[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3685356B2 - Method for measuring dopant concentration of silicon wafer - Google Patents

Method for measuring dopant concentration of silicon wafer Download PDF

Info

Publication number
JP3685356B2
JP3685356B2 JP31155397A JP31155397A JP3685356B2 JP 3685356 B2 JP3685356 B2 JP 3685356B2 JP 31155397 A JP31155397 A JP 31155397A JP 31155397 A JP31155397 A JP 31155397A JP 3685356 B2 JP3685356 B2 JP 3685356B2
Authority
JP
Japan
Prior art keywords
dopant concentration
silicon wafer
absorption coefficient
resistivity
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31155397A
Other languages
Japanese (ja)
Other versions
JPH11135586A (en
Inventor
広幸 斉藤
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP31155397A priority Critical patent/JP3685356B2/en
Publication of JPH11135586A publication Critical patent/JPH11135586A/en
Application granted granted Critical
Publication of JP3685356B2 publication Critical patent/JP3685356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、CZシリコンウエハのドーパント濃度を非接触で測定する方法に関するものである。
【0002】
【従来の技術】
従来、CZシリコンウエハのドーパント濃度は、4探針法を用いて測定している。
【0003】
4探針法では、4本の針を1直線上に並べてウエハに接触させ、外側の2本の針から直流電流を流し、内側の2本の針の間に生じる電位差を測定する。そして、得られた電位差から抵抗率を算出し、アーヴィンカーブに従ってドーパント濃度を求める。
【0004】
【発明が解決しようとする課題】
4探針法では、4本の針をウエハ表面に接触させるため、表面に傷が付き易い難点があった。
【0005】
また、針の先端部とウエハの表面との接触状態によって、測定値にばらつきが出易い欠点もあった。複数回測定して平均をとっても良いが、その場合には、それだけ傷が付く可能性が増大する。
【0006】
このような4探針法の問題点に鑑み、本発明は、シリコンウエハに非接触でドーパント濃度を求めることができるドーパント濃度測定方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
本願発明は、ドーパントを含む厚さdのサンプルシリコンウエハと、実質的に同じ厚さdでドーパントを含まないリファレンスシリコンウエハとの赤外線差吸光度Aを測定し、式αe =A/loge/d、(loge=0.4343)によってキャリア吸収係数αe (cm-1)を算出し、キャリア吸収係数αe (cm-1)に関する分散理論の式
【0008】
【数1】
と、ドーパント濃度Nと抵抗率Rの関係を与えるアーヴィンカーブ(Irvincurve)に基づいて、ドーパント濃度N(cm-3)を求めるシリコンウエハのドーパント濃度測定方法を要旨としている。
【0009】
【発明の実施の形態】
本発明のシリコンウエハのドーパント濃度測定方法は、ドーパントを含む厚さdのサンプルシリコンウエハと、実質的に同じ厚さdでドーパントを含まないリファレンスシリコンウエハとの赤外線差吸光度Aを測定し、式αe=A/loge/d、(loge=0.4343)によってキャリア吸収係数αe(cm-1)を算出し、このキャリア吸収係数αe(cm-1)に関する式(以下、本明細書では、この式を分散理論の式と称する)
【0010】
【数1】
と、ドーパント濃度Nと抵抗率Rの関係を与えるアーヴィンカーブ(Irvincurve)に基づいて、ドーパント濃度N(cm-3)を求めるものである。
【0011】
予め、キャリア吸収係数αe (cm-1)に関する前記分散理論の式とアーヴィンカーブ(Irvin curve)に基づいて、吸収係数αe (cm-1)対抵抗率R(Ωcm)の換算表(表1、表4)、または、吸収係数αe (cm-1)対ドーパント濃度N(cm-3)の換算表を作成しておき、この換算表を利用してドーパント濃度N(cm-3)を求めることができる。
【0012】
前記換算表(表1、表4)をグラフ化しておき、このグラフを利用してドーパント濃度N(cm-3)を求めることも可能である。
【0013】
本発明方法では、例えば、波数が650/cmにおける赤外線差吸光度Aを測定することができる。
【0014】
本発明方法では、抵抗率が0.1〜16Ωcmのボロンドープウエハのドーパント濃度を測定することができる。
【0015】
本発明方法では、抵抗率が0.1〜1.6Ωcmのリンドープウエハのドーパント濃度を測定することができる。これらの範囲をはずれると、赤外線吸光度の値とドーパント濃度との相関が少なくなり、測定誤差など種々の要因から1対1対応が正確にできなくなる。
【0016】
【実施例】
アーヴィンカーブ(Irvin curve)は、ASTM F723−81にも規定されており、「抵抗率R」と「ドーパント濃度(キャリア濃度)N」の関係を与えるものである。一般に、アーヴィンカーブは、表及びグラフとして利用されるが、そのグラフを図1に示す。
【0017】
また、古典的分散理論によれば、「キャリア吸収係数αe 」、「キャリア濃度(ドーパント濃度)N」、及び、「電気伝導度δ0 (=1/R)」の間には、次の数式1の関係がある。
【0018】
【数1】
数式1において、κ、m* 、ε0 、cは定数であり、移動度μは数式μ=1/(N・e・δ0 )により、「ドーパント濃度N」と「電気伝導度δ0 」から求められる。
【0019】
従って、「赤外線差吸光度A」を測定し、式αe =A/loge/d、(loge=0.4343)によって「キャリア吸収係数αe 」を算出することによって、非接触で「抵抗率R」、すなわち「ドーパント濃度(キャリア濃度)N」を求めることが可能である。
【0020】
その際、予め、「抵抗率R」の値をいろいろと振って(アーヴィンカーブに従って「ドーパント濃度N」も変わる)、「抵抗率R」対「キャリア吸収係数αe 」の対応表を作っておくと良い。
【0021】
表1は、ボロンドープの場合の「抵抗率R」対「キャリア吸収係数αe 」の対応表である。ただし、真空誘電率ε0 =8.854×10-12 4 2 /m3 kg、Siの比誘電率ε=11.68、電子の電荷e=1.602×10-19 SA、キャリアの有効質量m* =1.78×10-31 kgとした。
【0022】
また、表4は、リンドープの場合の「抵抗率R」対「キャリア吸収係数αe 」の対応表である。ただし、真空誘電率ε0 =8.85418×10-12 4 2 /m3 kg、Siの比誘電率ε=11.68、電子の電荷e=1.60219×10-19 SA、キャリアの有効質量m* =2.642×10-31 kgとした。
【0023】
表1及び表4からも分るように、キャリアによる赤外吸収は、ドーパント濃度が高くなるほど強くなる。また、低波数ほど、強くなる。
【0024】
表1及び表4は、グラフ化しておくと便利である。
【0025】
また、表1及び表4の替わりに、「ドーパント濃度N」の値をいろいろと振って(アーヴィンカーブに従って「抵抗率R」も変わる)、「ドーパント濃度N」対「キャリア吸収係数αe 」の対応表又はグラフを作成しておいても良い。
【0026】
測定対象のウエハの厚さは、例えば600μm〜2mm程度とする。
【0027】
波数は、フリーキャリア以外の赤外吸収が比較的小さい650cm-1を用いることができる。
【0028】
図2に示すように、650cm-1近傍では、シリコンの格子振動の影響、炭素の影響を少なくできる。ただし、その場合には、炭素や他の不純物(存在する場合)のレベルをレファレンスとサンプルとで同じにしなければならない。また、厚さの差による誤差の影響も大きくでるので、注意を要する。
【0029】
もちろん、波数は650cm-1以外でも良い。
【0030】
実施例1
抵抗率の異なる3種類のボロンドープシリコンウエハ(サンプル1〜3、厚さ2mm)と、ノンドープのレファレンスシリコンウエハ(厚さ2mm)を用意し、赤外分光器により垂直入射赤外吸収測定を行い、650cm-1の吸収係数を求めた。
【0031】
サンプル1〜3の差吸光度の実測値、吸収係数の算出値、及び、その算出値から表1に基づいて求めたドーパント濃度を表2に示す。また、図2〜図4には、サンプル1〜3の赤外吸収スペクトルを示す。
【0032】
一方、4探針抵抗率測定法によりサンプル1〜3の抵抗率を測定し、アーヴィンカーブからドーパント濃度を求めた。その結果を表3に示す。
【0033】
そして、吸収係数から調べたドーパント濃度と、抵抗率の実測値から求めたドーパント濃度の相関を求めた。図5は、その相関図である。R2 =0.99で非常に良い相関が得られた。
【0034】
実施例2
抵抗率の異なる4種類のリンドープシリコンウエハ(サンプル4〜7、厚さ2mm)と、ノンドープのレファレンスシリコンウエハ(厚さ2mm)を用意し、赤外分光器により、波数650cm-1の吸収係数を求めた。
【0035】
サンプル4〜7の差吸光度の実測値、吸収係数の算出値、及び、その算出値から表4に基づいて求めたドーパント濃度を表5に示す。また、図5には、測定した赤外吸収スペクトルを示す。
【0036】
一方、4探針抵抗率測定法によりサンプル4〜7の抵抗率を測定し、アーヴィンカーブからドーパント濃度を求めた。その結果を表6に示す。
【0037】
そして、吸収係数から求めたドーパント濃度と、抵抗率の実測値から求めたドーパント濃度の相関を調べた。図5は、その相関図である。R2 =0.99で非常に良い相関が得られた。
【0038】
抵抗率の実測値から求めたドーパント濃度は、吸収係数から求めたドーパント濃度の約0.063倍+3×1015倍の値となっている。従って、両者を自由に換算することが可能である。
【0039】
【表1】

Figure 0003685356
【0040】
【表2】
Figure 0003685356
【0041】
【表3】
Figure 0003685356
【0042】
【表4】
Figure 0003685356
【0043】
【表5】
Figure 0003685356
【0044】
【表6】
Figure 0003685356
【0045】
【発明の効果】
本発明のシリコンウエハのドーパント濃度測定方法によれば、シリコンウエハに非接触でドーパント濃度を求めることができる。
【図面の簡単な説明】
【図1】アーヴィンカーブを示すグラフ。
【図2】波数と吸収係数の関係を示すグラフ。
【図3】実施例1におけるサンプル1の赤外吸収スペクトルを示すグラフ。
【図4】実施例1におけるサンプル2の赤外吸収スペクトルを示すグラフ。
【図5】実施例1におけるサンプル3の赤外吸収スペクトルを示すグラフ。
【図6】実施例1における吸収係数より求めたドーパント濃度と抵抗率より求めたドーパント濃度の相関図。
【図7】実施例2におけるサンプル4〜7の赤外吸収スペクトルを示すグラフ。
【図8】実施例2における吸収係数より求めたドーパント濃度と抵抗率より求めたドーパント濃度の相関図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring the dopant concentration of a CZ silicon wafer in a non-contact manner.
[0002]
[Prior art]
Conventionally, the dopant concentration of a CZ silicon wafer is measured using a four-probe method.
[0003]
In the four-probe method, four needles are aligned on a straight line and brought into contact with the wafer, a direct current is passed from the two outer needles, and a potential difference generated between the two inner needles is measured. Then, the resistivity is calculated from the obtained potential difference, and the dopant concentration is obtained according to the Irvine curve.
[0004]
[Problems to be solved by the invention]
In the four-probe method, since the four needles are brought into contact with the wafer surface, there is a problem that the surface is easily damaged.
[0005]
In addition, there is a drawback that the measured value tends to vary depending on the contact state between the tip of the needle and the surface of the wafer. The average may be obtained by measuring a plurality of times, but in that case, the possibility of scratching increases accordingly.
[0006]
In view of the problems of such a four-probe method, an object of the present invention is to provide a dopant concentration measurement method capable of obtaining a dopant concentration without contact with a silicon wafer.
[0007]
[Means for Solving the Problems]
The present invention measures an infrared difference absorbance A between a sample silicon wafer having a thickness d containing a dopant and a reference silicon wafer having substantially the same thickness d and no dopant, and the formula α e = A / log / d calculates carrier absorption coefficient alpha e a (cm -1) by (loge = 0.4343), wherein [0008] the dispersion theory of carrier absorption coefficient alpha e (cm -1)
[Expression 1]
In addition, the gist of the method is a silicon wafer dopant concentration measurement method for obtaining a dopant concentration N (cm −3 ) based on an Irvin curve that gives a relationship between the dopant concentration N and the resistivity R.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The method for measuring the dopant concentration of a silicon wafer according to the present invention measures an infrared difference absorbance A between a sample silicon wafer having a thickness d containing a dopant and a reference silicon wafer having substantially the same thickness d and not containing a dopant. α e = a / loge / d , (loge = 0.4343) calculated carrier absorption coefficient alpha e a (cm -1) by, for formula (hereinafter this carrier absorption coefficient alpha e (cm -1), herein Then, this formula is called the formula of dispersion theory)
[0010]
[Expression 1]
The dopant concentration N (cm −3 ) is obtained based on an Irvin curve that gives the relationship between the dopant concentration N and the resistivity R.
[0011]
A conversion table (table) of absorption coefficient α e (cm −1 ) versus resistivity R (Ωcm) based on the dispersion theory formula and Irvin curve regarding the carrier absorption coefficient α e (cm −1 ) in advance. 1, Table 4), or a conversion table of absorption coefficient α e (cm −1 ) vs. dopant concentration N (cm −3 ) is prepared, and the dopant concentration N (cm −3 ) is utilized using this conversion table. Can be requested.
[0012]
It is also possible to graph the conversion tables (Tables 1 and 4) and obtain the dopant concentration N (cm −3 ) using this graph.
[0013]
In the method of the present invention, for example, the infrared difference absorbance A at a wave number of 650 / cm can be measured.
[0014]
In the method of the present invention, the dopant concentration of a boron-doped wafer having a resistivity of 0.1 to 16 Ωcm can be measured.
[0015]
In the method of the present invention, the dopant concentration of a phosphorus-doped wafer having a resistivity of 0.1 to 1.6 Ωcm can be measured. Outside these ranges, there is less correlation between the infrared absorbance value and the dopant concentration, and a one-to-one correspondence cannot be made accurately due to various factors such as measurement errors.
[0016]
【Example】
Irvin curve is also defined in ASTM F723-81, and gives a relationship between “resistivity R” and “dopant concentration (carrier concentration) N”. In general, the Irvine curve is used as a table and a graph, and the graph is shown in FIG.
[0017]
Further, according to the classical dispersion theory, the “carrier absorption coefficient α e ”, “carrier concentration (dopant concentration) N”, and “electric conductivity δ 0 (= 1 / R)” are There is a relationship of Formula 1.
[0018]
[Expression 1]
In Equation 1, κ, m * , ε 0 , and c are constants, and the mobility μ is expressed as “dopant concentration N” and “electrical conductivity δ 0 ” according to the equation μ = 1 / (N · e · δ 0 ). It is requested from.
[0019]
Accordingly, by measuring the “infrared difference absorbance A” and calculating the “carrier absorption coefficient α e ” by the equation α e = A / log / d, (log = 0.4343), the “resistivity R ", That is," dopant concentration (carrier concentration) N "can be obtained.
[0020]
At that time, the value of “resistivity R” is varied in various ways (“dopant concentration N” varies according to the Irvine curve), and a correspondence table of “resistivity R” vs. “carrier absorption coefficient α e ” is prepared. And good.
[0021]
Table 1 is a correspondence table of “resistivity R” versus “carrier absorption coefficient α e ” in the case of boron doping. However, vacuum dielectric constant ε 0 = 8.854 × 10 −12 S 4 A 2 / m 3 kg, Si relative dielectric constant ε = 11.68, electron charge e = 1.602 × 10 −19 SA, carrier The effective mass of m * was 1.78 × 10 −31 kg.
[0022]
Table 4 is a correspondence table of “resistivity R” versus “carrier absorption coefficient α e ” in the case of phosphorus doping. However, vacuum dielectric constant ε 0 = 8.85418 × 10 −12 S 4 A 2 / m 3 kg, Si dielectric constant ε = 11.68, electron charge e = 1.60219 × 10 −19 SA, carrier The effective mass of m * = 2.642 × 10 −31 kg.
[0023]
As can be seen from Tables 1 and 4, the infrared absorption by carriers increases as the dopant concentration increases. Also, the lower the wave number, the stronger.
[0024]
Tables 1 and 4 are convenient if they are graphed.
[0025]
Also, instead of Table 1 and Table 4, the value of “Dopant Concentration N” is changed variously (“Resistivity R” also changes according to the Irvine curve), and “Dopant Concentration N” vs. “Carrier Absorption Coefficient α e ” A correspondence table or graph may be created.
[0026]
The thickness of the wafer to be measured is about 600 μm to 2 mm, for example.
[0027]
As the wave number, 650 cm −1 with relatively small infrared absorption other than free carriers can be used.
[0028]
As shown in FIG. 2, in the vicinity of 650 cm −1 , the influence of silicon lattice vibration and the influence of carbon can be reduced. However, in that case, the level of carbon and other impurities (if present) must be the same for the reference and the sample. In addition, since the influence of the error due to the difference in thickness is large, attention is required.
[0029]
Of course, the wave number may be other than 650 cm −1 .
[0030]
Example 1
Three types of boron-doped silicon wafers with different resistivity (samples 1 to 3, thickness 2 mm) and non-doped reference silicon wafers (thickness 2 mm) are prepared, and normal incidence infrared absorption measurement is performed with an infrared spectrometer. The absorption coefficient of 650 cm −1 was determined.
[0031]
Table 2 shows the measured values of the differential absorbance of samples 1 to 3, the calculated value of the absorption coefficient, and the dopant concentration obtained from the calculated value based on Table 1. Moreover, in FIGS. 2-4, the infrared absorption spectrum of the samples 1-3 is shown.
[0032]
On the other hand, the resistivity of Samples 1 to 3 was measured by the 4-probe resistivity measurement method, and the dopant concentration was determined from the Irvine curve. The results are shown in Table 3.
[0033]
And the correlation of the dopant density | concentration investigated from the absorption coefficient and the dopant density | concentration calculated | required from the measured value of resistivity was calculated | required. FIG. 5 is a correlation diagram thereof. A very good correlation was obtained with R 2 = 0.99.
[0034]
Example 2
Four types of phosphorus-doped silicon wafers (samples 4 to 7, thickness 2 mm) having different resistivity and non-doped reference silicon wafers (thickness 2 mm) are prepared, and absorption coefficient of wave number 650 cm −1 is obtained by an infrared spectrometer. Asked.
[0035]
Table 5 shows the measured values of the differential absorbance of samples 4 to 7, the calculated value of the absorption coefficient, and the dopant concentration obtained from the calculated value based on Table 4. FIG. 5 shows the measured infrared absorption spectrum.
[0036]
On the other hand, the resistivity of Samples 4 to 7 was measured by the 4-probe resistivity measurement method, and the dopant concentration was determined from the Irvine curve. The results are shown in Table 6.
[0037]
And the correlation of the dopant concentration calculated | required from the absorption coefficient and the dopant concentration calculated | required from the measured value of resistivity was investigated. FIG. 5 is a correlation diagram thereof. A very good correlation was obtained with R 2 = 0.99.
[0038]
The dopant concentration obtained from the measured resistivity value is approximately 0.063 times + 3 × 10 15 times the dopant concentration obtained from the absorption coefficient. Therefore, it is possible to convert both freely.
[0039]
[Table 1]
Figure 0003685356
[0040]
[Table 2]
Figure 0003685356
[0041]
[Table 3]
Figure 0003685356
[0042]
[Table 4]
Figure 0003685356
[0043]
[Table 5]
Figure 0003685356
[0044]
[Table 6]
Figure 0003685356
[0045]
【The invention's effect】
According to the dopant concentration measuring method for a silicon wafer of the present invention, the dopant concentration can be obtained without contact with the silicon wafer.
[Brief description of the drawings]
FIG. 1 is a graph showing an irvine curve.
FIG. 2 is a graph showing the relationship between wave number and absorption coefficient.
3 is a graph showing an infrared absorption spectrum of Sample 1 in Example 1. FIG.
4 is a graph showing an infrared absorption spectrum of Sample 2 in Example 1. FIG.
5 is a graph showing an infrared absorption spectrum of Sample 3 in Example 1. FIG.
6 is a correlation diagram between a dopant concentration obtained from an absorption coefficient and a dopant concentration obtained from resistivity in Example 1. FIG.
7 is a graph showing infrared absorption spectra of Samples 4 to 7 in Example 2. FIG.
8 is a correlation diagram between a dopant concentration obtained from an absorption coefficient and a dopant concentration obtained from resistivity in Example 2. FIG.

Claims (5)

ドーパントを含む厚さdのサンプルシリコンウエハと、実質的に同じ厚さdでドーパントを含まないリファレンスシリコンウエハとの赤外線差吸光度Aを測定し、式αe=A/(d・loge)、(loge=0.4343)によってキャリア吸収係数αe(cm-1)を算出し、そのキャリア吸収係数αe (cm-1)に関する式
Figure 0003685356
と、ドーパント濃度Nと抵抗率Rの関係を与えるアーヴィンカーブ(Irvin curve)に基づいて、ドーパント濃度N(cm-3)を求めるシリコンウエハのドーパント濃度測定方法。
Infrared-difference absorbance A of a sample silicon wafer having a thickness d containing a dopant and a reference silicon wafer having substantially the same thickness d and no dopant is measured, and the formula α e = A / (d · log) , ( loge = calculated carrier absorption coefficient alpha e a (cm -1) by 0.4343), the equation for the carrier absorption coefficient .alpha.e (cm -1)
Figure 0003685356
And a silicon wafer dopant concentration measurement method for obtaining a dopant concentration N (cm −3 ) based on an Irvin curve giving a relationship between the dopant concentration N and the resistivity R.
予め、キャリア吸収係数αe (cm-1)に関する前記分散理論の式とアーヴィンカーブ(Irvin curve)に基づいて、吸収係数αe(cm-1)対抵抗率R(Ωcm)の換算表(表1、表4)、または、吸収係数αe(cm-1)対ドーパント濃度N(cm-3)の換算表を作成しておき、この換算表を利用してドーパント濃度N(cm-3)を求めることを特徴とする請求項1に記載のシリコンウエハのドーパント濃度測定方法。Advance, based on the formula and Arvin curve of the dispersion theories carrier absorption coefficient αe (cm -1) (Irvin curve ), conversion chart of the absorption coefficient α e (cm -1) versus resistivity R ([Omega] cm) (Table 1 , Table 4), or, the absorption coefficient α e (cm -1) in advance to create a conversion table of pairs dopant concentration N (cm -3), by utilizing the conversion table dopant concentration N a (cm -3) 2. The method for measuring a dopant concentration of a silicon wafer according to claim 1, wherein the concentration is determined. 波数が650/cmにおける赤外線差吸光度Aを測定することを特徴とする請求項1又は2に記載のシリコンウエハのドーパント濃度測定方法。  The method for measuring a dopant concentration of a silicon wafer according to claim 1, wherein the infrared difference absorbance A at a wave number of 650 / cm is measured. 抵抗率が0.1〜16Ωcmのボロンドープウエハのドーパント濃度を測定することを特徴とする請求項1〜3のいずれか1項に記載のシリコンウエハのドーパント濃度測定方法。  The method for measuring a dopant concentration of a silicon wafer according to any one of claims 1 to 3, wherein the dopant concentration of a boron-doped wafer having a resistivity of 0.1 to 16 Ωcm is measured. 抵抗率が0.1〜1.6Ωcmのリンドープウエハのドーパント濃度を測定することを特徴とする請求項1〜3のいずれか1項に記載のシリコンウエハのドーパント濃度測定方法。  4. The method for measuring a dopant concentration of a silicon wafer according to claim 1, wherein the dopant concentration of a phosphorus-doped wafer having a resistivity of 0.1 to 1.6 Ωcm is measured.
JP31155397A 1997-10-29 1997-10-29 Method for measuring dopant concentration of silicon wafer Expired - Fee Related JP3685356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31155397A JP3685356B2 (en) 1997-10-29 1997-10-29 Method for measuring dopant concentration of silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31155397A JP3685356B2 (en) 1997-10-29 1997-10-29 Method for measuring dopant concentration of silicon wafer

Publications (2)

Publication Number Publication Date
JPH11135586A JPH11135586A (en) 1999-05-21
JP3685356B2 true JP3685356B2 (en) 2005-08-17

Family

ID=18018629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31155397A Expired - Fee Related JP3685356B2 (en) 1997-10-29 1997-10-29 Method for measuring dopant concentration of silicon wafer

Country Status (1)

Country Link
JP (1) JP3685356B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713757B2 (en) * 2008-03-14 2010-05-11 Applied Materials, Inc. Method for measuring dopant concentration during plasma ion implantation
JP5561217B2 (en) * 2011-03-18 2014-07-30 信越半導体株式会社 Method for measuring lifetime value and method for selecting wafer using the same
WO2016098868A1 (en) 2014-12-17 2016-06-23 株式会社村田製作所 Piezoelectric vibrator and piezoelectric vibration device
EP3533081B1 (en) * 2016-10-26 2021-04-14 GlobalWafers Co., Ltd. High resistivity silicon-on-insulator substrate having enhanced charge trapping efficiency
JP7132719B2 (en) * 2018-01-19 2022-09-07 ローム株式会社 semiconductor equipment
US11598023B2 (en) 2020-06-29 2023-03-07 Sumco Corporation Low resistivity wafer and method of manufacturing thereof

Also Published As

Publication number Publication date
JPH11135586A (en) 1999-05-21

Similar Documents

Publication Publication Date Title
Ziegler et al. Technique for determining concentration profiles of boron impurities in substrates
Feenstra et al. Tunneling spectroscopy of the Si (111) 2× 1 surface
Apker et al. Photoelectric emission and contact potentials of semiconductors
Massarani et al. Hopping conduction in semiconducting diamond
Seto Piezoresistive properties of polycrystalline silicon
Perego et al. Charging phenomena in dielectric/semiconductor heterostructures during x-ray photoelectron spectroscopy measurements
Lee et al. A critical investigation of a-Si: H photoconductivity generated by subgap absorption of light
JP3685356B2 (en) Method for measuring dopant concentration of silicon wafer
KR101931713B1 (en) C-v characteristic measurement system and method for measuring cv characteristics
Abdel-Malik et al. Charge transport in nickel phthalocyanine crystals. I. Ohmic and space-charge-limited currents in vacuum ambient
EP0511145B1 (en) Method for determining the thickness of an interfacial polysilicon/silicon oxide film
De Antonis et al. Measuring the bulk resistivity of CdZnTe single crystal detectors using a contactless alternating electric field method
Goodman Silicon‐wafer‐surface damage revealed by surface photovoltage measurements
Mottram et al. P-type surface layers on n-type silicon heat-cleaned in UHV
Muzykov et al. High resistivity measurement of SiC wafers using different techniques
Kotlensky et al. Tensile properties of glassy carbon to 2,900 C
Griffin Photothermal ionisation spectroscopy studies on shallow impurities in silicon
Roth et al. Electronic properties and dopant pairing behavior of manganese in boron-doped silicon
del Alamo et al. Photovoltaic measurement of bandgap narrowing in moderately doped silicon
Bisognin et al. Substitutional B in Si: Accurate lattice parameter determination
Aleksandrov et al. p–n junctions in the surface region of silicon obtained by evaporation of silicon in ultrahigh vacuum
Liao et al. Depth profiles of boron and hydrogen in boron-doped diamond films and related performance characteristics
Schöner et al. Hall effect investigations of 4H–SiC epitaxial layers grown on semi-insulating and conducting substrates
RU1559983C (en) Method of operational control over ion-doped layers
Sahli et al. Effect of postdeposition anneal on the resistivitity of p‐type polycrystalline diamond films

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050526

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees