[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3692257B2 - Crushed stone manufacturing method - Google Patents

Crushed stone manufacturing method Download PDF

Info

Publication number
JP3692257B2
JP3692257B2 JP11619699A JP11619699A JP3692257B2 JP 3692257 B2 JP3692257 B2 JP 3692257B2 JP 11619699 A JP11619699 A JP 11619699A JP 11619699 A JP11619699 A JP 11619699A JP 3692257 B2 JP3692257 B2 JP 3692257B2
Authority
JP
Japan
Prior art keywords
crushed stone
ash
molten slag
incinerated ash
incinerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11619699A
Other languages
Japanese (ja)
Other versions
JP2000302496A (en
Inventor
洋一 古賀
季男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11619699A priority Critical patent/JP3692257B2/en
Publication of JP2000302496A publication Critical patent/JP2000302496A/en
Application granted granted Critical
Publication of JP3692257B2 publication Critical patent/JP3692257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/023Fired or melted materials
    • C04B18/026Melted materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Furnace Details (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、汚泥やゴミ等の各種廃棄物の焼却灰や、事業用火力発電所から発生する石炭灰等を、溶融しスラグ化した後に結晶化させて得られる砕石製造方法に関する。
【0002】
【従来の技術】
図5は、汚泥の焼却灰を溶融する従来の旋回バーナ式灰溶融炉1とそれに付帯する設備を示す。図示されていない焼却炉で焼却された焼却灰2は、灰溶融炉1の上流側に配設されている灰ホッパ3に供給され、定量供給機4により定量供給される。次いで、ブロア5による空気の吹き込みで、所定量の焼却灰2が灰溶融炉1の炉断面接線方向に配設されているバーナ6によって炉室7に噴出される。焼却灰2中には添加剤である消石灰が添加され、焼却灰2中の塩基度は1となっている。
焼却灰2は炉室7で重油等の燃料で溶融されて溶融スラグとなり、炉室7の下部に配設されているスラグ抜き室8に流下する。一方、炉室7で発生した燃焼ガスは、排ガス9となって炉室7の上部に配設されている二次燃焼室10から排出され、後流側の排ガス設備で処理される。
【0003】
スラグ抜き室8の溶融スラグは、その下流側に配設されている結晶化コンベア11に投入される。結晶化コンベア11の内部には、そこを循環する徐冷コンベア12が設けられ、徐冷コンベア12には溶融スラグを受け入れるパン13を取付けている。徐冷コンベア12の先端部に配設した排出口14には、スラグ回収用水封タンク15が設けられ、タンク15内に貯水されている冷却水16により水封されている。
なお、徐冷コンベア12には、溶融スラグを加熱する加熱バーナ17と排ガスを排出するための排気ファン18を設けている。
【0004】
スラグ抜き室8から排出された溶融スラグは、当初約1400℃の高温下にある。溶融スラグを結晶化させるには、800℃以上の高温域を保持する必要があるが、溶融スラグは時間の経過とともに、800℃以下に冷却される。そのため、結晶化コンベア11は、溶融スラグの結晶化度を高めるために、温度を最適に維持させる加熱バーナ17を設けている。
【0005】
これを図6において詳細に説明すると、当初ほぼ1400℃の状態にある溶融スラグは、上記したように放置すると冷却するが、結晶化するために図に示す温度域になるように調節される。すなわち、溶融スラグは結晶化コンベア11内において700℃で30分程度維持され、次いで結晶化させるために結晶化コンベア11の下流側の領域でさらに、900℃で30分程度維持される。この温度維持は、加熱バーナ17を燃焼させスラグを加熱することにより行う。
結晶化コンベア11から排出されたスラグは、水封タンク15内で排出され、得られた結晶化または徐冷スラグは道路用の砕石等に用いられる。
【0006】
【発明が解決しようとする課題】
従来では、焼却灰から砕石を製造する工程において、すりへり減量が重要な品質項目であるが、製造過程で直接評価することが難しく、図7に示すように結晶化度により管理している。すなわち、結晶化度が大きくなればすりへり量を減らすことができる。
上記のように溶融スラグを結晶化コンベア11内で700℃で保持した後、加熱バーナ17により900℃に加熱している。スラグを900℃に保持するのは、結晶の核を成長させるためであるが、加熱バーナで再加熱するため、焼却灰を溶融させること以外に余分なエネルギーを必要としていた。
また、700℃及び900℃における保持時間がそれぞれ30分と短いため、溶融スラグ中の脱気が十分進行せず、砕石の比重が上がりにくいという問題点がある。
本発明は上記問題点に鑑みてなされたもので、再加熱のための専用エネルギーを必要とせず、品質のよい砕石が得られる砕石製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の砕石製造方法は上記目的を達成するために、上流側から順に焼却炉、熱回収ガス冷却部、バグフィルタ、灰溶融炉が配設されている砕石製造装置を用い、 焼却物を焼却して生ずる焼却灰を溶融して溶融スラグ化した後、該溶融スラグを徐冷して結晶化させることにより生成する砕石製造方法において、上記焼却灰中塩基度(CaO/SiO2)を1.5〜2.5となるように消石灰(Ca(OH)2)を添加剤として、上記バグフィルタに投入して焼却灰に混合し、該焼却灰を溶融して生じた溶融スラグを徐冷する結晶化コンベアで、1.5〜2.5時間の滞留時間で徐冷冷却させている。
また、本発明の砕石製造方法は上記目的を達成するために、上流側から順に汚泥の脱水機、焼却炉、熱回収ガス冷却部、バグフィルタ、灰溶融炉が配設されている砕石製造装置を用い、 焼却物を焼却して生ずる焼却灰を溶融して溶融スラグ化した後、該溶融スラグを徐冷して結晶化させることにより生成する砕石製造方法において、上記焼却灰中塩基度(CaO/SiO 2 )を1.5〜2.5となるように消石灰(Ca(OH) 2 )を添加剤として、上記汚泥の脱水機に投入して焼却灰に混合し、該焼却灰を溶融して生じた溶融スラグを徐冷する結晶化コンベアで、1.5〜2.5時間の滞留時間で徐冷冷却させている。
【0008】
【発明の実施の形態】
以下、本発明の第1の実施の形態による砕石製造方法に用いられる装置について、図面を参照しながら説明する。なお、従来例と同じ構成については、同一の符号を付して説明する。
図1は、旋回バーナ式灰溶融炉1とその付帯設備を示す。汚泥の焼却灰を処理する灰溶融炉1の上流側には灰ホッパ3が配設され、灰ホッパ3には図示されていない焼却炉で焼却された焼却灰2が、灰輸送機等によって定量供給される。焼却灰2は、汚泥の他にゴミ等の各種廃棄物や、事業用火力発電所から発生する石炭等を焼却したものを用いることができる。また、灰ホッパ3は、添加剤19である消石灰Ca(OH)2の供給源と接続されており、塩基度(CaO/SiO2)を1.5〜2.5程度になるように灰ホッパ3に供給している。
【0009】
灰ホッパ3の内部には、焼却灰2と添加剤19を混合する圧縮空気のノズル20が設けられている。灰ホッパ3の下流側には、灰フィーダからなる定量供給機4が接続され、定量供給機4は一定量の焼却灰2をブロア5で圧送することにより、灰溶融炉1側に供給する。灰溶融炉1はレンガ等の耐熱材で形成され、炉室7には複数本の焼却灰を噴出するバーナ6や、図示されていない燃料及び燃焼用空気を噴出するバーナが設けられている。
炉室7の上部に配設されている二次燃焼室10はダクトを介して排ガス9処理系の冷却装置や洗煙装置等に接続されている。炉室7とスラグ抜き室8は、溶融スラグを排出するスラグ抜き孔21によって連通している。
【0010】
結晶化コンベア11は、高温に耐えうる耐熱及び断熱材で構成され、結晶化コンベア11の内部には、溶融スラグを受け入れるパン13を載置した徐冷コンベア12を配設している。結晶化コンベア11の排出口14には、スラグ回収用水封タンク15が設けられている。
なお、本実施の形態における結晶化コンベア11には、従来用いていた加熱バーナ17及び排気ファン18を配設していない。
【0011】
次に、砕石製造装置の作用について説明する。
焼却灰2の粉体は、灰ホッパ3に供給されると、添加剤19の消石灰と混合される。その際、圧縮空気がノズル20から噴出されて、それらは十分に混合することができる。焼却灰2及び添加剤19は、定量供給機4を経て、バーナ6から炉室7に噴射されると、燃料とともに旋回流を形成しながら溶融する。焼却灰2は、添加剤19の消石灰が従来の1.5〜2.5倍含まれ塩基度調整されていることから、炉室7内の温度が1500〜1600℃となり、従来よりも若干高温下で溶融される。
【0012】
焼却灰2は、高温下で溶融してスラグ化し、灰溶融炉1の下方にあるスラグ抜き室8に流下する。スラグ抜き室8に流下した溶融スラグは、結晶化コンベア11内に投入され、その内部に配設したパン13に収容され、ゆっくりと徐冷コンベア12上を移動する。すなわち、脱気時間を確保するために徐冷コンベア12上での滞留時間を1.5〜2.5時間となるような速度で移送し、その間徐冷冷却する。図2に、パン13に収納されているスラグの温度と時間の関係を示す。
【0013】
従来では、下水汚泥焼却設備から発生する焼却灰の溶融設備においては、溶融温度を低くするために焼却灰の塩基度(CaO/SiO2)を1程度に調整している。このため、結晶成長の核となるCaが相対的に少ないため結晶化が進み難い傾向になる。そこで、本実施の形態ではCaOの塩基度を1.5〜2.5となるように調整し、結晶化の核となるCaの量を増加させ、再加熱なしで徐冷することで結晶化できるようになった。したがって、スラグは徐冷コンベア12で移送されている間に核が成長し、結晶の生成が増長される。
そして、徐冷コンベア12は、パン13を取付けたまま結晶化コンベア11の上流側から排出口14までパン13をゆっくりと移送して、徐冷コンベア12上を循環することができる。表1に試験結果を示す。
【0014】
【表1】

Figure 0003692257
表1中のA〜Cが比較例で、Dは実施例である。表1に示すように、生成された砕石は道路用砕石として適したものとなる。なお、道路用砕石として適したものは、徐冷コンベア12での滞留時間が1.5〜2.5時間の範囲及び塩基度が1.5〜2.5の範囲であった。
【0015】
次に、本発明の第2の実施の形態の砕石製造方法について、図3を参照しながら説明する。なお、第1の実施の形態と同一の部分には同一の符号を付して説明する。
図3は、砕石製造装置を示し、装置の上流側から順に焼却炉22,熱回収ガス冷却部23、バグフィルタ24が配設されている。灰ホッパ3よりも下流側は、バーナ式灰溶融炉1及び結晶化コンベア11が配設されている。上記第1の実施の形態と異なる箇所は、添加剤19である消石灰Ca(OH)2の投入する位置をバグフィルタ24の手前にしたことである。この方法だと、焼却灰2自体がカルシウムリッチに変わる。消石灰の塩基度(CaO/SiO2)は1.5〜2.5となるように調整され、脱水機27から排出された脱水汚泥28は、後流側の焼却炉22で焼却される。
本実施の形態では、添加剤19をバグフィルタ24の手前に吹き込むようにしているので、焼却灰中の塩基度を調整してスラグの結晶化を増長させる他に、排ガス25中の酸性ガス(SOX、HCl)を除去する効果がある。
【0016】
次に、本発明の第3の実施の形態の砕石製造方法について、図4を参照しながら説明する。なお、上記第2の実施の形態と同一の部分には同一の符号を付して説明する。
図4は、砕石製造装置を示し、上記第2の実施の形態と異なるのは、焼却灰の原料となる汚泥の燃焼前の脱水工程で、Ca(OH)2を投入することである。すなわち、水分が97%〜99%である汚泥25から水分を除去する脱水機27に、添加剤19であるCa(OH)2を投入する。
本実施の形態では、添加剤19を脱水機27に投入しているので、焼却灰中の塩基度を調整してスラグの結晶化を増長する他に、脱水機27における汚泥の凝集剤としての効果がある。
【0017】
以上、本発明の各実施の形態について説明したが、勿論、本発明はこれらに限定されることなく本発明の技術的思想に基いて種々の変形が可能である。
例えば、上記実施の形態では、溶融スラグの結晶化を増長させるために、添加剤として、消石灰Ca(OH)2を用いたが、結晶化の核としては、例えばFeO3等を使用することができる。
また、灰溶融炉としては、バーナ式旋回溶融炉を用いたが、プラズマ式溶融炉を使用することが可能である。
廃棄物についても廃材に限らず、石炭等も含む炭質形化合物を使用することができる。なお、本実施の形態では道路用砕石に適したものであるが、砕石は他の建築骨材としても使用できる。
【0018】
【発明の効果】
以上述べたように、本発明によれば、焼却物を焼却して生ずる焼却灰を溶融して溶融スラグ化した後、該溶融スラグを結晶化させることにより生成する砕石製造方法において、上記焼却灰中塩基度を1とした割合で、消石灰Ca(OH)2を、上記焼却物または該焼却物の焼却灰に混合するようにしているので、結晶化度が高くすりへり減量の小さい品質の良い砕石を生成することができる。また、加熱バーナとこれに付帯する設備を必要としないので、砕石製造装置の製造コストも安価になる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による砕石製造方法に用いられる砕石製造装置の概略図である。
【図2】同砕石製造装置の結晶化コンベア上でのスラグの温度と時間との関係を示す図である。
【図3】本発明の第2の実施の形態による砕石製造方法に用いられる砕石製造装置の概略図である。
【図4】本発明の第3の実施の形態による砕石製造方法に用いられる砕石製造装置の概略図である。
【図5】従来の砕石製造方法に用いられる砕石製造装置の概略図である。
【図6】従来の砕石製造装置の結晶化コンベア上でのスラグの温度と時間との関係を示す図である。
【図7】すりへり減量とスラグの結晶化との関係を示す図である。
【符号の説明】
1 バーナ式灰溶融炉
2 焼却灰
3 灰ホッパ
4 定量供給機
5 ブロア
6 バーナ
7 炉室
8 スラグ抜き室
9 排ガス
10 二次燃焼室
11 結晶化コンベア
12 徐冷コンベア
13 パン
14 排出口
15 スラグ回収用水封タンク
16 冷却水
19 添加剤
20 ノズル
21 スラグ抜き孔
22 焼却炉
23 熱回収ガス冷却部
24 バグフィルタ
25 排ガス
26 汚泥
27 脱水機
28 脱水汚泥[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing crushed stone obtained by crystallization of incinerated ash of various wastes such as sludge and garbage, coal ash generated from a commercial thermal power plant, and the like after melting and slagging.
[0002]
[Prior art]
FIG. 5 shows a conventional swirl burner type ash melting furnace 1 for melting incinerated ash of sludge and equipment incidental thereto. Incinerated ash 2 incinerated in an incinerator (not shown) is supplied to an ash hopper 3 disposed on the upstream side of the ash melting furnace 1, and is supplied in a fixed amount by a fixed supply device 4. Next, by blowing air by the blower 5, a predetermined amount of the incinerated ash 2 is jetted into the furnace chamber 7 by the burner 6 disposed in the furnace cross section tangential direction of the ash melting furnace 1. Slaked lime as an additive is added to the incinerated ash 2, and the basicity in the incinerated ash 2 is 1.
The incinerated ash 2 is melted with fuel such as heavy oil in the furnace chamber 7 to form molten slag, and flows down to a slag removal chamber 8 disposed in the lower part of the furnace chamber 7. On the other hand, the combustion gas generated in the furnace chamber 7 becomes exhaust gas 9 and is discharged from the secondary combustion chamber 10 disposed in the upper part of the furnace chamber 7 and is processed by the exhaust gas equipment on the downstream side.
[0003]
The molten slag in the slag removal chamber 8 is put into a crystallization conveyor 11 disposed on the downstream side thereof. The crystallization conveyor 11 is provided with a slow cooling conveyor 12 that circulates therethrough, and a pan 13 that receives molten slag is attached to the slow cooling conveyor 12. A slag recovery water-sealed tank 15 is provided at the discharge port 14 disposed at the tip of the slow cooling conveyor 12, and is sealed with cooling water 16 stored in the tank 15.
The slow cooling conveyor 12 is provided with a heating burner 17 for heating the molten slag and an exhaust fan 18 for discharging exhaust gas.
[0004]
The molten slag discharged from the slag removal chamber 8 is initially at a high temperature of about 1400 ° C. In order to crystallize the molten slag, it is necessary to maintain a high temperature range of 800 ° C. or higher, but the molten slag is cooled to 800 ° C. or lower as time passes. Therefore, the crystallization conveyor 11 is provided with a heating burner 17 that maintains the temperature optimally in order to increase the crystallinity of the molten slag.
[0005]
This will be described in detail with reference to FIG. 6. The molten slag that is initially at a temperature of approximately 1400 ° C. is cooled as it is left as described above, but is adjusted so as to be in the temperature range shown in the figure in order to crystallize. That is, the molten slag is maintained in the crystallization conveyor 11 at 700 ° C. for about 30 minutes, and then further maintained at 900 ° C. for about 30 minutes in the region downstream of the crystallization conveyor 11 for crystallization. This temperature maintenance is performed by burning the heating burner 17 and heating the slag.
The slag discharged from the crystallization conveyor 11 is discharged in the water-sealed tank 15, and the obtained crystallization or slowly cooled slag is used for road crushed stones and the like.
[0006]
[Problems to be solved by the invention]
Conventionally, in the process of producing crushed stone from incinerated ash, grinding weight reduction is an important quality item, but it is difficult to evaluate directly in the production process and is managed by the degree of crystallinity as shown in FIG. That is, the amount of wear can be reduced if the crystallinity increases.
After the molten slag is held at 700 ° C. in the crystallization conveyor 11 as described above, it is heated to 900 ° C. by the heating burner 17. The reason why the slag is maintained at 900 ° C. is to grow crystal nuclei. However, since the slag is reheated by a heating burner, extra energy is required in addition to melting the incinerated ash.
Moreover, since the holding time at 700 ° C. and 900 ° C. is as short as 30 minutes, there is a problem that degassing in the molten slag does not proceed sufficiently and the specific gravity of the crushed stone is difficult to increase.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing crushed stone, which does not require dedicated energy for reheating and can obtain high quality crushed stone.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the method for producing crushed stone according to the present invention uses a crushed stone producing apparatus in which an incinerator, a heat recovery gas cooling unit, a bag filter, and an ash melting furnace are arranged in order from the upstream side, In the method for producing crushed stone produced by melting the incinerated ash generated by incineration of the incinerated product to form molten slag, and then cooling and crystallizing the molten slag, the basicity in the incinerated ash (CaO / SiO 2) ) Slaked lime (Ca (OH) 2 ) as an additive so as to be 1.5 to 2.5, the molten slag produced by adding to the bag filter and mixing with the incinerated ash and melting the incinerated ash Is a crystallization conveyor that gradually cools and cools slowly with a residence time of 1.5 to 2.5 hours .
In order to achieve the above object, the method for producing crushed stone according to the present invention includes a dewatering machine for sludge, an incinerator, a heat recovery gas cooling unit, a bag filter, and an ash melting furnace in order from the upstream side. Use In the method for producing crushed stone produced by melting the incinerated ash generated by incineration of the incinerated product to form molten slag, and then cooling and crystallizing the molten slag, the basicity in the incinerated ash (CaO / SiO 2) ) Slaked lime (Ca (OH) 2 ) as an additive so as to be 1.5 to 2.5, was added to the sludge dehydrator and mixed with the incinerated ash, and the incinerated ash was melted. It is a crystallization conveyor that gradually cools the molten slag and slowly cools it with a residence time of 1.5 to 2.5 hours.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the apparatus used for the crushed stone manufacturing method by the 1st Embodiment of this invention is demonstrated, referring drawings. In addition, about the same structure as a prior art example, the same code | symbol is attached | subjected and demonstrated.
FIG. 1 shows a swirl burner type ash melting furnace 1 and its associated equipment. An ash hopper 3 is disposed on the upstream side of the ash melting furnace 1 for treating the sludge incineration ash, and the ash hopper 3 is quantified by an ash transporter etc. Supplied. The incinerated ash 2 can be one obtained by incinerating various wastes such as trash and coal generated from a commercial thermal power plant in addition to sludge. Further, the ash hopper 3 is connected to a supply source of slaked lime Ca (OH) 2 that is the additive 19, and the ash hopper has a basicity (CaO / SiO 2 ) of about 1.5 to 2.5. 3 is supplied.
[0009]
Inside the ash hopper 3, a compressed air nozzle 20 for mixing the incinerated ash 2 and the additive 19 is provided. A fixed amount feeder 4 made of an ash feeder is connected to the downstream side of the ash hopper 3, and the constant amount feeder 4 feeds a certain amount of incinerated ash 2 to the ash melting furnace 1 side by pumping it with a blower 5. The ash melting furnace 1 is formed of a heat-resistant material such as brick, and a furnace chamber 7 is provided with a burner 6 for ejecting a plurality of incinerated ash and a burner for ejecting fuel and combustion air (not shown).
The secondary combustion chamber 10 disposed in the upper part of the furnace chamber 7 is connected to a cooling device, a smoke washing device, or the like of the exhaust gas 9 treatment system via a duct. The furnace chamber 7 and the slag removal chamber 8 communicate with each other through a slag removal hole 21 that discharges molten slag.
[0010]
The crystallization conveyor 11 is made of a heat-resistant and heat-insulating material that can withstand high temperatures. Inside the crystallization conveyor 11, a slow cooling conveyor 12 on which a pan 13 that receives molten slag is placed is disposed. A slag recovery water-sealed tank 15 is provided at the discharge port 14 of the crystallization conveyor 11.
Note that the crystallization conveyor 11 in the present embodiment is not provided with the heating burner 17 and the exhaust fan 18 that are conventionally used.
[0011]
Next, the operation of the crushed stone manufacturing apparatus will be described.
When the powder of the incinerated ash 2 is supplied to the ash hopper 3, it is mixed with the slaked lime of the additive 19. At that time, compressed air is ejected from the nozzle 20 so that they can be mixed well. When the incinerated ash 2 and the additive 19 are injected from the burner 6 into the furnace chamber 7 through the fixed amount feeder 4, they melt while forming a swirling flow together with the fuel. The incinerated ash 2 contains 1.5 to 2.5 times the slaked lime of the additive 19 and the basicity is adjusted, so the temperature in the furnace chamber 7 is 1500 to 1600 ° C., which is slightly higher than the conventional one. Melted under.
[0012]
The incinerated ash 2 is melted at a high temperature to form slag, and flows down to a slag removal chamber 8 below the ash melting furnace 1. The molten slag that has flowed down to the slag removal chamber 8 is charged into the crystallization conveyor 11, accommodated in a pan 13 disposed therein, and slowly moves on the slow cooling conveyor 12. That is, in order to ensure the deaeration time, the residence time on the slow cooling conveyor 12 is transferred at such a speed as to be 1.5 to 2.5 hours, and gradually cooled and cooled during that time. FIG. 2 shows the relationship between the temperature of the slag stored in the pan 13 and time.
[0013]
Conventionally, in the incineration ash melting equipment generated from the sewage sludge incineration equipment, the basicity (CaO / SiO 2 ) of the incineration ash is adjusted to about 1 in order to lower the melting temperature. For this reason, since Ca which becomes the nucleus of crystal growth is relatively small, crystallization tends to hardly proceed. Therefore, in this embodiment, the basicity of CaO is adjusted to 1.5 to 2.5, the amount of Ca that is the nucleus of crystallization is increased, and crystallization is performed by slow cooling without reheating. I can do it now. Therefore, nuclei grow while the slag is being transferred by the slow cooling conveyor 12, and the generation of crystals is increased.
The slow cooling conveyor 12 can circulate on the slow cooling conveyor 12 by slowly transferring the pan 13 from the upstream side of the crystallization conveyor 11 to the discharge port 14 with the pan 13 attached. Table 1 shows the test results.
[0014]
[Table 1]
Figure 0003692257
A to C in Table 1 are comparative examples, and D is an example. As shown in Table 1, the generated crushed stone is suitable as a crushed stone for roads. In addition, what was suitable as a crushed stone for roads was the range whose residence time in the slow cooling conveyor 12 was 1.5 to 2.5 hours, and the basicity was the range of 1.5 to 2.5.
[0015]
Next, the crushed stone manufacturing method of the 2nd Embodiment of this invention is demonstrated, referring FIG. In addition, the same code | symbol is attached | subjected and demonstrated to the part same as 1st Embodiment.
FIG. 3 shows a crushed stone manufacturing apparatus, in which an incinerator 22, a heat recovery gas cooling unit 23, and a bag filter 24 are arranged in order from the upstream side of the apparatus. A burner type ash melting furnace 1 and a crystallization conveyor 11 are disposed downstream of the ash hopper 3. The difference from the first embodiment is that the position where the slaked lime Ca (OH) 2 as the additive 19 is introduced is in front of the bag filter 24. With this method, the incineration ash 2 itself changes to calcium rich. The basicity (CaO / SiO 2 ) of slaked lime is adjusted to 1.5 to 2.5, and the dewatered sludge 28 discharged from the dehydrator 27 is incinerated in the incinerator 22 on the downstream side.
In the present embodiment, the additive 19 is blown in front of the bag filter 24. Therefore, in addition to adjusting the basicity in the incinerated ash to increase the crystallization of slag, the acidic gas ( SO X, HCl) has the effect of removing.
[0016]
Next, a crushed stone manufacturing method according to a third embodiment of the present invention will be described with reference to FIG. The same parts as those in the second embodiment will be described with the same reference numerals.
FIG. 4 shows a crushed stone manufacturing apparatus, which is different from the second embodiment in that Ca (OH) 2 is introduced in a dehydration step before combustion of sludge as a raw material of incinerated ash. That is, Ca (OH) 2 that is the additive 19 is put into a dehydrator 27 that removes moisture from the sludge 25 having a moisture content of 97% to 99%.
In the present embodiment, the additive 19 is put into the dehydrator 27. Therefore, in addition to adjusting the basicity in the incinerated ash to increase the crystallization of slag, effective.
[0017]
As mentioned above, although each embodiment of this invention was described, of course, this invention is not limited to these, A various deformation | transformation is possible based on the technical idea of this invention.
For example, in the above embodiment, slaked lime Ca (OH) 2 is used as an additive in order to increase the crystallization of the molten slag. However, for example, FeO 3 or the like may be used as the crystallization nucleus. it can.
Further, as the ash melting furnace, a burner type swirl melting furnace is used, but a plasma melting furnace can be used.
As for the waste, not only waste materials but also carbonaceous compounds including coal and the like can be used. In this embodiment, although suitable for crushed stone for roads, crushed stone can also be used as other architectural aggregates.
[0018]
【The invention's effect】
As described above, according to the present invention, in the method for producing crushed stone, the incineration ash produced by incineration of the incinerated ash and then by melting the incinerated ash to crystallize the molten slag. Since the slaked lime Ca (OH) 2 is mixed with the incinerated product or the incinerated ash of the incinerated product at a ratio of medium basicity of 1, the crushed stone with high crystallization degree and high quality with a small amount of grinding. Can be generated. Moreover, since the heating burner and the equipment incidental thereto are not required, the manufacturing cost of the crushed stone manufacturing apparatus is also reduced.
[Brief description of the drawings]
FIG. 1 is a schematic view of a crushed stone manufacturing apparatus used in a crushed stone manufacturing method according to a first embodiment of the present invention.
FIG. 2 is a diagram showing the relationship between slag temperature and time on the crystallization conveyor of the crushed stone manufacturing apparatus.
FIG. 3 is a schematic view of a crushed stone producing apparatus used in a crushed stone producing method according to a second embodiment of the present invention.
FIG. 4 is a schematic view of a crushed stone producing apparatus used in a crushed stone producing method according to a third embodiment of the present invention.
FIG. 5 is a schematic view of a crushed stone producing apparatus used in a conventional crushed stone producing method.
FIG. 6 is a diagram showing the relationship between slag temperature and time on a crystallization conveyor of a conventional crushed stone producing apparatus.
FIG. 7 is a diagram showing the relationship between wear loss and slag crystallization.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Burner type ash melting furnace 2 Incinerated ash 3 Ash hopper 4 Fixed supply machine 5 Blower 6 Burner 7 Furnace room 8 Slag removal room 9 Exhaust gas 10 Secondary combustion chamber 11 Crystallization conveyor 12 Gradation conveyor 13 Pan 14 Discharge port 15 Slag collection Water seal tank 16 Cooling water 19 Additive 20 Nozzle 21 Slag vent 22 Incinerator 23 Heat recovery gas cooling unit 24 Bag filter 25 Exhaust gas 26 Sludge 27 Dehydrator 28 Dehydrated sludge

Claims (2)

上流側から順に焼却炉、熱回収ガス冷却部、バグフィルタ、灰溶融炉が配設されている砕石製造装置を用い、 焼却物を焼却して生ずる焼却灰を溶融して溶融スラグ化した後、該溶融スラグを徐冷して結晶化させることにより生成する砕石製造方法において、上記焼却灰中塩基度(CaO/SiO2)を1.5〜2.5となるように消石灰(Ca(OH)2)を添加剤として、上記バグフィルタに投入して焼却灰に混合し、該焼却灰を溶融して生じた溶融スラグを徐冷する結晶化コンベアで、1.5〜2.5時間の滞留時間で徐冷冷却させたことを特徴とする砕石製造方法。 Using an incinerator, heat recovery gas cooling section, bag filter, ash melting furnace in order from the upstream side, using a crushed stone production device, In the method for producing crushed stone produced by melting the incinerated ash generated by incineration of the incinerated product to form molten slag, and then cooling and crystallizing the molten slag, the basicity in the incinerated ash (CaO / SiO 2) ) Slaked lime (Ca (OH) 2 ) as an additive so as to be 1.5 to 2.5, the molten slag produced by adding to the bag filter and mixing with the incinerated ash and melting the incinerated ash A method for producing crushed stone, characterized in that it is gradually cooled and cooled with a crystallization conveyor that slowly cools at a residence time of 1.5 to 2.5 hours . 上流側から順に汚泥の脱水機、焼却炉、熱回収ガス冷却部、バグフィルタ、灰溶融炉が配設されている砕石製造装置を用い、 焼却物を焼却して生ずる焼却灰を溶融して溶融スラグ化した後、該溶融スラグを徐冷して結晶化させることにより生成する砕石製造方法において、上記焼却灰中塩基度(CaO/SiO2)を1.5〜2.5となるように消石灰(Ca(OH)2)を添加剤として、上記汚泥の脱水機に投入して焼却灰に混合し、該焼却灰を溶融して生じた溶融スラグを徐冷する結晶化コンベアで、1.5〜2.5時間の滞留時間で徐冷冷却させたことを特徴とする砕石製造方法。 Using the crushed stone production equipment where sludge dehydrator, incinerator, heat recovery gas cooling unit, bag filter, ash melting furnace are arranged in order from the upstream side, In the method for producing crushed stone produced by melting the incinerated ash generated by incineration of the incinerated product to form molten slag, and then cooling and crystallizing the molten slag, the basicity in the incinerated ash (CaO / SiO 2) ) Slaked lime (Ca (OH) 2 ) as an additive so as to be 1.5 to 2.5, was added to the sludge dehydrator and mixed with the incinerated ash, and the incinerated ash was melted. A method for producing crushed stone, characterized in that the molten slag is gradually cooled and cooled with a crystallization conveyor for gradually cooling molten slag for a residence time of 1.5 to 2.5 hours .
JP11619699A 1999-04-23 1999-04-23 Crushed stone manufacturing method Expired - Fee Related JP3692257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11619699A JP3692257B2 (en) 1999-04-23 1999-04-23 Crushed stone manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11619699A JP3692257B2 (en) 1999-04-23 1999-04-23 Crushed stone manufacturing method

Publications (2)

Publication Number Publication Date
JP2000302496A JP2000302496A (en) 2000-10-31
JP3692257B2 true JP3692257B2 (en) 2005-09-07

Family

ID=14681225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11619699A Expired - Fee Related JP3692257B2 (en) 1999-04-23 1999-04-23 Crushed stone manufacturing method

Country Status (1)

Country Link
JP (1) JP3692257B2 (en)

Also Published As

Publication number Publication date
JP2000302496A (en) 2000-10-31

Similar Documents

Publication Publication Date Title
AU583750B2 (en) Treatment of waste and a rotary kiln therefor
KR100313218B1 (en) Method and apparatus for producing mineral wool by using mineral wool waste as regeneration starting material
CN106871131A (en) Device and method for processing industrial dangerous waste sodium sulfate salt slag and recycling
CN106524175A (en) Waste fusing and curing treatment system and method
US5571301A (en) Apparatus for making crystallized glass
HU229528B1 (en) Process and apparatus for making mineral fibres
JP3692257B2 (en) Crushed stone manufacturing method
US4854861A (en) Process for calcining limestone
JPH06506758A (en) Methods and devices for incinerating different types of solid and possibly liquid wastes
CN111810961A (en) Sludge incineration and carbonization cooperative treatment method
JP2000109911A (en) Method for blowing fuel in shaft furnace
JPS6053805B2 (en) Combustible sludge treatment method
JP4133352B2 (en) Waste, incinerated ash, or sludge melting method
JPH0212324B2 (en)
JPH11246244A (en) Apparatus for recovering slag from waste
JP3921044B2 (en) Waste gasification melting treatment facility dust collection method
CN213930963U (en) Real-time coprocessing device of rotary kiln and plasma stove
RU2266872C2 (en) Method and apparatus for manufacturing mineral filaments
JPH09290234A (en) Method of reforming coal ash and method of using reformed cool ash
JPH06129618A (en) Method of melting and processing waste material
JPH10141620A (en) Method for discharging pyrolysis residue, and waste treatment equipment
KR100203534B1 (en) Complex-type apparatus for heat treating of waste material
JPH102526A (en) Pyrolysis reactor for waste disposing apparatus
JP2003094097A (en) Method and system for manufacturing multi-sort resource recovering product using organic waste such as sludge as raw material
JP2963274B2 (en) Cooling method of molten material extracted from waste melting furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees