[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3685271B2 - Reinforced concrete beams using extremely low yield point steel - Google Patents

Reinforced concrete beams using extremely low yield point steel Download PDF

Info

Publication number
JP3685271B2
JP3685271B2 JP03202796A JP3202796A JP3685271B2 JP 3685271 B2 JP3685271 B2 JP 3685271B2 JP 03202796 A JP03202796 A JP 03202796A JP 3202796 A JP3202796 A JP 3202796A JP 3685271 B2 JP3685271 B2 JP 3685271B2
Authority
JP
Japan
Prior art keywords
yield point
low yield
reinforced concrete
point steel
extremely low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03202796A
Other languages
Japanese (ja)
Other versions
JPH09221872A (en
Inventor
聡 佐々木
清 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP03202796A priority Critical patent/JP3685271B2/en
Publication of JPH09221872A publication Critical patent/JPH09221872A/en
Application granted granted Critical
Publication of JP3685271B2 publication Critical patent/JP3685271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は鉄筋コンクリート構造梁に係るものである。
【0002】
【従来の技術】
従来の鉄筋コンクリート梁は、一般に同一種の鉄筋を主筋に用い、同主筋間にせん断補強筋(スターラップ)を配筋し、コンクリートを打設して製作される。
【0003】
【発明が解決しようとする課題】
従来の鉄筋コンクリート梁は、鉄骨梁、鉄骨鉄筋コンクリート梁とくらべて、地震時のエネルギー吸収能力に劣る欠点がある。また鉄筋コンクリート梁は大地震時には曲げひび割れ等の目にみえる損傷が著しい。図4は従来工法の地震時の曲げひび割れ発生状況を示し、01は柱、02は梁、03は曲げひび割れ、04は梁せん断力、05は梁曲げモーメントを示す。
【0004】
本発明は前記従来の各梁の有する欠点に鑑みて提案されたもので、その目的とするところは前記従来の鉄筋コンクリート梁と同等の構造性能を有し、地震には優れたエネルギー吸収性能を発揮し、建物の耐震安全性を保証し、且つ外観の損傷の発生を抑える鉄筋コンクリート梁を提供する点にある。
【0005】
【課題を解決するための手段】
前記の目的を達成するため、本発明に係る極低降伏点鋼を用いた鉄筋コンクリート梁は、梁主筋に高強度鉄筋と極低降伏点鋼鉄筋を併用地震時に梁の曲げに伴うひび割れを誘発させる目地を梁端部近傍のコンクリート部分に設け、該目地に防水処理を施し、地震時の梁の曲げに伴う前記極低降伏点鋼鉄筋の塑性変形により振動エネルギーを吸収させるようにしたことを特徴とする。
【0006】
【発明の実施の形態】
以下、本発明を図示の好ましい実施の形態について説明する。
図1は本発明に係る鉄筋コンクリート梁の一実施例の配筋状況を示す断面図、図2及び図3は夫々図1の鉄筋コンクリート梁のひび割れ誘発目地及び防水層を示す側面図及び平面図を示し、図中Pは鉄筋コンクリート梁で、梁主筋1として例えばSD590クラスの高強度鉄筋が使用されるとともに、降伏点σy =1.0t/cm2 程度の極低降伏点鋼製の梁主筋2が併用されている。
【0007】
3はスターラップ、4はコンクリートである。
更に前記梁Pの梁端部近傍のコンクリート部分には、地震時に梁の曲げに伴うひび割れを誘発させるひびれ誘発目地5が設けられ、この目地5は防水層6によって防水処理が施されている。図中7はスラブ、8はスラブ有効幅Lである。
図示の実施例によれば鉄筋コンクリート梁Pは梁主筋に高強度梁主筋1と極低降伏点鋼製の梁主筋2を併用したことによって従来強度の鉄筋を使用して鉄筋コンクリート梁と同等の曲げ耐力を有するように設計することができ、また極低降伏点鋼製の梁主筋2は降伏点が低く変形性能に富むため、地震時には梁Pの曲げに伴う極低降伏点鋼製の梁主筋2の塑性変形により比較的小変形から振動エネルギー吸収能力が発揮される。
【0008】
また前記梁Pに設けられたひび割れ誘発目地5によって地震時には所定の位置でのみひび割れを発生させ、更に防水処理のために用いられるシーリングが曲げひび割れの外部に露呈するのを掩蔽するものである。
なお図5及び図6は、30階の高層鉄筋コンクリート造建物の下階層の梁の断面を示し、図5においては高強度鉄筋SD390,(σy =4.0t/cm2 )を有する高強度鉄筋が使用され、図示の如く上下共5本の高強度鉄筋が2段に配筋され、図6においては図1に示す部材とほぼ同等の曲げ耐力を有するように前記高強度鉄筋x(σy =6.0t/cm2 )及び極低降伏点鋼鉄筋y(LYP100,σy =1.0t/cm2 )が組み合わせて配筋されている。
【0009】
図7は前記梁のモーメント−部材角関係のスケルトンカーブを示し、図5に示す梁で鉄筋が降伏するとその部材角Ry での復元力について検討するに、復元力のモデルを原点指向型と仮定すると、図5の梁の場合部材角Ry まで変形させて除荷した場合の履歴吸収エネルギーE1 はΔOABで与えられる。
同様のモデルを図6に示す梁に適用すると、履歴吸収エネルギーE2 はΔOACで与えられる。しかしながら図6に示す梁では低降伏点鋼鉄筋yを用いているから、E2 の他に塑性吸収エネルギーも存在するので原点指向型の復元性特性は示さないものと考えられる。
【0010】
ここで図6に示す梁の場合、部材角Ry まで変形させて除荷した場合の吸収エネルギーE2a次式で与えられると仮定する。
2a=E2 +E2p
但し、E2 :ΔOACで与えられる吸収エネルギー
2p:低降伏点の鉄筋が吸収する塑性エネルギー
2pは低降伏点鋼を用いた鉄筋のひずみ分布図より求められ、この塑性エネルギーE2pは前掲図7のモーメント−部材角の関係図における斜線で示したΔOCDとなる。
【0011】
次に図5に示す梁と図6に示す梁との吸収エネルギーを対比すると
【0012】
【数1】

Figure 0003685271
【0013】
従って、図6に示す梁は図5に示す梁の場合に比して剛性は低いが吸収エネルギーは3.21倍程度あると考えられる。但しこの倍率は図7から明らかなように部材角Rによって異なる。
【0014】
【発明の効果】
本発明に係る鉄筋コンクリート梁は前記したように、梁主筋に高強度鉄筋と、極低降伏点鋼鉄筋とを併用したことによって、従来強度の鉄筋を使用した鉄筋コンクリート梁と同等の曲げ耐力を有するように設計するたとができる。而して前記極低降伏点鋼鉄筋は降伏点が低く、変形性能に富むため、地震時には比較的小変形からエネルギー吸収能力が発揮できる。
【0015】
またひび割れ誘発目地は梁の所定位置での曲げひび割れを発生させ、他の位置に曲げひび割れを生じさせない効果がある。更に防水処理のために設けるシーリング材は曲げひび割れを掩蔽する効果を有する。
この結果、本発明に係る鉄筋コンクリート梁は、地震時には優れたエネルギー吸収性能によって建物の耐震安全性を保証し、且つ外観の損傷を掩蔽しうるものである。
【図面の簡単な説明】
【図1】本発明に係る極低降伏点鋼を用いた鉄筋コンクリート梁の一実施例を示す縦断面図である。
【図2】前記鉄筋コンクリート梁におけるひび割れ誘発目地及び防水層を示す側面図である。
【図3】図2の平面図である。
【図4】従来の鉄筋コンクリート梁の地震時におけるひび割れ発生状況を示す側面図である。
【図5】高層鉄筋コンクリート建造物における高強度鉄筋を使用した下層階の梁の縦断面図である。
【図6】高層鉄筋コンクリート建造物における高強度鉄筋と低強度鉄筋を組合わせて使用した梁の縦断面図である。
【図7】前記鉄筋のスケルトンカーブである。
【符号の説明】
1 梁主筋(高強度鉄筋)
2 梁主筋(極低降伏点鋼鉄筋)
3 スターラップ
4 コンクリート
5 ひび割れ誘発目地
6 防水層
7 スラブ
8 スラブ有効幅
P 鉄筋コンクリート梁[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reinforced concrete structural beam.
[0002]
[Prior art]
Conventional reinforced concrete beams are generally manufactured by using the same type of reinforcing bar as the main bar, placing a shear reinforcement (stirrup) between the main bars, and placing concrete.
[0003]
[Problems to be solved by the invention]
Conventional reinforced concrete beams have a drawback that they are inferior in energy absorption capacity during earthquakes, compared to steel beams and steel reinforced concrete beams. In addition, reinforced concrete beams suffer significant damage such as bending cracks during a large earthquake. FIG. 4 shows the occurrence of bending cracks at the time of an earthquake in the conventional method, where 01 indicates a column, 02 indicates a beam, 03 indicates a bending crack, 04 indicates a beam shear force, and 05 indicates a beam bending moment.
[0004]
The present invention has been proposed in view of the disadvantages of the conventional beams, and the object is to have structural performance equivalent to that of the conventional reinforced concrete beams and to exhibit excellent energy absorption performance in earthquakes. The object of the present invention is to provide a reinforced concrete beam that guarantees seismic safety of the building and suppresses the appearance damage.
[0005]
[Means for Solving the Problems]
To achieve the above object, reinforced concrete beams using a very low yield steel according to the present invention, a combination of high strength reinforcement and low yield point steel rebar to the beam main reinforcements, cracks due to bending of the beam during an earthquake The joint to be induced is provided in the concrete part near the end of the beam, the joint is waterproofed, and vibration energy is absorbed by plastic deformation of the extremely low yield point steel bars accompanying bending of the beam during an earthquake. It is characterized by.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to the preferred embodiments shown in the drawings.
FIG. 1 is a cross-sectional view showing a bar arrangement state of an embodiment of a reinforced concrete beam according to the present invention, and FIGS. 2 and 3 are a side view and a plan view showing a crack-inducing joint and a waterproof layer of the reinforced concrete beam of FIG. In the figure, P is a reinforced concrete beam, and, for example, a high strength steel of SD590 class is used as the beam main reinforcement 1, and the beam main reinforcement 2 made of an extremely low yield point steel having a yield point σ y = 1.0 t / cm 2 is provided. It is used together.
[0007]
3 is stirrup and 4 is concrete.
More concrete portions of the beam end near the beam P, cracks split Re induced joint 5 for inducing the cracking due to bending of the beam during an earthquake is provided, the joints 5 are waterproof processing is performed by the waterproof layer 6 Yes. In the figure, 7 is a slab, and 8 is a slab effective width L.
According to the illustrated embodiment, the reinforced concrete beam P has a bending strength equivalent to that of a reinforced concrete beam by using a high strength beam main bar 1 and an extremely low yield point steel beam main bar 2 in combination with a conventional strength bar. In addition, the beam main reinforcement 2 made of ultra-low yield point steel has a low yield point and a high deformation performance. Therefore, the beam reinforcement 2 made of ultra-low yield point steel accompanying bending of the beam P during an earthquake. By virtue of plastic deformation, vibration energy absorbing ability is exhibited from relatively small deformation.
[0008]
Further, the crack-inducing joint 5 provided on the beam P generates a crack only at a predetermined position at the time of an earthquake, and further covers that the sealing used for waterproofing is exposed to the outside of the bending crack.
Note 5 and 6 show a beam cross section of the 30th floor of a tall reinforced concrete beneath the building hierarchies, high strength reinforcing bar SD390 in FIG 5, the high strength reinforcing bar having a (σ y = 4.0t / cm 2 ) As shown in the drawing, five high-strength reinforcing bars are arranged in two stages, and in FIG. 6, the high-strength reinforcing bars x (σ y are arranged so as to have a bending strength almost equal to that of the member shown in FIG. = 6.0 t / cm 2 ) and extremely low yield point steel rebar y (LYP100, σ y = 1.0 t / cm 2 ).
[0009]
FIG. 7 shows a skeleton curve of the moment-member angle relationship of the beam. When the reinforcing bar yields in the beam shown in FIG. 5, the restoring force model at the member angle R y is considered as an origin-oriented model. Assuming that, in the case of the beam in FIG. 5, the hysteresis absorption energy E 1 when the material is unloaded after being deformed to the member angle R y is given by ΔOAB.
When a similar model is applied to the beam shown in FIG. 6, the hysteresis absorption energy E 2 is given by ΔOAC. However, since the beam shown in FIG. 6 uses the low yield point steel rebar y, plastic-absorbed energy is also present in addition to E 2 , so that it is considered that the origin-oriented resilience characteristic is not exhibited.
[0010]
Here, in the case of the beam shown in FIG. 6, it is assumed that the absorbed energy E 2a is given by the following equation when the member is deformed to the member angle R y and unloaded.
E 2a = E 2 + E 2p
However, E 2 : Absorbed energy given by ΔOAC E 2p : The plastic energy E 2p absorbed by the low yield point rebar is obtained from the strain distribution map of the rebar using the low yield point steel, and this plastic energy E 2p is described above. This is ΔOCD indicated by hatching in the moment-member angle relationship diagram of FIG.
[0011]
Next, when the absorbed energy of the beam shown in FIG. 5 and the beam shown in FIG. 6 are compared, [0012]
[Expression 1]
Figure 0003685271
[0013]
Therefore, it is considered that the beam shown in FIG. 6 has a lower rigidity than the beam shown in FIG. 5, but the absorbed energy is about 3.21 times. However, this magnification varies depending on the member angle R as apparent from FIG.
[0014]
【The invention's effect】
As described above, the reinforced concrete beam according to the present invention has a bending strength equivalent to that of a reinforced concrete beam using a conventional reinforcing bar by using a high strength reinforcing bar and an extremely low yield point steel reinforcing bar in combination with the beam main reinforcing bar. You can design it. Thus, the extremely low yield point steel rebar has a low yield point and is highly deformable, so that it can exhibit energy absorbing ability from a relatively small deformation during an earthquake.
[0015]
In addition, the crack-inducing joint has an effect of generating a bending crack at a predetermined position of the beam and not causing a bending crack at another position. Further, the sealing material provided for waterproofing has an effect of covering the bending cracks.
As a result, the reinforced concrete beam according to the present invention guarantees the earthquake-proof safety of the building by the excellent energy absorption performance at the time of earthquake and can cover the appearance damage.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of a reinforced concrete beam using an extremely low yield point steel according to the present invention.
FIG. 2 is a side view showing a crack-inducing joint and a waterproof layer in the reinforced concrete beam.
FIG. 3 is a plan view of FIG. 2;
FIG. 4 is a side view showing a state of occurrence of cracks in a conventional reinforced concrete beam during an earthquake.
FIG. 5 is a longitudinal sectional view of a beam on a lower floor using a high-strength reinforcing bar in a high-rise reinforced concrete building.
FIG. 6 is a longitudinal sectional view of a beam using a combination of a high strength rebar and a low strength rebar in a high-rise reinforced concrete building.
FIG. 7 is a skeleton curve of the reinforcing bar.
[Explanation of symbols]
1 Beam reinforcement (high-strength reinforcement)
2 Beam reinforcement (extremely low yield point steel reinforcement)
3 Star wrap 4 Concrete 5 Crack-induced joint 6 Waterproof layer 7 Slab 8 Slab effective width P Reinforced concrete beam

Claims (1)

極低降伏点鋼を用いた鉄筋コンクリート梁において、
梁主筋に高強度鉄筋と極低降伏点鋼鉄筋を併用地震時に梁の曲げに伴うひび割れを誘発させる目地を梁端部近傍のコンクリート部分に設け、該目地に防水処理を施し、地震時の梁の曲げに伴う前記極低降伏点鋼鉄筋の塑性変形により振動エネルギーを吸収させるようにしたことを特徴とする極低降伏点鋼を用いた鉄筋コンクリート梁。
In reinforced concrete beams using extremely low yield point steel,
Beams of high strength reinforcement and low yield point steel rebar together to the main reinforcement, provided the concrete portion of the joint of the beam end near to induce cracks caused by the bending of the beam during an earthquake, waterproofed to said purpose locations, earthquake A reinforced concrete beam using an ultra-low yield point steel, wherein vibration energy is absorbed by plastic deformation of the ultra-low yield point steel bar accompanying bending of the beam.
JP03202796A 1996-02-20 1996-02-20 Reinforced concrete beams using extremely low yield point steel Expired - Fee Related JP3685271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03202796A JP3685271B2 (en) 1996-02-20 1996-02-20 Reinforced concrete beams using extremely low yield point steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03202796A JP3685271B2 (en) 1996-02-20 1996-02-20 Reinforced concrete beams using extremely low yield point steel

Publications (2)

Publication Number Publication Date
JPH09221872A JPH09221872A (en) 1997-08-26
JP3685271B2 true JP3685271B2 (en) 2005-08-17

Family

ID=12347390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03202796A Expired - Fee Related JP3685271B2 (en) 1996-02-20 1996-02-20 Reinforced concrete beams using extremely low yield point steel

Country Status (1)

Country Link
JP (1) JP3685271B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090143A (en) * 2001-09-18 2003-03-28 Shimizu Corp Boundary beam
CN103061450B (en) * 2012-12-29 2015-03-18 青海民族大学 High-strength reinforcing steel bar self-compaction steel fiber ultrahigh-strength concrete transfer girder
JP6152975B2 (en) * 2013-06-10 2017-06-28 清水建設株式会社 High toughness RC beam structure
CN103924728B (en) * 2014-04-12 2016-08-17 北京工业大学 End soap-free emulsion polymeization variable strength reinforced beam
CN104047428A (en) * 2014-06-16 2014-09-17 南华大学 Method for enhancing ductility of high-strength concrete pier stud

Also Published As

Publication number Publication date
JPH09221872A (en) 1997-08-26

Similar Documents

Publication Publication Date Title
JP3685271B2 (en) Reinforced concrete beams using extremely low yield point steel
JPS6145042A (en) Mold frame for casting concrete
JP5498103B2 (en) Buckling restraint brace
US3286415A (en) Reinforced shell construction
JP3938718B2 (en) Reinforced concrete beam structure
JPH0742727B2 (en) Connection structure of columns and beams
JPH03180675A (en) Earthquake insulating wall
JPH078673Y2 (en) Composite beam structure
JPH0813848A (en) Structure of boundary column base for multistory shear wall
JP2757060B2 (en) Reinforcement structure of beams in reinforced concrete frame structure
JPH07324379A (en) Unbonded steel brace stiffened with reinforced concrete
JPS628270Y2 (en)
JPH0749732B2 (en) Multi-story earthquake-resistant wall structure in high-rise building
JPH05230935A (en) Precase concrete made beam frame member
JPH0329938B2 (en)
JP2653338B2 (en) Steel embedded formwork for wall members
JP3292269B2 (en) Concrete segment
JPH04216741A (en) Reinforced concrete wall column having high recovery characteristics
JPS647192B2 (en)
JPH01125437A (en) Reinforced concrete post
JPH074111A (en) Construction method of prestressed concrete slab and tank
JPH05302398A (en) Precast concrete beam
JP2003074192A (en) Seismic strengthening structure
JPH0821002A (en) Reinforcing structure in junction between reinforced concrete pole and steel beam
JPH0682231U (en) Precast concrete pillars

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees