obtained by distillation purification of the crude product thus obtained.
Purified 2-isopropyl-2-isopentylmalonaldehyde is a colorless liquid having a boiling point of 73-75 ° C./0.25 mmHg and confirmed by IR, 1 H-NMR, 13 C-NMR, GC-MS, etc. can do.
For example, when analyzed using 1 H-NMR,
(1) Signal of aldehyde hydrogen atom at δ = 9.91ppm (2) Signal of hydrogen atom on tertiary carbon in isopropyl group at δ = 2.34ppm (3) Signal on methylene carbon in isopentyl group at δ = 1.86ppm Signal of hydrogen atom (4) Signal of hydrogen atom on tertiary carbon in isopentyl group at δ = 1.57ppm (5) Signal of hydrogen atom on methylene carbon in isopentyl group at δ = 1.15-1.10ppm (6) Signal of hydrogen atom on methyl group in isopropyl group at δ = 1.08 ppm (7) Signal of hydrogen atom on methyl group in isopentyl group was observed at δ = 0.94 ppm.
In the analysis using 13 C-NMR,
Signals were observed at δ = 203.5, 66.4, 33.2, 31.9, 28.8, 27.1, 22.3, 17.7 ppm.
[0010]
【Example】
(Example 1)
Synthesis of 2-isopropyl-2-isopentylmalonaldehyde (1) Synthesis of diethyl isopentylmalonate In a 2 L flask equipped with a stirrer, Dimroth and dropping funnel, 300 ml of dry ethanol and 200 ml of sodium ethoxide in a nitrogen stream 21 wt%, manufactured by Aldrich). 128 g (0.8 mol) of diethyl malonate was added, and the mixture was stirred at room temperature for 30 minutes. Next, 92 g (0.61 mol) of isopentyl bromide and 50 ml of ethanol were added, and the mixture was heated to reflux while monitoring the reaction by gas chromatography. After the reaction was completed, the reaction mixture was poured into 500 ml of diluted hydrochloric acid. Extracted with pentane 200 ml × 3 times. The organic phase was neutralized with saturated sodium bicarbonate solution, washed with saturated ammonium chloride solution and water and then dried under sodium sulfate. The solvent was distilled off with a rotary evaporator and the residue was distilled under reduced pressure to obtain 116 g of the desired product. The reaction yield based on diethyl malonate was 63%.
bp 127-132 ℃ / 11mmHg GC> 98.4%
1 H-NMR (400MH, CDCl 3, TMS)
4.105 (m, 4H), 3.19 (t, 1H), 1.798 (q, 1H), 1.383 (p, 1H), 1.183 (t, 6H), 1.144-1.086 (m, t 2H), 0.798 (d, 6H )
13 C-NMR (100 MH, CDCl 3 )
169.40, 61.05, 52.09, 36.22, 27.69, 26.56, 22.21, 13.91ppm
(2) Synthesis of diethyl isopropylisopentylmalonate A 2 L flask equipped with a stirrer, a Dim funnel and a dropping funnel was charged with 500 ml of dry ethanol and 250 ml of sodium ethoxide (21 wt%, manufactured by Aldrich) under a nitrogen stream. 69 g (0.3 mol) of diethyl isopentylmalonate was added, and the mixture was stirred at room temperature for 30 minutes. Next, 73 g (0.6 mol) of isopropyl bromide and 50 ml of ethanol were added, and the mixture was heated to reflux for 24 hours while monitoring the reaction by gas chromatography. 300 ml of sodium ethoxide and 80 g (0.7 mol) of isopropyl bromide were added, and the mixture was further heated under reflux for 48 hours. After the reaction was completed, the reaction mixture was poured into 500 ml of diluted hydrochloric acid. After extracting with pentane 200 ml × 3 times, it was dried under anhydrous sodium sulfate. The solvent was distilled off with a rotary evaporator and distillation under reduced pressure gave 9.3 g of the desired product. The reaction yield based on diethyl isopentylmalonate was 32%.
bp 141-148 ℃ / 8 mmHg, GC> 98.0%
1 H-NMR (400MH, CDCl 3 , TMS)
4.127 (q, 4H), 2.257 (p, 1H), 1.844-1.802 (m, 2H), 1.438 (p, 1H), 1.999 (t, 6H), 1.049-0.990 (m, 2H), 0.926 (d, 6H), 0.797 (d, 6H)
13 C-NMR (100 MH, CDCl 3 )
171.19, 61.489, 60.466, 33.262, 31.490, 31.362, 28.366, 22.272, 18.482, 14.079 ppm
(3) Synthesis of 2-isopropyl-2-isopentylmalonaldehyde A 500 ml flask equipped with a stirrer, Dimroth and dropping funnel was added 100 ml of toluene and 10 g (37 mmol) of diethyl isopropylisopentylmalonate under a nitrogen stream, Cooled to -78 ° C. To this, 74 ml (74 mmol) of 1.0 M toluene solution of diisobutylaluminum hydride was added dropwise over 1 hour. The mixture was stirred at −78 ° C. for 30 minutes, and then the reaction was stopped by adding 100 ml of methanol. Subsequently, 100 ml of a 0.5 M aqueous solution of potassium sodium tartrate was added and stirred vigorously at room temperature. The reaction solution was extracted with 200 ml of pentane × 3 times and then dried under anhydrous sodium sulfate. The solvent was distilled off with a rotary evaporator and 3.7 g of the desired product was obtained by distillation under reduced pressure. The reaction yield based on diethyl isopropylisopentylmalonate was 55%.
bp 73-75 ℃ / 0.25mmHg, GC> 98.5%
1 H-NMR (400MH, CDCl 3 , TMS); 9.91 (s, 2H), 2.34 (sept, 1H), 1.86 (dd, 2H), 1.57 (sept, 1H), 1.14-1.10 (m, 2H), 1.08 (d, 6H), 0.94 (d, 6H)
13 C-NMR (100MH, CDCl 3 ); 203.5, 66.4, 33.2, 31.9, 28.8, 27.1, 22.3, 17.7 ppm
[0011]
(Example 2)
A 300 ml eggplant type flask was charged with 100 ml of anhydrous dichloromethane and 30 g of pyridinium chlorochromate. 10 g of 2-isopropyl-2-isopentyl-1,3-propanediol obtained by the method described in European Patent Application 487035 was added to the flask and stirred for 5 hours at room temperature using a magnetic stirrer. 100 ml of dry ethyl ether was added, the supernatant was separated by decantation, and the insoluble gum was further washed with 50 ml of dry ethyl ether three times. The organic layers were combined, passed through a short column of florisil, and then distilled under reduced pressure to obtain 5.1 g of the desired product. The reaction yield based on 2-isopropyl-2-isopentyl-1,3-propanediol was 51%.
[0012]
[Reference Examples, Reference Comparative Examples]
In the reference examples and reference comparative examples, the melt flow rate (abbreviated as MFR) was measured according to JIS-7210-1976: Table 1, test condition 14 (test temperature 230 ° C., test load 2.16 Kg).
The heptane index (abbreviated as HR) represents the remaining amount in% after extracting the obtained polymer with boiling n-heptane for 6 hours.
In the reference examples and reference comparative examples, all the raw materials (organic solvent, olefin, hydrogen, titanium compound, magnesium compound, etc.) used for the production and polymerization of the solid catalyst component are all substantially dehydrated. .
The production and polymerization of the solid catalyst component were carried out in an inert atmosphere such as nitrogen with substantially no water present.
[0013]
(Reference Example 1)
(1) Preparation of solid catalyst component Anhydrous magnesium chloride (obtained by calcining and drying commercially available anhydrous magnesium chloride at about 500 ° C. for 15 hours in a dry hydrogen chloride gas stream) 20 g (0.21 mol), 2-isopropyl -2-3.7 g (0.02 mol) of isopentylmalonaldehyde is placed in a container for a vibrating ball mill (stainless steel cylinder, 1 L internal volume) in a dry nitrogen stream, and a ceramic ball with a diameter of 10 mm is added to the vibrating ball mill. And ground for 15 hours. 15 g of the obtained pulverized product was suspended in 150 ml of titanium tetrachloride and stirred at 100 ° C. for 2 hours. The solid part was collected by filtration and washed 6 times with 150 ml of hexane. This was dried under reduced pressure at 30 ° C. to 40 ° C., and hexane was removed to obtain a solid catalyst component. When the obtained solid catalyst component was analyzed, the titanium atom content in the solid catalyst component was 2.4% by weight.
(Physical properties of polymerized and produced polymer)
Into a stainless steel autoclave with an internal volume of 3 L, 10 mg of the solid catalyst component prepared above and 3 ml (3 mmol) of a 1M hexane solution of triethylaluminum were charged. Then, 760 g of propylene and 0.1 g of hydrogen were charged, The temperature was raised and the internal temperature was kept at 70 ° C. After 1 hour, unreacted gas was released to terminate the polymerization.
The obtained polymer was dried in a vacuum dryer at 60 ° C. for 6 hours. As a result, the weight of the polymer was 180 g, and the polymerization activity per unit time of the solid catalyst component was 18,000 g-polymer / g-cat · h. Further, this polymer had an MFR of 220 g / 10 min and an HR of 64%.
[0014]
Reference Comparative Example 1
A solid catalyst component was prepared in the same manner as in Example 1 except that 5.6 g (0.02 mol) of dibutyl phthalate was used instead of 2-isopropyl-2-isopentylmalonaldehyde as the electron donating compound. Polymerization evaluation was performed. As a result, the weight of the polymer was 150 g, and the polymerization activity per unit time of the solid catalyst component was 15,000 g-polymer / g-cat · h. Further, this polymer had an MFR of 490 g / 10 min and an HR of 46%.
[0015]
(Reference Example 2)
Polymerization was evaluated in the same manner as in Reference Example 1, except that the solid catalyst component prepared in Reference Example 1 was used and 9 ml (0.9 mmol) of a 0.1M hexane solution of dicyclopentyldimethoxysilane was added during the polymerization. As a result, the weight of the polymer was 90 g, and the polymerization activity per unit time of the solid catalyst component was 9,000 g-polymer / g-cat · h. Further, this polymer had an MFR of 18 g / 10 min and an HR of 97%.
[0016]
(Reference Comparative Example 2)
Polymerization evaluation was performed under the same conditions as in Reference Example 2 using the solid catalyst component prepared in Reference Comparative Example 1. As a result, the weight of the polymer was 105 g, and the polymerization activity per unit time of the solid catalyst component was 10,500 g-polymer / g-cat · h. Further, this polymer had an MFR of 20 g / 10 min and an HR of 95%.
[0017]
【The invention's effect】
It has two aldehyde groups in the molecule and two alkyl groups, especially two bulky substituents on the α-position carbon atom counted from the aldehyde group. It has become possible to provide aldehyde compounds.
[Brief description of the drawings]
1 is an IR chart of 2-isopropyl-2-isopentylmalonaldehyde produced in Example 1. FIG.
2 is a 1 H-NMR chart of 2-isopropyl-2-isopentylmalonaldehyde produced in Example 1. FIG.
3 is a 13 C-NMR chart of 2-isopropyl-2-isopentylmalonaldehyde produced in Example 1. FIG.

Claims (3)

一般式(1)で示されるイソプロピルマロンアルデヒド誘導体。
Figure 0003693373
(式中、Rは炭素数が1〜20の直鎖状、分枝状あるいは環状アルキル基である。)
Isopropylmalonaldehyde derivative represented by the general formula (1).
Figure 0003693373
(In the formula, R is a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms.)
イソプロピルマロン酸エステル誘導体を還元することを特徴とする、請求項1に記載のイソプロピルマロンアルデヒド誘導体の製造方法。The method for producing an isopropyl malonaldehyde derivative according to claim 1, wherein the isopropyl malonate derivative is reduced. 2−イソプロピル−1,3−プロパンジオール誘導体を酸化することを特徴とする、請求項1に記載のイソプロピルマロンアルデヒド誘導体の製造方法。The method for producing an isopropylmalonaldehyde derivative according to claim 1, wherein the 2-isopropyl-1,3-propanediol derivative is oxidized.
JP02971495A 1995-02-17 1995-02-17 Isopropylmalonaldehyde derivative Expired - Fee Related JP3693373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02971495A JP3693373B2 (en) 1995-02-17 1995-02-17 Isopropylmalonaldehyde derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02971495A JP3693373B2 (en) 1995-02-17 1995-02-17 Isopropylmalonaldehyde derivative

Publications (2)

Publication Number Publication Date
JPH08217715A JPH08217715A (en) 1996-08-27
JP3693373B2 true JP3693373B2 (en) 2005-09-07

Family

ID=12283786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02971495A Expired - Fee Related JP3693373B2 (en) 1995-02-17 1995-02-17 Isopropylmalonaldehyde derivative

Country Status (1)

Country Link
JP (1) JP3693373B2 (en)

Also Published As

Publication number Publication date
JPH08217715A (en) 1996-08-27

Similar Documents

Publication Publication Date Title
US5756653A (en) Substituted polythiophenes from highly reactive zinc reagents
FI93721B (en) Diets useful in the preparation of Ziegler-Natta catalysts
US5358546A (en) Highly reactive forms of zinc and reagents thereof
US5420301A (en) Process for the preparation of substituted difluorobenzo-1,3-dioxoles
JP3693373B2 (en) Isopropylmalonaldehyde derivative
US5281718A (en) Process for the preparation of substituted difluorobenzo-1,3-dioxoles
AU693588B2 (en) Novel process for the preparation of diisopinocampheylchloroborane
JP3597890B2 (en) 3-methoxypropionic acid ester derivative
AU624123B2 (en) Process for the preparation of substituted difluorobenzo-1, 3-dioxoles
JP2008266307A (en) Novel phosphine and its production method and use
JP4948030B2 (en) Method for producing fluorine-containing alcohol derivative
JP3474009B2 (en) Method for producing ester compound effective as electron donating compound for Ziegler-Natta catalyst
JPS6212770B2 (en)
JP2737304B2 (en) Chiral ferrocene derivatives
JP4881312B2 (en) Cyclopentanecarboxylate compounds, processes and intermediates for their preparation and uses thereof
JPH0696564B2 (en) α- (ω-hydroxyalkyl) furfuryl alcohol and process for producing the same
JPH1072433A (en) Method for producing heterocyclic ring-containing (meth) acrylate
JP2001302593A (en) Phthalic acid diester derivative and electron donor
JPH1180264A (en) Allenyloxymethylnaphthalene, its preparation and polymer obtained therefrom
JP4008306B2 (en) Production method of terminal alkyne
JP2946678B2 (en) Chiral ferrocene derivatives
JPH05320085A (en) P-tertiary butoxyphenyldimethylcarbinol and its production
JP2008247745A (en) Method for producing methacrylate ester
KR20190085777A (en) Process for preparing tetrahydroindenes
JPH08151389A (en) New organic silicon compound

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees