JP3685271B2 - Reinforced concrete beams using extremely low yield point steel - Google Patents
Reinforced concrete beams using extremely low yield point steel Download PDFInfo
- Publication number
- JP3685271B2 JP3685271B2 JP03202796A JP3202796A JP3685271B2 JP 3685271 B2 JP3685271 B2 JP 3685271B2 JP 03202796 A JP03202796 A JP 03202796A JP 3202796 A JP3202796 A JP 3202796A JP 3685271 B2 JP3685271 B2 JP 3685271B2
- Authority
- JP
- Japan
- Prior art keywords
- yield point
- low yield
- reinforced concrete
- point steel
- extremely low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Rod-Shaped Construction Members (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は鉄筋コンクリート構造梁に係るものである。
【0002】
【従来の技術】
従来の鉄筋コンクリート梁は、一般に同一種の鉄筋を主筋に用い、同主筋間にせん断補強筋(スターラップ)を配筋し、コンクリートを打設して製作される。
【0003】
【発明が解決しようとする課題】
従来の鉄筋コンクリート梁は、鉄骨梁、鉄骨鉄筋コンクリート梁とくらべて、地震時のエネルギー吸収能力に劣る欠点がある。また鉄筋コンクリート梁は大地震時には曲げひび割れ等の目にみえる損傷が著しい。図4は従来工法の地震時の曲げひび割れ発生状況を示し、01は柱、02は梁、03は曲げひび割れ、04は梁せん断力、05は梁曲げモーメントを示す。
【0004】
本発明は前記従来の各梁の有する欠点に鑑みて提案されたもので、その目的とするところは前記従来の鉄筋コンクリート梁と同等の構造性能を有し、地震には優れたエネルギー吸収性能を発揮し、建物の耐震安全性を保証し、且つ外観の損傷の発生を抑える鉄筋コンクリート梁を提供する点にある。
【0005】
【課題を解決するための手段】
前記の目的を達成するため、本発明に係る極低降伏点鋼を用いた鉄筋コンクリート梁は、梁主筋に高強度鉄筋と極低降伏点鋼鉄筋を併用し、地震時に梁の曲げに伴うひび割れを誘発させる目地を梁端部近傍のコンクリート部分に設け、該目地に防水処理を施し、地震時の梁の曲げに伴う前記極低降伏点鋼鉄筋の塑性変形により振動エネルギーを吸収させるようにしたことを特徴とする。
【0006】
【発明の実施の形態】
以下、本発明を図示の好ましい実施の形態について説明する。
図1は本発明に係る鉄筋コンクリート梁の一実施例の配筋状況を示す断面図、図2及び図3は夫々図1の鉄筋コンクリート梁のひび割れ誘発目地及び防水層を示す側面図及び平面図を示し、図中Pは鉄筋コンクリート梁で、梁主筋1として例えばSD590クラスの高強度鉄筋が使用されるとともに、降伏点σy =1.0t/cm2 程度の極低降伏点鋼製の梁主筋2が併用されている。
【0007】
3はスターラップ、4はコンクリートである。
更に前記梁Pの梁端部近傍のコンクリート部分には、地震時に梁の曲げに伴うひび割れを誘発させるひび割れ誘発目地5が設けられ、この目地5は防水層6によって防水処理が施されている。図中7はスラブ、8はスラブ有効幅Lである。
図示の実施例によれば鉄筋コンクリート梁Pは梁主筋に高強度梁主筋1と極低降伏点鋼製の梁主筋2を併用したことによって従来強度の鉄筋を使用して鉄筋コンクリート梁と同等の曲げ耐力を有するように設計することができ、また極低降伏点鋼製の梁主筋2は降伏点が低く変形性能に富むため、地震時には梁Pの曲げに伴う極低降伏点鋼製の梁主筋2の塑性変形により比較的小変形から振動エネルギー吸収能力が発揮される。
【0008】
また前記梁Pに設けられたひび割れ誘発目地5によって地震時には所定の位置でのみひび割れを発生させ、更に防水処理のために用いられるシーリングが曲げひび割れの外部に露呈するのを掩蔽するものである。
なお図5及び図6は、30階の高層鉄筋コンクリート造建物の下階層の梁の断面を示し、図5においては高強度鉄筋SD390,(σy =4.0t/cm2 )を有する高強度鉄筋が使用され、図示の如く上下共5本の高強度鉄筋が2段に配筋され、図6においては図1に示す部材とほぼ同等の曲げ耐力を有するように前記高強度鉄筋x(σy =6.0t/cm2 )及び極低降伏点鋼鉄筋y(LYP100,σy =1.0t/cm2 )が組み合わせて配筋されている。
【0009】
図7は前記梁のモーメント−部材角関係のスケルトンカーブを示し、図5に示す梁で鉄筋が降伏するとその部材角Ry での復元力について検討するに、復元力のモデルを原点指向型と仮定すると、図5の梁の場合部材角Ry まで変形させて除荷した場合の履歴吸収エネルギーE1 はΔOABで与えられる。
同様のモデルを図6に示す梁に適用すると、履歴吸収エネルギーE2 はΔOACで与えられる。しかしながら図6に示す梁では低降伏点鋼鉄筋yを用いているから、E2 の他に塑性吸収エネルギーも存在するので原点指向型の復元性特性は示さないものと考えられる。
【0010】
ここで図6に示す梁の場合、部材角Ry まで変形させて除荷した場合の吸収エネルギーE2a次式で与えられると仮定する。
E2a=E2 +E2p
但し、E2 :ΔOACで与えられる吸収エネルギー
E2p:低降伏点の鉄筋が吸収する塑性エネルギー
E2pは低降伏点鋼を用いた鉄筋のひずみ分布図より求められ、この塑性エネルギーE2pは前掲図7のモーメント−部材角の関係図における斜線で示したΔOCDとなる。
【0011】
次に図5に示す梁と図6に示す梁との吸収エネルギーを対比すると
【0012】
【数1】
【0013】
従って、図6に示す梁は図5に示す梁の場合に比して剛性は低いが吸収エネルギーは3.21倍程度あると考えられる。但しこの倍率は図7から明らかなように部材角Rによって異なる。
【0014】
【発明の効果】
本発明に係る鉄筋コンクリート梁は前記したように、梁主筋に高強度鉄筋と、極低降伏点鋼鉄筋とを併用したことによって、従来強度の鉄筋を使用した鉄筋コンクリート梁と同等の曲げ耐力を有するように設計するたとができる。而して前記極低降伏点鋼鉄筋は降伏点が低く、変形性能に富むため、地震時には比較的小変形からエネルギー吸収能力が発揮できる。
【0015】
またひび割れ誘発目地は梁の所定位置での曲げひび割れを発生させ、他の位置に曲げひび割れを生じさせない効果がある。更に防水処理のために設けるシーリング材は曲げひび割れを掩蔽する効果を有する。
この結果、本発明に係る鉄筋コンクリート梁は、地震時には優れたエネルギー吸収性能によって建物の耐震安全性を保証し、且つ外観の損傷を掩蔽しうるものである。
【図面の簡単な説明】
【図1】本発明に係る極低降伏点鋼を用いた鉄筋コンクリート梁の一実施例を示す縦断面図である。
【図2】前記鉄筋コンクリート梁におけるひび割れ誘発目地及び防水層を示す側面図である。
【図3】図2の平面図である。
【図4】従来の鉄筋コンクリート梁の地震時におけるひび割れ発生状況を示す側面図である。
【図5】高層鉄筋コンクリート建造物における高強度鉄筋を使用した下層階の梁の縦断面図である。
【図6】高層鉄筋コンクリート建造物における高強度鉄筋と低強度鉄筋を組合わせて使用した梁の縦断面図である。
【図7】前記鉄筋のスケルトンカーブである。
【符号の説明】
1 梁主筋(高強度鉄筋)
2 梁主筋(極低降伏点鋼鉄筋)
3 スターラップ
4 コンクリート
5 ひび割れ誘発目地
6 防水層
7 スラブ
8 スラブ有効幅
P 鉄筋コンクリート梁[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reinforced concrete structural beam.
[0002]
[Prior art]
Conventional reinforced concrete beams are generally manufactured by using the same type of reinforcing bar as the main bar, placing a shear reinforcement (stirrup) between the main bars, and placing concrete.
[0003]
[Problems to be solved by the invention]
Conventional reinforced concrete beams have a drawback that they are inferior in energy absorption capacity during earthquakes, compared to steel beams and steel reinforced concrete beams. In addition, reinforced concrete beams suffer significant damage such as bending cracks during a large earthquake. FIG. 4 shows the occurrence of bending cracks at the time of an earthquake in the conventional method, where 01 indicates a column, 02 indicates a beam, 03 indicates a bending crack, 04 indicates a beam shear force, and 05 indicates a beam bending moment.
[0004]
The present invention has been proposed in view of the disadvantages of the conventional beams, and the object is to have structural performance equivalent to that of the conventional reinforced concrete beams and to exhibit excellent energy absorption performance in earthquakes. The object of the present invention is to provide a reinforced concrete beam that guarantees seismic safety of the building and suppresses the appearance damage.
[0005]
[Means for Solving the Problems]
To achieve the above object, reinforced concrete beams using a very low yield steel according to the present invention, a combination of high strength reinforcement and low yield point steel rebar to the beam main reinforcements, cracks due to bending of the beam during an earthquake The joint to be induced is provided in the concrete part near the end of the beam, the joint is waterproofed, and vibration energy is absorbed by plastic deformation of the extremely low yield point steel bars accompanying bending of the beam during an earthquake. It is characterized by.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to the preferred embodiments shown in the drawings.
FIG. 1 is a cross-sectional view showing a bar arrangement state of an embodiment of a reinforced concrete beam according to the present invention, and FIGS. 2 and 3 are a side view and a plan view showing a crack-inducing joint and a waterproof layer of the reinforced concrete beam of FIG. In the figure, P is a reinforced concrete beam, and, for example, a high strength steel of SD590 class is used as the beam
[0007]
3 is stirrup and 4 is concrete.
More concrete portions of the beam end near the beam P, cracks split Re induced
According to the illustrated embodiment, the reinforced concrete beam P has a bending strength equivalent to that of a reinforced concrete beam by using a high strength beam
[0008]
Further, the crack-inducing
[0009]
FIG. 7 shows a skeleton curve of the moment-member angle relationship of the beam. When the reinforcing bar yields in the beam shown in FIG. 5, the restoring force model at the member angle R y is considered as an origin-oriented model. Assuming that, in the case of the beam in FIG. 5, the hysteresis absorption energy E 1 when the material is unloaded after being deformed to the member angle R y is given by ΔOAB.
When a similar model is applied to the beam shown in FIG. 6, the hysteresis absorption energy E 2 is given by ΔOAC. However, since the beam shown in FIG. 6 uses the low yield point steel rebar y, plastic-absorbed energy is also present in addition to E 2 , so that it is considered that the origin-oriented resilience characteristic is not exhibited.
[0010]
Here, in the case of the beam shown in FIG. 6, it is assumed that the absorbed energy E 2a is given by the following equation when the member is deformed to the member angle R y and unloaded.
E 2a = E 2 + E 2p
However, E 2 : Absorbed energy given by ΔOAC E 2p : The plastic energy E 2p absorbed by the low yield point rebar is obtained from the strain distribution map of the rebar using the low yield point steel, and this plastic energy E 2p is described above. This is ΔOCD indicated by hatching in the moment-member angle relationship diagram of FIG.
[0011]
Next, when the absorbed energy of the beam shown in FIG. 5 and the beam shown in FIG. 6 are compared, [0012]
[Expression 1]
[0013]
Therefore, it is considered that the beam shown in FIG. 6 has a lower rigidity than the beam shown in FIG. 5, but the absorbed energy is about 3.21 times. However, this magnification varies depending on the member angle R as apparent from FIG.
[0014]
【The invention's effect】
As described above, the reinforced concrete beam according to the present invention has a bending strength equivalent to that of a reinforced concrete beam using a conventional reinforcing bar by using a high strength reinforcing bar and an extremely low yield point steel reinforcing bar in combination with the beam main reinforcing bar. You can design it. Thus, the extremely low yield point steel rebar has a low yield point and is highly deformable, so that it can exhibit energy absorbing ability from a relatively small deformation during an earthquake.
[0015]
In addition, the crack-inducing joint has an effect of generating a bending crack at a predetermined position of the beam and not causing a bending crack at another position. Further, the sealing material provided for waterproofing has an effect of covering the bending cracks.
As a result, the reinforced concrete beam according to the present invention guarantees the earthquake-proof safety of the building by the excellent energy absorption performance at the time of earthquake and can cover the appearance damage.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of a reinforced concrete beam using an extremely low yield point steel according to the present invention.
FIG. 2 is a side view showing a crack-inducing joint and a waterproof layer in the reinforced concrete beam.
FIG. 3 is a plan view of FIG. 2;
FIG. 4 is a side view showing a state of occurrence of cracks in a conventional reinforced concrete beam during an earthquake.
FIG. 5 is a longitudinal sectional view of a beam on a lower floor using a high-strength reinforcing bar in a high-rise reinforced concrete building.
FIG. 6 is a longitudinal sectional view of a beam using a combination of a high strength rebar and a low strength rebar in a high-rise reinforced concrete building.
FIG. 7 is a skeleton curve of the reinforcing bar.
[Explanation of symbols]
1 Beam reinforcement (high-strength reinforcement)
2 Beam reinforcement (extremely low yield point steel reinforcement)
3
Claims (1)
梁主筋に高強度鉄筋と極低降伏点鋼鉄筋を併用し、地震時に梁の曲げに伴うひび割れを誘発させる目地を梁端部近傍のコンクリート部分に設け、該目地に防水処理を施し、地震時の梁の曲げに伴う前記極低降伏点鋼鉄筋の塑性変形により振動エネルギーを吸収させるようにしたことを特徴とする極低降伏点鋼を用いた鉄筋コンクリート梁。 In reinforced concrete beams using extremely low yield point steel,
Beams of high strength reinforcement and low yield point steel rebar together to the main reinforcement, provided the concrete portion of the joint of the beam end near to induce cracks caused by the bending of the beam during an earthquake, waterproofed to said purpose locations, earthquake A reinforced concrete beam using an ultra-low yield point steel, wherein vibration energy is absorbed by plastic deformation of the ultra-low yield point steel bar accompanying bending of the beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03202796A JP3685271B2 (en) | 1996-02-20 | 1996-02-20 | Reinforced concrete beams using extremely low yield point steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03202796A JP3685271B2 (en) | 1996-02-20 | 1996-02-20 | Reinforced concrete beams using extremely low yield point steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09221872A JPH09221872A (en) | 1997-08-26 |
JP3685271B2 true JP3685271B2 (en) | 2005-08-17 |
Family
ID=12347390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03202796A Expired - Fee Related JP3685271B2 (en) | 1996-02-20 | 1996-02-20 | Reinforced concrete beams using extremely low yield point steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3685271B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003090143A (en) * | 2001-09-18 | 2003-03-28 | Shimizu Corp | Boundary beam |
CN103061450B (en) * | 2012-12-29 | 2015-03-18 | 青海民族大学 | High-strength reinforcing steel bar self-compaction steel fiber ultrahigh-strength concrete transfer girder |
JP6152975B2 (en) * | 2013-06-10 | 2017-06-28 | 清水建設株式会社 | High toughness RC beam structure |
CN103924728B (en) * | 2014-04-12 | 2016-08-17 | 北京工业大学 | End soap-free emulsion polymeization variable strength reinforced beam |
CN104047428A (en) * | 2014-06-16 | 2014-09-17 | 南华大学 | Method for enhancing ductility of high-strength concrete pier stud |
-
1996
- 1996-02-20 JP JP03202796A patent/JP3685271B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09221872A (en) | 1997-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3685271B2 (en) | Reinforced concrete beams using extremely low yield point steel | |
JPS6145042A (en) | Mold frame for casting concrete | |
JP5498103B2 (en) | Buckling restraint brace | |
US3286415A (en) | Reinforced shell construction | |
JP3938718B2 (en) | Reinforced concrete beam structure | |
JPH0742727B2 (en) | Connection structure of columns and beams | |
JPH03180675A (en) | Earthquake insulating wall | |
JPH078673Y2 (en) | Composite beam structure | |
JPH0813848A (en) | Structure of boundary column base for multistory shear wall | |
JP2757060B2 (en) | Reinforcement structure of beams in reinforced concrete frame structure | |
JPH07324379A (en) | Unbonded steel brace stiffened with reinforced concrete | |
JPS628270Y2 (en) | ||
JPH0749732B2 (en) | Multi-story earthquake-resistant wall structure in high-rise building | |
JPH05230935A (en) | Precase concrete made beam frame member | |
JPH0329938B2 (en) | ||
JP2653338B2 (en) | Steel embedded formwork for wall members | |
JP3292269B2 (en) | Concrete segment | |
JPH04216741A (en) | Reinforced concrete wall column having high recovery characteristics | |
JPS647192B2 (en) | ||
JPH01125437A (en) | Reinforced concrete post | |
JPH074111A (en) | Construction method of prestressed concrete slab and tank | |
JPH05302398A (en) | Precast concrete beam | |
JP2003074192A (en) | Seismic strengthening structure | |
JPH0821002A (en) | Reinforcing structure in junction between reinforced concrete pole and steel beam | |
JPH0682231U (en) | Precast concrete pillars |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041029 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050525 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050525 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110610 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110610 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120610 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120610 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130610 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |