[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3684684B2 - Steel pipe manufacturing method - Google Patents

Steel pipe manufacturing method Download PDF

Info

Publication number
JP3684684B2
JP3684684B2 JP16952196A JP16952196A JP3684684B2 JP 3684684 B2 JP3684684 B2 JP 3684684B2 JP 16952196 A JP16952196 A JP 16952196A JP 16952196 A JP16952196 A JP 16952196A JP 3684684 B2 JP3684684 B2 JP 3684684B2
Authority
JP
Japan
Prior art keywords
edge
steel pipe
manufacturing
steel
pressure welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16952196A
Other languages
Japanese (ja)
Other versions
JPH105857A (en
Inventor
高明 豊岡
裕二 橋本
元晶 板谷
章 依藤
寿雄 大西
伸樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP16952196A priority Critical patent/JP3684684B2/en
Publication of JPH105857A publication Critical patent/JPH105857A/en
Application granted granted Critical
Publication of JP3684684B2 publication Critical patent/JP3684684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼管の製造方法に関し、とくに、固相圧接による鋼管の製造方法に関する。
【0002】
【従来の技術】
溶接鋼管は、鋼板または鋼帯を管状に成形しその継目を溶接したもので、小径から大径まで各種の製造法によりつくられているが、主な製造法として、電気抵抗溶接(電縫)、鍛接、電弧溶接によるものが挙げられる。
小径〜中径鋼管用としては、高周波誘導加熱を利用した電気抵抗溶接法(電気抵抗溶接鋼管、電縫管)が主として利用されている。この方法は、連続的に帯鋼を供給し、成形ロールで管状に成形してオープン管とし、続いて高周波誘導加熱によりオープン管の両エッジ部端面を鋼の融点以上に加熱した後、スクイズロールで両エッジ部端面を衝合溶接して鋼管を製造する方法である(例えば、第3版鉄鋼便覧第III 巻(2)1056〜1092頁)。
【0003】
上記した高周波誘導加熱を利用した電縫管の製造方法では、オープン管の両エッジ部端面を鋼の融点以上に加熱するため、電磁力の影響により溶鋼が流動し、生成された酸化物が衝合溶接部に噛み込まれペネトレータ等の溶接欠陥あるいは、溶鋼飛散(フラッシュ)が発生しやすいという問題があった。
この問題に対し、例えば、特開平2-299782号公報には、2つの加熱装置を有する電縫鋼管の製造法が提案されている。第1の加熱装置でオープン管の両側エッジ部の温度をキュリー点以上に加熱し、第2の加熱装置で更に融点以上に加熱し、スクイズロールで両エッジ部を衝合溶接して鋼管を製造する。また、特開平2-299783号公報には、第1の加熱装置で周波数45〜250kHzの電流を流し、両側エッジ部を予熱し、第2の加熱装置で更に融点以上に加熱し、スクイズロールで両エッジ部を衝合溶接して鋼管を製造する電縫管製造装置が提案されている。
【0004】
しかしながら、これらの電縫管製造技術では、エッジ部を均一に加熱することは示唆しているものの、両エッジ部を鋼の融点以上に加熱するため、衝合溶接時に、溶融した鋼が管の内外面に排出されビード(余盛)が形成される。そのため、衝合溶接後に管内外面の溶接ビードの除去が必要であり、ほとんどがビード切削用バイトにより切削されて除去されている。
【0005】
このようなことから、この方法では、
▲1▼ビード切削用バイトの切削量の調整で、材料と時間のロスが発生する。
▲2▼ビード切削用バイトは消耗品であるため、造管速度によって異なるが、3000〜4000mのビード切削長毎にバイトを交換する必要があり、そのため、1時間程度ごとに3〜5分間のバイト交換のためのラインの停止を余儀なくされる。
【0006】
▲3▼特に造管速度が100 m/min を超える高速造管では、ビード切削用バイトの寿命が短く、交換頻度が高い。
など、ビード切削がネックとなり、高速造管ができないため生産性が低いという問題があった。
一方、比較的小径鋼管用として極めて高い生産性を有する鍛接鋼管製造方法がある。この方法は、連続的に供給した帯鋼を加熱炉で1300℃程度に加熱した後、成形ロールで管状に成形してオープン管とし、続いてオープン管の両エッジ部に高圧空気を吹き付けて端面のスケールオフを行った後、ウェルディングホーンにより端面に酸素を吹き付け、その酸化熱で端面を1400℃程度に昇温させてから、鍛接ロールで両エッジ部端面を衝合させ固相接合して鋼管を製造する方法である(例えば、第3版鉄鋼便覧第III 巻(2)1056〜1092頁)。
【0007】
しかし、この鍛接鋼管製造方法では、
▲1▼端面のスケールオフが完全ではないので、鍛接衝合部へのスケール噛込みが発生し、シーム部の強度が母材部に比べてかなり劣る。このため、偏平試験で、電縫鋼管なら偏平高さ比h/D=2t/D(t:板厚)を達成できるのに対し、鍛接鋼管では偏平高さ比h/Dが0.5 程度に劣るものとなる。
【0008】
▲2▼帯鋼を高温に加熱するため、管表面にスケールが生成し表面肌が悪い。
など、造管速度が300m/min 以上と速く生産性は高いが、シーム品質及び表面肌が悪く、JISのSTK等の強度信頼性や表面品質を要求されるものは製造できないという問題があった。
【0009】
【発明が解決しようとする課題】
本発明は、上記問題を有利に解決し、優れたシーム品質及び表面肌を有する鋼管を高い生産性で製造することができる、誘導加熱方式による鋼管の製造方法を提案することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、帯鋼を成形ロールにより連続的に成形してオープン管とし、該オープン管の両エッジ部を加熱し、スクイズロールで衝合接合する鋼管の製造方法において、前記オープン管の両エッジ部に、誘導加熱によりキュリー点以上の温度に加熱するエッジ予熱を施したのち、誘導加熱により1300℃以上、融点未満の温度域に加熱するエッジ加熱を施し、該スクイズロールで圧接すること(但し、帯鋼および/またはオープン管に予熱を施す場合および圧接後に絞り圧延を施す場合を除く)を特徴とするシーム品質および表面肌の優れた鋼管の製造方法である。
【0011】
本発明では、前記エッジ予熱は、キュリー点以上1300℃未満の温度に加熱するのが好ましい。
また、前記エッジ予熱、前記エッジ加熱および前記圧接は、大気より低い酸素濃度雰囲気中あるいは、露点が−10℃以下の雰囲気中で行うのが好ましい。また、本発明では、前記圧接後、接合部が1300℃以上に保持される時間tk (sec )が、0.03sec 以上または次式(1)
k ≧a・exp{−b・〔O2 c } …… (1)
(ここに、O2 :雰囲気中の酸素濃度(vol %)、a=0.079 、b=1.5 、c=-0.14 )を満足するのが好適である。
【0012】
また、本発明では、前記圧接時に、管内外からシーム部管材を拘束し、シーム部増肉を抑制してもよい。
また、本発明では、前記圧接後、圧接シーム部近傍を圧延してもよい。
また、本発明では、前記圧接後、圧接シーム部外面の微小凹形状部を除去して外面を平滑化してもよい。
【0013】
また、前記帯鋼は、エッジ部端面を平坦化し、該エッジ部端面と該帯鋼表面とのなす角度が所定の角度とするエッジ処理を施されたものが好ましい。さらに、前記帯鋼端面のエッジ処理は成形ロールによる成形前または成形後行ってもよい。
【0014】
【発明の実施の形態】
帯鋼は、成形ロールにより連続的に成形されオープン管となる。成形は通常公知の成形ロールによる方法が好適に適用できる。
ついで、オープン管の両エッジ部をエッジ予熱する。
エッジ予熱は、誘導加熱方式とする。
【0015】
このエッジ予熱によりエッジ部の温度を、キュリー点以上、好ましくは1300℃未満とする。
図7に示す鋼の比透磁率の温度依存性から、鋼をキュリー点以上に加熱すると鋼は強磁性体から常磁性体へ磁気変態し、比透磁率(対真空比)が1に近い値となる。一方、誘導電流の浸透深さSは、次式(2)で与えられる。
【0016】
S=α{ρ/(μr f)}1/2 ……(2)
ここに、S:浸透深さ(m)、ρ:抵抗率(Ω・m)、μr :比透磁率、f:周波数(kHz )、α:定数である。
したがって、エッジ部をキュリー点以上に加熱することにより、浸透深さSが大きくなり、被圧接面内の温度分布が均一化する方向に向かう。そこで、キュリー点以上の温度域にエッジ部を予熱するのである。エネルギー効率の観点から、エッジ予熱はキュリー点以上1300℃未満で行うのが好ましいが、1300℃以上となっても何ら不都合はない。しかし、この段階で一気に昇温すると、角部のみが融点以上になり、接合時にビード(余盛)が発生するため、高速造管ができなくなる場合があり、エッジ予熱はキュリー点以上1300℃未満の温度域で行うのがより好ましい。
【0017】
エッジ予熱は、大気中あるいは、大気中より酸素濃度を低減された雰囲気中(シールド雰囲気中)いずれでもよいが、シーム品質の点からはシールド雰囲気中が好ましい。また、エッジ予熱は、露点が−10℃以下の雰囲気中で行うのが好ましい。
なお、エッジ予熱は、常温のオープン管から、加熱するため、予熱部分以外との温度勾配が大きいので、エッジ部の温度を所定の温度とするためには、ある程度予熱部分の幅を広くするのが好ましい。
【0018】
エッジ予熱を施されたオープン管の両エッジ部は、さらに、1300℃以上、融点未満の温度域に加熱するエッジ加熱が施される。
エッジ加熱の加熱方式は、エネルギー効率の観点から、誘導コイルによる誘導加熱方式とする。
エッジ加熱は、加熱効率の観点からオープン管内に適当な大きさのインピーダを配設するのが好ましいが、インピーダの大きさを小さくした場合あるいはインピーダを配置しない場合でもエッジ加熱は可能である。この場合は、エッジ部以外の管体も加熱されやすくなる。
【0019】
オープン管の両エッジ部端面の温度は、誘導加熱コイルの出力の調整により制御する。
エッジ加熱の温度が1300℃未満では、エッジ部端面の接合が不十分となりシーム品質が劣化する。また、エッジ部端面の温度が管材の融点を超えると、溶融した鋼が衝合接合時に管内外にビード(余盛)を形成するため、ビード切削を必要とする。このことからエッジ加熱は1300℃以上、融点未満の固相圧接可能温度域とする。なお、好ましくは1350℃以上融点未満、より好ましくは1400℃以上融点未満である。
【0020】
本発明でいう固相圧接とは、ビード(余盛)の盛り上がりを抑え、ビード切削を必要としない圧接を意味する。
本発明では、ビード(余盛)の盛り上がり量を抑制するため、エッジ加熱温度は固相域の温度が好ましいが、若干の液相が存在する融点未満の固液2相域でも何ら不都合はない。
【0021】
誘導加熱時のエッジ部の温度分布を均一にするために、本発明では、好ましくは、帯鋼のエッジだれを精整し、エッジ部端面を平坦化し、エッジ部端面と帯鋼表面のなす角度が所定の角度とするのがよい。所定の角度は60〜 120度が好ましい。このエッジだれの精整は、コイルをペイオフする前あるいは、コイルをペイオフし成形ロールでオープン管に成形する前、あるいは成形した後いずれで行ってもよい。エッジ処理は、エッジミラーによる切削、グラインダによる研磨、またはエッジャーロールによる圧延加工等により行うのが好ましい。
【0022】
両エッジ部を上記固相圧接可能温度域に加熱されたオープン管は、スクイズロールで両エッジ部を衝合され、固相圧接される。圧接は、図3(a)に示すように、スクイズロールを圧接接合部管外面に当接する位置に設置して行う方法と、図3(b)に示すように、スクイズロールを圧接接合部管外面に当接しない位置に設置して行う方法および図3(c)に示すように、外面側はスクイズロール、内面側はロール等を圧接接合部に当接する位置に設置して行う方法があるが、いずれの場合でも何ら不都合は生じない。
【0023】
エッジ加熱および固相圧接は、大気中あるいは、大気中より酸素濃度を低減された雰囲気中(シールド雰囲気中)いずれでもよいが、シーム品質の点からはシールド雰囲気中が好ましい。また、エッジ加熱および固相圧接は、シーム品質の点から、露点が−10℃以下の雰囲気中が好ましい。
本発明者らは、圧接後、接合部が1300℃以上に保持される時間tk により、鋼管のシーム品質が変化することを見い出した。シーム品質(偏平高さ比h/D)に及ぼすtk と、酸素濃度の関係を図2に示す。図2から、tk が長くなるにしたがい、シーム品質が向上していることがわかる。また、雰囲気中の酸素濃度が低減するにしたがい、同一シーム品質を得るためにはtk は短くしてもよいことがわかる。
【0024】
この時間tk (sec )は、エッジ予熱、エッジ加熱、固相圧接が大気中で行われた場合には、0.03sec 以上とすることが好ましい。一方、エッジ予熱、エッジ加熱、固相圧接が大気中より酸素濃度が低い雰囲気(シールド雰囲気中)で行われた場合は、tk は、次式(1)を満足する時間とすることが好ましい。
k ≧a・exp{−b・〔O2 c } …… (1)
ここに、O2 :雰囲気中の酸素濃度(vol %)、a、b、c:定数で、低炭素鋼の場合a=0.079 、b=1.5 、c=-0.14 である。より好ましくは、a=0.23、b=1.4 、c=-0.17 である。
【0025】
この時間tk は、エッジ予熱時のオープン管両エッジ部の加熱温度及びキュリー点以上の加熱幅、さらにはエッジ加熱時の両エッジ部端面の加熱温度を制御し、固相圧接時の両エッジ部端面から管中央部へ向かっての管円周方向温度分布を調整することにより、固相圧接後のシームの冷却速度を調整し、制御する。
固相圧接により形成された圧接シーム部では、スクイズロールの圧接接合部外面への当接の有無、エッジ部の到達温度あるいはスクイズロールによる管円周方向絞りの程度により図4(a) 、(b)に示すようにシーム部の管内外または管内に管体肉厚の5%以上の増肉を生じることがある。このような場合には、圧接以降の適当な場所で、増肉したシーム部近傍を圧延により減肉するのが好ましい。増肉したシーム部近傍の圧延は、例えば、図5(a) に示す圧接シーム部圧延ロール10により管内外から圧延する。圧接シーム部圧延用ロール10は、圧接シーム部外面圧延用ロール10a、圧接シーム部内面圧延用ロール10bからなり、10bは圧接シーム部圧延用ロール支持棒10cにより支持されている。
【0026】
また、前記圧接方法のうち、圧接接合部管内外面にロール等を当接させる方法を採用することによって、材料を上下方向に拘束し、圧接による増肉を5%未満に抑え、圧接以降の圧延を不要とすることも可能である。例えば、図5(b)に示すスクイズロール6と圧接シーム部内面拘束用ロール11aにより管内外から材料を拘束し、圧接による増肉を抑制する。圧接シーム部内面拘束用ロール11aは圧接シーム部内面拘束用ロール支持棒11bにより支持されている。
【0027】
固相圧接により形成された圧接シーム部では、帯鋼のエッジだれの程度、帯鋼のエッジ精整の精度、圧接の方法あるいは圧接による増肉の度合いにより、圧接部の圧延の有無にかかわらず、図6に示すように外面にウェルドラインと呼ばれる深さ0.2mm 程度の微小な凹形状部分を生じることがあり、外観、シーム品質に悪影響を及ぼす。このような場合には、圧接以降の適当な場所でウェルドラインを除去して外面を平滑化するのが好ましい。ウェルドラインの除去は、切削、研磨等の加工を実施することにより行う。また、ウェルドラインの除去は、圧接増肉部の圧延を行う場合には、圧延の前後どちらで実施してもよい。
【0028】
以上述べたように、本発明によれば、オープン管の両エッジ部を固相圧接可能温度域に安定的に保持でき、その後スクイズロールにより固相圧接して優れたシーム品質および表面肌を有する鋼管を高い生産性で製造できる。
【0029】
【実施例】
図1に示す本発明の実施に好適な設備列を用いた。
板厚 3.5mmの帯鋼1を成形ロール群3により連続的に成形しオープン管7とし、ついで、オープン管両エッジ部に表1に示す条件でエッジ予熱用誘導加熱コイル4によりエッジ予熱を、さらにエッジ加熱用誘導加熱コイル5によりエッジ加熱を施し、圧接シーム部に当接する位置に設置したスクイズロール6で固相圧接して、管寸法:60.5mmφ× 3.5mmt、規格:STKM11A の鋼管8とした。製造された鋼管8のシーム品質、表面肌を調査し、その結果を表1に併記する。シーム品質の評価は、鋼管の偏平高さ比(h/D、h:偏平高さmm、D:鋼管の外径mm)で行った。また、鋼管の表面肌の評価は、表面粗さRmax (μm )で行った。なお、一部の鋼管については、エッジ予熱、エッジ加熱および固相圧接をシールド雰囲気中で行った。
【0030】
【表1】

Figure 0003684684
【0031】
また、帯鋼を1300℃に加熱したのち、鍛接により60.5mmφの鍛接管とし、従来例(No.11 )とした。実施例と同様に鋼管の偏平高さ比、表面粗さRmaxを測定し、表1に併記した。
試験No.1、No.2の本発明例では、偏平高さ比 0.3以下、表面粗さRmax 10 μm 以下であり、従来例の試験No.11 の鍛接管では、偏平高さ比0.56、表面粗さRmax 37.5 μm であるのに対し向上している。本発明の範囲を外れると、試験No.3、No.4のように、偏平高さ比が大きくなり、また、試験No.10 のように、表面粗さRmaxが大きくなる。さらに、試験No.5のように、エッジ部端面が溶融すると余盛が形成され、ビード切削する必要が生じるため、造管速度が100m/minに低下する。
【0032】
また、試験No.6は、エッジ部を1300℃を超える温度に予熱したが、シーム品質及び表面肌は優れ、造管速度の低下もなかった。
また、本発明例の生産性は、30ton/hrと高く、ビード切削する従来の電縫管の生産性が15ton/hrであるのに対し、生産性が著しく向上している。
本発明例の試験No.1、No.8、No.12 では、圧接シーム部の管内面に0.5 〜1.5mm の増肉がみられたが、圧接シーム部近傍を管内外から圧延ロールで圧延し、0.2mm 以内に減肉し、鋼管寸法の規格範囲内となった。
【0033】
また、試験No.2、No.9、No.13 は、圧接位置において管外面にスクイズロールを、管内面に圧延ロールをそれぞれ当接させ、材料を上下方向に拘束することによって、圧接シーム部の増肉が0.1mm 以下で鋼管寸法の規格範囲内となり、圧接以降の圧延が不要であった。
本発明例の試験No.12 、No.13 では、帯鋼のエッジ処理(具体的にはミーリングによる切削加工)を実施し、エッジ部角を直角とした。エッジ処理を行った試験No.12 、No.13 では、エッジ処理を行わなかった他の試験No.1、No.2に比べ偏平高さ比が小さくなっている。
【0034】
本発明例の試験No.14 では、エッジ加熱および固相圧接時の雰囲気中の露点を−20℃に制御した。これにより、雰囲気中の露点制御を行わなかった試験No.9に比べ偏平高さ比が小さくなっている。
【0035】
【発明の効果】
本発明によれば、オープン管の両エッジ部を固相圧接可能温度域に安定的に保持でき、優れたシーム品質および表面肌を有する鋼管を高い生産性で製造できるという格段の効果を奏する。
【図面の簡単な説明】
【図1】 本発明の実施に好適な鋼管製造設備列の1例を示す説明図である。
【図2】固相圧接接合部のシーム品質に及ぼす圧接後1300℃以上に保持される時間tk と雰囲気中の酸素濃度との関係を示すグラフである。
【図3】固相圧接時のスクイズロール、圧接シーム部内面拘束用ロールと圧接接合部との位置関係を示す断面図である。
【図4】固相圧接後の鋼管断面形状の例を示す断面図である。
【図5】本発明の実施に好適な設備列の模式的部分断面側面図である。
【図6】固相圧接後の圧接シーム部外面形状の1例を示す断面図である。
【図7】鋼の比透磁率の温度依存性を示す特性図である。
【符号の説明】
1 帯鋼
3 成形ロール群
4 エッジ予熱用誘導加熱コイル
5 エッジ加熱用誘導加熱コイル
6 スクイズロール
7 オープン管
8 鋼管
9 圧接シーム部
10 圧接シーム部圧延用ロール
10a 圧接シーム部外面圧延用ロール
10b 圧接シーム部内面圧延用ロール
10c 圧接シーム部圧延用ロール支持棒
11a 圧接シーム部内面拘束用ロール
11b 圧接シーム部内面拘束用ロール支持棒
12 圧接シーム部外面ウェルドライン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a steel pipe, and more particularly to a method for manufacturing a steel pipe by solid phase pressure welding.
[0002]
[Prior art]
Welded steel pipes are formed by forming a steel plate or steel strip into a tubular shape and welding the seam. The welded steel pipes are manufactured by various manufacturing methods from small to large diameters. , Forging and electric arc welding.
For small to medium diameter steel pipes, an electric resistance welding method (electric resistance welded steel pipe, electric resistance welded pipe) using high frequency induction heating is mainly used. In this method, a steel strip is continuously supplied, formed into a tubular shape with a forming roll to form an open tube, and then both edge portions of the open tube are heated to a temperature higher than the melting point of the steel by high frequency induction heating, and then a squeeze roll. In this method, the end surfaces of both edge portions are abutted and welded to produce a steel pipe (for example, third edition Steel Handbook, Volume III (2) pages 1056-1092).
[0003]
In the above-described method for manufacturing an ERW pipe using high-frequency induction heating, the end surfaces of both edges of the open pipe are heated to the melting point or higher of the steel, so that the molten steel flows under the influence of electromagnetic force, and the generated oxide is impinged. There has been a problem that welding defects such as a penetrator or molten steel scattering (flash) are likely to occur due to being caught in the joint weld.
In order to solve this problem, for example, Japanese Patent Laid-Open No. 2-299782 proposes a method for producing an electric resistance welded steel pipe having two heating devices. The temperature of both edge parts of the open pipe is heated above the Curie point with the first heating device, further heated above the melting point with the second heating device, and both edge portions are abutted and welded with a squeeze roll to produce a steel pipe. To do. In Japanese Patent Laid-Open No. 2-99783, a current of a frequency of 45 to 250 kHz is supplied by a first heating device, both edge portions are preheated, further heated to a melting point or higher by a second heating device, and squeezed by a squeeze roll. There has been proposed an electric welded tube manufacturing apparatus for manufacturing a steel pipe by abutting welding of both edge portions.
[0004]
However, although these ERW pipe manufacturing techniques suggest that the edges are heated uniformly, both edges are heated above the melting point of the steel. A bead is formed on the inner and outer surfaces. Therefore, it is necessary to remove the weld beads on the inner and outer surfaces of the pipe after the abutting welding, and most of them are cut and removed by a cutting tool for bead cutting.
[0005]
For this reason, in this method,
(1) Loss of material and time occurs by adjusting the cutting amount of the bead cutting tool.
(2) Since the cutting tool for bead is a consumable item, it varies depending on the pipe making speed, but it is necessary to change the cutting tool every bead cutting length of 3000 to 4000 m. Therefore, it takes 3 to 5 minutes every hour. Forced to stop line for byte exchange.
[0006]
(3) Particularly in the case of a high speed pipe making with a pipe making speed exceeding 100 m / min, the life of the bead cutting tool is short and the replacement frequency is high.
For example, bead cutting has become a bottleneck, and there is a problem that productivity is low because high-speed pipe making is impossible.
On the other hand, there is a forged steel pipe manufacturing method having extremely high productivity for a relatively small diameter steel pipe. In this method, the continuously supplied steel strip is heated to about 1300 ° C in a heating furnace, then formed into a tubular shape with a forming roll to form an open pipe, and then high pressure air is blown to both edge portions of the open pipe to end face After performing the scale-off, oxygen is blown to the end face with a welding horn, the end face is heated to about 1400 ° C with the heat of oxidation, and the end faces of both edges are brought into contact with a forging roll and solid phase bonded. This is a method for producing a steel pipe (for example, 3rd Edition Steel Handbook, Volume III (2) 1056-1092).
[0007]
However, in this forged steel pipe manufacturing method,
(1) Since the scale-off of the end face is not complete, scale biting occurs in the forging contact portion, and the strength of the seam portion is considerably inferior to that of the base material portion. For this reason, in the flatness test, a flat height ratio h / D = 2t / D (t: plate thickness) can be achieved with an electric-welded steel pipe, whereas a flat height ratio h / D is inferior to about 0.5 with a forged steel pipe. It will be a thing.
[0008]
(2) Since the steel strip is heated to a high temperature, scale is generated on the tube surface, and the surface skin is poor.
The pipe making speed is as fast as 300m / min or more, and the productivity is high, but the seam quality and the surface skin are poor, and there is a problem that it is impossible to manufacture those requiring strength reliability and surface quality such as JIS STK. .
[0009]
[Problems to be solved by the invention]
An object of the present invention is to propose a method of manufacturing a steel pipe by an induction heating method, which can advantageously solve the above problems and can manufacture a steel pipe having excellent seam quality and surface texture with high productivity.
[0010]
[Means for Solving the Problems]
The present invention provides a steel pipe manufacturing method in which a steel strip is continuously formed with a forming roll to form an open pipe, both edge portions of the open pipe are heated and abutted and joined with a squeeze roll, and both edges of the open pipe are used. The part is subjected to edge preheating that heats to a temperature above the Curie point by induction heating, then edge heating that heats to a temperature range of 1300 ° C or higher and below the melting point by induction heating, and press-contacts with the squeeze roll (however, , Excluding the case of preheating the strip steel and / or the open pipe and the case of drawing after the pressure welding) .
[0011]
In the present invention, the edge preheating is preferably performed at a temperature not lower than the Curie point and lower than 1300 ° C.
The edge preheating, the edge heating and the pressure welding are preferably performed in an oxygen concentration atmosphere lower than the atmosphere or in an atmosphere having a dew point of −10 ° C. or lower. In the present invention, after the pressure welding, the time t k (sec) during which the joint is held at 1300 ° C. or more is 0.03 sec or more or the following formula (1)
t k ≧ a · exp {−b · [O 2 ] c } (1)
It is preferable that (O 2 : oxygen concentration in the atmosphere (vol%), a = 0.079, b = 1.5, c = −0.14) is satisfied.
[0012]
Moreover, in this invention, a seam part pipe material may be restrained from the inside and outside of a pipe | tube at the time of the said pressure welding, and seam part thickness increase may be suppressed.
In the present invention, the vicinity of the pressure seam portion may be rolled after the pressure welding.
Moreover, in this invention, after the said pressure welding, you may remove the micro recessed shape part of a pressure welding seam part outer surface, and may smooth an outer surface.
[0013]
The steel strip is preferably subjected to an edge treatment in which the edge surface of the edge portion is flattened and the angle formed between the edge surface of the edge portion and the surface of the steel strip is a predetermined angle. Further, the edge treatment of the end face of the steel strip may be performed before or after forming with a forming roll.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The steel strip is continuously formed by a forming roll to form an open tube. For forming, a generally known method using a forming roll can be suitably applied.
Next, edge preheating is performed on both edges of the open pipe.
Edge preheating is an induction heating method.
[0015]
By this edge preheating, the temperature of the edge portion is set to the Curie point or higher, preferably lower than 1300 ° C.
From the temperature dependence of the relative permeability of the steel shown in FIG. 7, when the steel is heated above the Curie point, the steel undergoes a magnetic transformation from a ferromagnetic material to a paramagnetic material, and the relative permeability (to vacuum ratio) is close to 1. It becomes. On the other hand, the penetration depth S of the induced current is given by the following equation (2).
[0016]
S = α {ρ / (μ r f)} 1/2 (2)
Here, S: penetration depth (m), ρ: resistivity (Ω · m), μ r : relative permeability, f: frequency (kHz), α: constant.
Therefore, by heating the edge portion to the Curie point or higher, the penetration depth S increases, and the temperature distribution in the pressure contact surface becomes uniform. Therefore, the edge portion is preheated to a temperature range above the Curie point. From the viewpoint of energy efficiency, the edge preheating is preferably performed at a temperature higher than the Curie point and lower than 1300 ° C, but there is no problem even when the temperature is higher than 1300 ° C. However, if the temperature is increased rapidly at this stage, only the corners will exceed the melting point, and beads (excess) will be generated during joining, which may prevent high-speed pipe making. Edge preheating is more than the Curie point and less than 1300 ° C. It is more preferable to carry out in the temperature range.
[0017]
The edge preheating may be performed in the atmosphere or in an atmosphere in which the oxygen concentration is reduced from the atmosphere (in the shield atmosphere), but in the shield atmosphere, the shield atmosphere is preferable. The edge preheating is preferably performed in an atmosphere having a dew point of −10 ° C. or lower.
In addition, since edge preheating is heated from an open tube at room temperature, the temperature gradient from the part other than the preheating part is large. Therefore, in order to set the temperature of the edge part to a predetermined temperature, the width of the preheating part should be widened to some extent. Is preferred.
[0018]
Both edge portions of the open pipe subjected to the edge preheating are further subjected to edge heating for heating to a temperature range of 1300 ° C. or higher and lower than the melting point.
The heating method of edge heating is an induction heating method using an induction coil from the viewpoint of energy efficiency.
In the edge heating, it is preferable to dispose an impeder of an appropriate size in the open tube from the viewpoint of heating efficiency, but the edge heating is possible even when the impeder is reduced in size or not provided. In this case, the tubular body other than the edge portion is also easily heated.
[0019]
The temperatures of the end faces of both edges of the open tube are controlled by adjusting the output of the induction heating coil.
If the temperature of the edge heating is less than 1300 ° C., the joining of the end faces of the edge part becomes insufficient and the seam quality is deteriorated. Further, when the temperature of the end face of the edge part exceeds the melting point of the pipe material, the melted steel forms a bead (excess) on the inside and outside of the pipe at the time of abutting joining, and thus bead cutting is required. For this reason, the edge heating is set to a temperature range in which solid-state pressure welding is possible at 1300 ° C. or higher and lower than the melting point. The melting point is preferably 1350 ° C. or higher and lower than the melting point, more preferably 1400 ° C. or higher and lower than the melting point.
[0020]
The solid-phase pressure welding referred to in the present invention means pressure welding that suppresses the swell of the bead (excess) and does not require bead cutting.
In the present invention, the edge heating temperature is preferably in the solid phase region in order to suppress the amount of bead (excess) buildup, but there is no problem even in the solid-liquid two phase region below the melting point where some liquid phase exists. .
[0021]
In order to make the temperature distribution of the edge part at the time of induction heating uniform, in the present invention, preferably, the edge of the steel strip is refined, the edge part end face is flattened, and the angle formed between the edge part end face and the steel strip surface Is preferably a predetermined angle. The predetermined angle is preferably 60 to 120 degrees. The edge trimming may be performed either before paying off the coil, before paying off the coil and forming it into an open tube with a forming roll, or after forming. The edge treatment is preferably performed by cutting with an edge mirror, polishing with a grinder, or rolling with an edger roll.
[0022]
The open pipes whose both edge portions are heated to the above-mentioned temperature range capable of solid-phase pressure welding are brought into contact with each other by a squeeze roll and solid-phase pressure-welded. As shown in FIG. 3 (a), the pressure welding is performed by installing a squeeze roll at a position where it abuts on the outer surface of the pressure welding joint tube, and as shown in FIG. 3 (b), the squeeze roll is placed on the pressure welding joint tube. As shown in FIG. 3 (c), there is a method in which the squeeze roll is installed on the outer surface side and a roll or the like is installed in a position where the inner surface side comes into contact with the press-contact joint as shown in FIG. However, there is no inconvenience in any case.
[0023]
Edge heating and solid-phase pressure welding may be performed either in the air or in an atmosphere in which the oxygen concentration is reduced from the air (in a shield atmosphere), but from the viewpoint of seam quality, a shield atmosphere is preferable. In addition, the edge heating and the solid-phase pressure welding are preferably performed in an atmosphere having a dew point of −10 ° C. or less from the viewpoint of seam quality.
The inventors have found that the seam quality of the steel pipe changes with the time t k during which the joint is held at 1300 ° C. or higher after the pressure welding. And t k on the seam quality (flat height ratio h / D), the relationship between the oxygen concentration shown in Fig. From Figure 2, t k in accordance becomes longer, it can be seen that the seam quality is improved. Further, in accordance with the oxygen concentration in the atmosphere is reduced, in order to obtain the same seam quality t k it is understood that it may be shortened.
[0024]
This time t k (sec) is preferably 0.03 sec or more when edge preheating, edge heating, and solid phase pressure welding are performed in the atmosphere. On the other hand, when edge preheating, edge heating, and solid-phase pressure welding are performed in an atmosphere having a lower oxygen concentration than in the atmosphere (in a shield atmosphere), t k is preferably set to a time that satisfies the following formula (1). .
t k ≧ a · exp {−b · [O 2 ] c } (1)
Here, O 2 : oxygen concentration (vol%) in the atmosphere, a, b, c: constants, and in the case of low carbon steel, a = 0.079, b = 1.5, c = −0.14. More preferably, a = 0.23, b = 1.4, c = −0.17.
[0025]
This time t k controls the heating temperature of both edges of the open tube during edge preheating and the heating width above the Curie point, and further the heating temperature of the edge surfaces of both edges during edge heating. By adjusting the temperature distribution in the circumferential direction of the pipe from the end face to the center of the pipe, the cooling rate of the seam after solid-phase pressure welding is adjusted and controlled.
In the pressure welding seam portion formed by solid phase pressure welding, depending on whether or not the squeeze roll is in contact with the outer surface of the pressure welding joint, the ultimate temperature of the edge portion, or the degree of pipe circumferential direction drawing by the squeeze roll, FIG. As shown in b), an increase in thickness of 5% or more of the tube thickness may occur inside or outside the pipe of the seam portion. In such a case, it is preferable to reduce the thickness of the vicinity of the thickened seam portion by rolling at an appropriate place after the pressure welding. Rolling in the vicinity of the thickened seam portion is performed, for example, from the inside and outside of the tube by a pressure seam portion rolling roll 10 shown in FIG. The pressure seam rolling roll 10 includes a pressure seam outer roll 10a and a pressure seam inner roll 10b, and 10b is supported by a pressure seam roll support rod 10c.
[0026]
Further, among the above-mentioned pressure welding methods, by adopting a method of bringing a roll or the like into contact with the inner and outer surfaces of the pressure welded portion, the material is restrained in the vertical direction, the thickness increase due to pressure welding is suppressed to less than 5%, and rolling after pressure welding is performed. Can be eliminated. For example, the material is restrained from inside and outside the pipe by the squeeze roll 6 and the pressure seam portion inner surface restraining roll 11a shown in FIG. The pressure seam portion inner surface restraining roll 11a is supported by a pressure seam portion inner surface restraining roll support bar 11b.
[0027]
In the welding seam part formed by solid phase welding, regardless of whether the welding part is rolled or not, depending on the degree of edge of the steel strip, the accuracy of edge adjustment of the steel strip, the pressure welding method or the degree of thickness increase by pressure welding As shown in FIG. 6, a minute concave portion called a weld line having a depth of about 0.2 mm may be formed on the outer surface, which adversely affects the appearance and seam quality. In such a case, it is preferable to smooth the outer surface by removing the weld line at an appropriate place after the pressure welding. The removal of the weld line is performed by performing processing such as cutting and polishing. Further, the welding line may be removed either before or after the rolling when the press-thickened portion is rolled.
[0028]
As described above, according to the present invention, both edge portions of the open tube can be stably held in a temperature range in which solid-state pressure welding is possible, and then have excellent seam quality and surface skin by solid-phase pressure welding with a squeeze roll. Steel pipes can be manufactured with high productivity.
[0029]
【Example】
An equipment row suitable for carrying out the present invention shown in FIG. 1 was used.
The steel strip 1 having a thickness of 3.5 mm is continuously formed by the forming roll group 3 to form the open pipe 7, and then the edge preheating is performed by the edge preheating induction heating coil 4 under the conditions shown in Table 1 at both edges of the open pipe. Furthermore, edge heating is performed by the induction heating coil 5 for edge heating, and solid-phase pressure welding is performed with a squeeze roll 6 installed at a position where it abuts against the pressure seam portion, and a pipe size: 60.5 mmφ × 3.5 mmt, standard: STKM11A steel pipe 8 did. The seam quality and surface skin of the manufactured steel pipe 8 are investigated, and the results are also shown in Table 1. The seam quality was evaluated based on the flat height ratio of the steel pipe (h / D, h: flat height mm, D: outer diameter mm of the steel pipe). Moreover, the surface roughness of the steel pipe was evaluated by the surface roughness Rmax (μm). For some of the steel pipes, edge preheating, edge heating and solid phase pressure welding were performed in a shield atmosphere.
[0030]
[Table 1]
Figure 0003684684
[0031]
Also, after heating the strip steel to 1300 ° C, it was made into a forged welded tube of 60.5mmφ by forge welding, which was a conventional example (No. 11). The flat height ratio and surface roughness Rmax of the steel pipe were measured in the same manner as in the examples, and are also shown in Table 1.
In the present invention examples of test No. 1 and No. 2, the flat height ratio is 0.3 or less and the surface roughness Rmax is 10 μm or less. In the conventional welded test tube of test No. 11, the flat height ratio is 0.56, the surface Roughness is improved compared to Rmax 37.5 μm. Outside the scope of the present invention, the flat height ratio increases as in Test No. 3 and No. 4, and the surface roughness Rmax increases as in Test No. 10. Furthermore, as in test No. 5, when the edge of the edge portion melts, a surplus is formed, and it becomes necessary to perform bead cutting, so the pipe making speed is reduced to 100 m / min.
[0032]
In Test No. 6, the edge portion was preheated to a temperature exceeding 1300 ° C., but the seam quality and surface skin were excellent, and the pipe making speed was not reduced.
Further, the productivity of the example of the present invention is as high as 30 ton / hr, and the productivity of the conventional ERW pipe for bead cutting is 15 ton / hr, while the productivity is remarkably improved.
In tests No. 1, No. 8, and No. 12 of the present invention example, a thickness increase of 0.5 to 1.5 mm was observed on the inner surface of the pipe of the pressure seam, but the vicinity of the pressure seam was rolled with a rolling roll from inside and outside the pipe. However, the thickness was reduced to within 0.2mm, and it was within the standard range of steel pipe dimensions.
[0033]
Test No.2, No.9, and No.13 are the press seam parts by holding the squeeze roll on the outer surface of the pipe and the rolling roll on the inner surface of the pipe at the press contact position, and restraining the material in the vertical direction. The thickness increase of 0.1 mm or less was within the standard range of steel pipe dimensions, and rolling after pressure welding was unnecessary.
In tests No. 12 and No. 13 of the examples of the present invention, the edge treatment of the steel strip (specifically, cutting by milling) was performed, and the edge portion angle was set to a right angle. In tests No. 12 and No. 13 where edge processing was performed, the flat height ratio was smaller than in other tests No. 1 and No. 2 where edge processing was not performed.
[0034]
In Test No. 14 of the present invention example, the dew point in the atmosphere during edge heating and solid-phase pressure welding was controlled at -20 ° C. As a result, the flat height ratio is smaller than test No. 9 in which the dew point control in the atmosphere was not performed.
[0035]
【The invention's effect】
According to the present invention, both edge portions of an open pipe can be stably held in a temperature range in which solid phase pressure welding is possible, and a remarkable effect is achieved that a steel pipe having excellent seam quality and surface skin can be manufactured with high productivity.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram showing an example of a steel pipe manufacturing equipment line suitable for implementing the present invention.
FIG. 2 is a graph showing the relationship between the time t k maintained at 1300 ° C. or higher after pressure welding and the oxygen concentration in the atmosphere on the seam quality of the solid-phase pressure welding joint.
FIG. 3 is a cross-sectional view showing the positional relationship between a squeeze roll, a pressure seam seam inner surface restraining roll, and a pressure welding joint during solid phase pressure welding.
FIG. 4 is a cross-sectional view showing an example of a steel pipe cross-sectional shape after solid-phase pressure welding.
FIG. 5 is a schematic partial cross-sectional side view of an equipment row suitable for implementing the present invention.
FIG. 6 is a cross-sectional view showing an example of the outer shape of a pressure seam portion after solid-phase pressure welding.
FIG. 7 is a characteristic diagram showing the temperature dependence of the relative permeability of steel.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel strip 3 Forming roll group 4 Edge preheating induction heating coil 5 Edge heating induction heating coil 6 Squeeze roll 7 Open pipe 8 Steel pipe 9 Pressure welding seam part 10 Pressure seam part rolling roll 10a Pressure seam part outer surface rolling roll 10b Pressure welding Roll 10c for inner surface rolling Roll support rod 11a for pressure welding seam rolling Inner surface constraining roll 11b Pressure welding seam inner surface constraining roll support rod 12 Pressure welding seam outer surface weld line

Claims (11)

帯鋼を成形ロールにより連続的に成形してオープン管とし、該オープン管の両エッジ部を加熱し、スクイズロールで衝合接合する鋼管の製造方法において、前記オープン管の両エッジ部に、誘導加熱によりキュリー点以上の温度に加熱するエッジ予熱を施したのち、誘導加熱により1300℃以上、融点未満の温度域に加熱するエッジ加熱を施し、該スクイズロールで圧接すること(但し、帯鋼および/またはオープン管に余熱を施す場合および圧接後に絞り圧延を施す場合を除く)を特徴とするシーム品質および表面肌の優れた鋼管の製造方法。In a method of manufacturing a steel pipe, in which a steel strip is continuously formed by a forming roll to form an open pipe, both edge portions of the open pipe are heated and abutted and joined by a squeeze roll, induction is applied to both edge portions of the open pipe. Apply edge preheating to heat to a temperature above the Curie point by heating, then perform edge heating to a temperature range of 1300 ° C or higher and below the melting point by induction heating, and press-contact with the squeeze roll (however, the steel strip and And / or a method for producing a steel pipe with excellent seam quality and surface texture, characterized by the fact that the preheat is applied to the open pipe and the case where drawing rolling is performed after pressure welding) . 前記エッジ予熱は、キュリー点以上1300℃未満の温度に加熱することを特徴とする請求項1記載の鋼管の製造方法。  The method of manufacturing a steel pipe according to claim 1, wherein the edge preheating is performed to a temperature not lower than the Curie point and lower than 1300 ° C. 前記エッジ予熱は、大気より低い酸素濃度雰囲気中で行うことを特徴とする請求項1または2記載の鋼管の製造方法。  3. The method of manufacturing a steel pipe according to claim 1, wherein the edge preheating is performed in an oxygen concentration atmosphere lower than the atmosphere. 前記エッジ加熱および前記圧接は、大気より低い酸素濃度雰囲気中で行うことを特徴とする請求項1、2または3記載の鋼管の製造方法。  4. The method of manufacturing a steel pipe according to claim 1, wherein the edge heating and the pressure welding are performed in an oxygen concentration atmosphere lower than the atmosphere. 前記エッジ予熱、前記エッジ加熱および前記圧接は、露点が−10℃以下の雰囲気中で行うことを特徴とする請求項1、2、3または4記載の鋼管の製造方法。  5. The method of manufacturing a steel pipe according to claim 1, wherein the edge preheating, the edge heating, and the pressure welding are performed in an atmosphere having a dew point of −10 ° C. or less. 前記圧接後、接合部が1300℃以上に保持される時間tk (sec )が、0.03sec 以上または下記(1)式を満足するtk であることを特徴とする請求項1、2、3、4または5記載の鋼管の製造方法。

k ≧a・exp{−b・〔O2 c } …… (1)
ここに、O2 :雰囲気中の酸素濃度(vol %)、a=0.079 、b=1.5 、c=-0.14 。
The time t k (sec) during which the joint is held at 1300 ° C. or higher after the pressure welding is 0.03 sec or more or t k satisfying the following expression (1): The manufacturing method of the steel pipe of 4 or 5.
Record
t k ≧ a · exp {−b · [O 2 ] c } (1)
Here, O 2 : oxygen concentration (vol%) in the atmosphere, a = 0.079, b = 1.5, c = −0.14.
前記圧接時に、管内外面からシーム部管材を拘束し、シーム部増肉を抑制することを特徴とする請求項1、2、3、4、5または6記載の鋼管の製造方法。  The method for manufacturing a steel pipe according to claim 1, wherein the seam portion pipe material is restrained from the inner and outer surfaces of the pipe at the time of the press contact, and the seam portion is prevented from being thickened. 前記圧接後、圧接シーム部近傍を圧延することを特徴とする請求項1、2、3、4、5、6または7記載の鋼管の製造方法。  The method for manufacturing a steel pipe according to claim 1, 2, 3, 4, 5, 6 or 7, wherein the vicinity of the pressure seam portion is rolled after the pressure welding. 前記圧接後、圧接シーム部外面の微小凹形状部分を除去して外面を平滑化することを特徴とする請求項1、2、3、4、5、6、7または8記載の鋼管の製造方法。  9. The method of manufacturing a steel pipe according to claim 1, wherein after the press contact, a minute concave shape portion of the outer surface of the press contact seam portion is removed to smooth the outer surface. . 前記帯鋼は、エッジ部端面を平坦化し、該エッジ部端面と該帯鋼表面のなす角度を所定の角度とするエッジ処理を施されたものであることを特徴とする請求項1、2、3、4、5、6、7、8または9記載の鋼管の製造方法。  The strip steel is obtained by flattening an end face of an edge portion and subjected to an edge treatment in which an angle formed between the end face of the edge portion and the surface of the strip steel is a predetermined angle. The manufacturing method of the steel pipe of 3, 4, 5, 6, 7, 8, or 9. 前記帯鋼端面のエッジ処理を成形ロールによる成形前または成形後行うことを特徴とする請求項10記載の鋼管の製造方法。  11. The method of manufacturing a steel pipe according to claim 10, wherein the edge treatment of the end surface of the steel strip is performed before or after forming with a forming roll.
JP16952196A 1996-06-28 1996-06-28 Steel pipe manufacturing method Expired - Fee Related JP3684684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16952196A JP3684684B2 (en) 1996-06-28 1996-06-28 Steel pipe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16952196A JP3684684B2 (en) 1996-06-28 1996-06-28 Steel pipe manufacturing method

Publications (2)

Publication Number Publication Date
JPH105857A JPH105857A (en) 1998-01-13
JP3684684B2 true JP3684684B2 (en) 2005-08-17

Family

ID=15888055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16952196A Expired - Fee Related JP3684684B2 (en) 1996-06-28 1996-06-28 Steel pipe manufacturing method

Country Status (1)

Country Link
JP (1) JP3684684B2 (en)

Also Published As

Publication number Publication date
JPH105857A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
JP5509657B2 (en) Welded steel pipe joined by high-density energy beam and manufacturing method thereof
JP3627603B2 (en) Method for manufacturing a steel pipe having a flat height ratio of 0.1 or less
JP3680788B2 (en) ERW pipe manufacturing method
JP3684684B2 (en) Steel pipe manufacturing method
JP3684683B2 (en) Steel pipe manufacturing method
JP4013266B2 (en) Steel pipe manufacturing method
JP3518247B2 (en) Welded steel pipe and its manufacturing method
JPH1080718A (en) Manufacture of steel tube
JP3557813B2 (en) Steel pipe manufacturing method
WO1996003249A1 (en) Method of manufacturing laser welded pipes and apparatus for manufacturing the same
JPH10277639A (en) Manufacture of steel tube
JP2000210714A (en) Equipment train for manufacturing steel tube
JPH10296458A (en) Manufacture of welded steel tube
JP3288600B2 (en) Steel pipe manufacturing method
JPH10328730A (en) Production of steel pipe
JP3539612B2 (en) Apparatus and method for smoothing steel seam
JPH1043873A (en) Manufacture of steel tube
JP3348822B2 (en) Manufacturing method of bonded steel pipe
JP3375486B2 (en) Squeeze roll stand
JP2002239751A (en) Method for producing steel tube
KR100293577B1 (en) Method of and apparatus for producing steel pipes
JP3622679B2 (en) Combined manufacturing equipment for different types of steel pipes
JPH1080719A (en) Steel tube excellent in seam quality and surface skin and its manufacture
JP3518256B2 (en) Steel pipe manufacturing method and manufacturing equipment line
JPH0924480A (en) Production of welded steel pipe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20041116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees