[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3682109B2 - Light guide and optical position detection device - Google Patents

Light guide and optical position detection device Download PDF

Info

Publication number
JP3682109B2
JP3682109B2 JP1869596A JP1869596A JP3682109B2 JP 3682109 B2 JP3682109 B2 JP 3682109B2 JP 1869596 A JP1869596 A JP 1869596A JP 1869596 A JP1869596 A JP 1869596A JP 3682109 B2 JP3682109 B2 JP 3682109B2
Authority
JP
Japan
Prior art keywords
light
light receiving
light emitting
receiving
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1869596A
Other languages
Japanese (ja)
Other versions
JPH09212303A (en
Inventor
孝志 鬼王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP1869596A priority Critical patent/JP3682109B2/en
Publication of JPH09212303A publication Critical patent/JPH09212303A/en
Application granted granted Critical
Publication of JP3682109B2 publication Critical patent/JP3682109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Position Input By Displaying (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光学的タッチパネルに使用する導光体及び光学的位置検出装置に係り、特に、受発光量は少ないが、部品の実装コスト、装置厚みに有利になるチップタイプの受発光素子の使用を可能とし、装置の省電力化、耐外来ノイズ化、さらには大型サイズ化をも可能にしたものに関する。
【0002】
【従来の技術】
図7に示すように、一対の発光素子2と受光素子3とを所定距離離間し、これを複数対配置させて検出パネル1を構成し、各一対の発光素子2と受光素子3を順次走査して各発光素子2から対応する受光素子3に向けて発光された光の物体4による遮光の有無を検出することにより、光学的タッチパネル表面5上の物体4の位置または有無を検出する光学的位置検出装置が知られている。
【0003】
前記検出パネル1に配置される受発光素子2、3には、図8に示すような比較的大型で受発光量の大きな略紡錘形タイプの受発光素子6(図8(a)、(b))や、側面に受発光部のあるサイドビュータイプの受発光素子7(図8(c))といったリード端子8を有するディスクリートタイプが一般的に使用されている。
【0004】
しかし、ステムに搭載されたベアチップが樹脂封止されて形成されたディスクリートタイプの受発光素子6、7は、受発光量が大きいため受発光素子間距離を大きくとれるが、リード端子8を基板9に設けた孔に挿通したうえで半田付けする必要があるため、基板9への取り付けが面倒であり、部品の実装コストがかかる。また、外径が大きいため、実装厚みが厚くなり、薄形化には不向きであり、装置を小形化できない。さらに電力消費が大きいため、ポータブル用途に利用できない。
【0005】
そこで近年、小形用として、図9に示すような、受発光量の小さなチップタイプの受発光素子10が使用され始めた。このチップタイプの受発光素子10は、リードを有さず基板9に直に面実装できるため実装面及び薄形化に有利であり、また小形、小電力であるため装置の小形化が可能となり、電池駆動によってポータブル用途にも使用できる。また、ディスクリートタイプのようにリードを折り曲げなくても、取付け面を選ぶことができ、容易に受発光面を横向きにしたり(図9(a))、上向きにしたりすることができる(図9(b))。
【0006】
なお、通常、赤外の受発光素子を使用するが、可視光波長成分も無視できないため、実使用では、図10に示すように可視光カットフィルタ13を受発光素子10の前面に配置したり、覆うような構造として、可視光に反応しないようにしている。
【0007】
【発明が解決しようとする課題】
ところで、チップタイプの受発光素子には、同じチップタイプでも、凹面鏡11にベアチップ12を取り付けた凹面鏡付タイプの受発光素子(図9(c))と、そうでないベアチップ12のみからなるベアタイプ(図9(d))の受発光素子とがある。凹面鏡付は光出力がある程度大きいため、小形装置に最適であるが、構造上非常にコスト高となる上、特に受発光量の大きいものを選別する必要がある。また、これに対して凹面鏡付でないものは、より小形で安価であり非常に魅力的であるが、凹面鏡付に比べて光出力がかなり弱いため、検出可能なレベルの光信号を得るために対向させる受発光素子間の距離を小さくせざるを得ず、そのような小さな距離では、小形位置検出装置といえども、必要な広さのタッチパネル面積を確保できない。特に、図9(b)に示すように受発光面を上向きにして光を反射させ、対向する受発光素子に到るようにする場合には、光量のロスが発生するため、ベアタイプでは装置の実用化が難しかった。
【0008】
さらに、凹面鏡付のものにせよ、凹面鏡付でないベアチップにせよ、チップタイプでは、ディスクリートタイプと比較して光量がかなり小さいので、発光素子から受光素子に到る光路で拡散や外乱の影響を大きく受けるため、それに耐える光出力の大きな発光素子や、受光能力の大きな受光素子を選別する必要が生じ、その選別作業が非常に面倒であり、歩留りも悪い。また、可視光カットフィルタを別個に必要とするため、厚み面でチップタイプのもつ利点が生かされない。そして、対向する受発光素子間の距離の長い大型装置への対応もできなかった。
【0009】
本発明の目的は、上述した従来技術の問題点を解消して、受発光量は小さいが、実装コスト、装置厚みに有利な小形チップタイプの受発光素子を採用しながら、受発光素子間に十分な距離をとれ、実用に耐えることができるようにした導光体及び光学的位置検出装置を提供することにある。
【0010】
【課題を解決するための手段】
第1の発明は、光学式タッチパネル表面の周囲に装着され使用光の波長に対して透明な枠状の導光体であって、発光素子からの光を導いて対向する受光部へ放射する発光部と、該発光部からの光を入射して受光素子へ導く受光部とを複数対一体形成し、少なくとも発光部と受光部との境界に発光部から受光部への光の回り込みを防止するスリットを形成し、上記発光部に受光部へ放射する光を集光し、上記受光部に受光素子へ導く光を集光する集光部をそれぞれ一体に設けたものである。
第1の発明のように、発光素子からの光を導いて対向する受光部へ放射する発光部と、発光部からの光を入射して受光素子へ導く受光部とを複数対一体形成していると、これらを分離して形成する場合に比較して、構成を簡素化することができ、製造も容易となる。また、少なくとも発光部と受光部との境界にスリットを設けている場合には、発光部から出た光が導光体を通って反対側の受光部に回り込むのをスリットで規制することによって、回り込み光が受光素子と結合して誤動作するのを有効に防止することができる。この場合、スリットを各発光部間及び各受光部間にも設けると、発光部単位、及び受光部単位での光の拡散をスリットによって規制できるので、受光部から対応する発光部に到る光量の低下を有効に防止することができる。
【0011】
また、発光部に受光部へ放射する光を集光し、受光部に受光素子へ導く光を集光する集光部をそれぞれ一体に設けていると、集光部により集光した光を発光部から受光部に効率よく放射できるので、光量を落とすことなく光を受光部に送ることができるとともに、発光部から対向する受光部に到る過程で拡散した光を受光部に入射した後、集光部により効率よく集光することができる。したがって、光出力の小さなチップタイプの発光素子を使用しても、特に光出力の大きな発光素子や、受光能力の大きな受光素子を選別する必要がない。また検出光量が大きくとれるので発光部と受光部間の距離を延ばすことができ、小形のチップタイプの受発光素子を使用しながら、大型サイズの光学的位置検出装置にも適用することができる。
【0012】
第2の発明は、光学式タッチパネル表面の周囲に装着され使用光の波長に対して透明な枠状の導光体であって、発光素子からの光を導いて対向する受光部へ放射する発光部と、該発光部からの光を入射して受光素子へ導く受光部とを複数対一体形成し、少なくとも発光部と受光部との境界に発光部から受光部への光の回り込みを防止するスリットを形成し、上記発光部及び受光部に、発光部または受光部に侵入した外乱光を屈折させて発光部または受光部外に逃すために屈折率の異なる層を介在させるための空隙部を形成し、該空隙部の内側面を曲面にして、発光部側空隙部の一側に受光部へ放射する光を集光し、受光部側空隙部の一側に受光素子へ導く光を集光する集光部をそれぞれ一体に設けたものである。
【0013】
第2の発明のように、発光部及び受光部に、発光部または受光部に侵入した外乱光を屈折させて発光部または受光部外に逃すために屈折率の異なる層を介在させるための空隙部を形成している場合には、空隙部が太陽光等の外乱光の入光を抑えるため、外乱光が、光源である発光素子に影響を与えたり、受光素子に受光されたりすることが少なくなるため、外乱光による誤動作を生じにくくすることができる。また、空隙部の内側面をレンズ効果をもつ曲面にして、発光部側空隙部の一側に受光部へ放射する光を集光し、受光部側空隙部の一側に受光素子へ導く光を集光する集光部をそれぞれ一体に設けている場合には、空隙部の形成と同時に集光部を形成することができるので、構成及び製造の簡素化を図ることができる。
【0014】
第3の発明は、第2の発明において、上記発光部の発光面または受光部の受光面を構成する導光体の内側面に、外乱光を反射させて外乱光が発光部または受光部に入るのを防止するためのテーパを形成したものである。
【0015】
第3の発明のように、導光体の発光部または受光部の内側面に、外乱光を反射させて外乱光が発光部または受光部に入るのを防止するためのテーパを形成している場合には、外乱光による誤動作がより生じにくい。
【0016】
またこのテーパは、発光部から発光した光が広がり、受発光面を構成する導光体の内側面に反射し、受光部に入る光路をなくしている。
【0017】
第4の発明は、第1ないし第3の発明の導光体おいて、該導光体にさらに、発光部の下面に設けた発光素子から発光部に入射した光を反射して対向する受光部に向ける反射部、及び受光部に入射した光を反射して受光部の下面に設けた受光素子に向ける反射部をそれぞれ一体に設けたものである。
【0018】
第4の発明のように、発光部の下面に設けた発光素子から発光部に入射した光を反射して対向する受光部へ放射し、または受光部に入射した光を反射して受光部の下面に設けた受光素子に導く反射部をそれぞれ一体に設けている場合には、発光素子及び受光素子と導光体とを重ねることができ、発光素子及び受光素子が導光体からはみ出さないので、発光素子及び受光素子を導光体からはみ出して導光体の側面から光を入射させる場合に比較して、装置を小形化できる。また、反射部を導光体に一体に形成するので、構成を簡素化することができる。
【0019】
第5の発明は、第1の発明ないし第4の発明において、材質にアクリル樹脂、ABS樹脂、ポリカーボネートなどの赤外光に対して透明な樹脂を使用したものである。第5の発明で規定したような樹脂を使用することにより、導光体を安価に一体成形でき、また赤外光の伝達ロスを低減できる。
【0020】
第6の発明は、複数個の発光素子と受光素子とを対向させるように光学式タッチパネル表面の周囲に配置して、発光素子から受光素子に到る光を遮光することにより物体の位置または有無を検出する光学的位置検出装置において、上記光学式タッチパネル表面の周囲に枠状に取り付けられ、光学式タッチパネル表面の周囲に配置される上記複数個の発光素子と受光素子とをチップタイプで構成して、これらを面状に実装した基板と、該基板上に装着される第1の発明ないし第4の発明の導光体とを備えたものである。
【0021】
第6の発明のように、発光素子と受光素子とをチップタイプで構成し、これらを基板に面状に実装している場合には、発光素子と受光素子とをディスクリートタイプで構成し、そのリードを半田付けして立体的に実装する場合に比較して、実装が容易で低コスト化が図れ、しかも平面的となるため実装厚みを薄くでき、装置の小形化が図れる。また、集光部を有する導光体に光が導かれるので、光出力が弱く集光力の小さなチップタイプの受発光素子を用いても、伝達ロスを少なくし、検出光量を増加することができるので、受発光素子間の距離を延ばすことができる。
【0022】
【発明の実施の形態】
以下に本発明の実施の形態について説明する。図1は本実施の形態の光学的位置検出装置の分解図であり、(a)は導光体の平面図、(b)は基板の平面図である。図2は導光体の要部の斜視図である。
【0023】
光学式位置検出装置は、光学式タッチパネル表面30の周囲に枠状に取り付けられる基板31と、基板31上に重ねて装着される光を導く導光体21とから主に構成される。
【0024】
四角枠形状をもつ基板31には、光学式タッチパネル表面の周囲に配置されるべき複数個の発光素子32と受光素子33とが実装される。図示例では上辺及び左辺に発光素子32が実装され、これらに対向する下辺及び右辺に受光素子33が実装される。受発光素子32、33は、凹面鏡なしのベアチップタイプで構成され、これらが受発光面を上にして、基板31に面状に実装される。受発光素子32、33にチップタイプを使用して面状に基板31に実装しているので、実装が容易で低コスト化が図れ、しかも平面的となり実装厚みを薄くできる。なお、受発光素子32、33には赤外域のものを使う。
【0025】
導光体21は、光学式タッチパネル表面30の周囲に装着するために、基板31と同じく、四角枠状に形成され、赤外光に対して透明な材質、例えばアクリル樹脂、ABS樹脂、ポリカーボネート等で形成される。
【0026】
この導光体21には、その外周に複数のスリット22が繰返し設けられ、スリット22間に、発光素子32からの光を導いて対向する受光部16へ放射する複数の発光部15と、発光部15からの光を入射して受光素子33へ導く複数の受光部16とが形づくられるようになっている。スリット22は、発光部15から受光部16への光の回り込みを防止するとともに、各発光部15及び各受光部16での光の拡散を防止する。なお、スリット22は、発光部15側では深く、受光部16側では浅くしてあるため、導光体21の形状は左右対称にはなっていない。
【0027】
スリット22に光の回り込み防止機能だけをもたせるのであれば、スリット22は、少なくとも発光部15と受光部16との境界、すなわち図1(a)に示したA、Bの2箇所に形成すれば足りる。これは各一対の発光素子32と受光素子33とを順次走査していくので、発光部間、受光部間での光の回り込みは考慮しなくてもよいためである。
【0028】
発光部15には、発光部15の下面に配置する発光素子32から発光部15に入射した光を90°の角度で反射して、タッチパネル表面30と平行な向きに変え、対向する受光部16へ放射する反射部23が一体に設けられる。また受光部16にも、受光部16に入射した光を90°の角度で反射して、受光部16の下面に配置する受光素子33に向ける反射部23を一体に設けてある。これらの反射部23は、外側に突出した格好になっている発光部15及び受光部16の端面を、斜めにカットすることにより形成することができる。必要であれば、カット面に反射膜を塗布してもよい。
【0029】
また、導光体21の発光部15及び受光部16の光路の途中に、発光部15または受光部16に侵入した外乱光を屈折させて発光部15または受光部16の外に逃すために屈折率の異なる層を介在させるための空隙部25を形成してある。空隙部25は、空隙部25の内側に形成される内枠36を導光体21と接続しておくために、不連続に形成してある。この空隙部25には導光体21を構成する材質よりも屈折率の小さな空気層または他の層を介在させるとよい。
【0030】
この空隙部25を構成する壁面のうち、外側の面を曲面26にしてレンズ効果をもたせ、発光部側空隙部25の一側に、対向する受光部16へ放射する光を集光し、受光部側空隙部25の一側に受光素子33へ導く光を集光する集光部24をそれぞれ一体に設ける。導光体21に集光部24を設けて散乱防止と集光を行ない、検出光量を増やすようにしたので、凹面鏡をもたないベアタイプの微弱光素子でも対向する受発光素子間の距離を実用範囲で延ばすことが可能となる。また、受発光素子の受発光量の多いものを選択する必要もなくなる。特に、凹面鏡付受発光素子を使用すれば、さらに距離を延ばすことができるので、小形の検出装置にとどまらず、大型の検出装置にも適用することができるようになる。
【0031】
空隙部25の曲面26は、これと対向する平面29と同様に鏡面仕上とする。また、発光部側の集光部24の焦点が受光部16の受光面28に、受光部側の集光部24の焦点が受光素子33にそれぞれ形成されるように、各曲面26の曲率を決定する。なお、図示例では、発光部15の発光面27または受光部16の受光面28を構成する導光体21の内側面は、光路と垂直になるようにカットしてある。
【0032】
以上説明した光学的位置検出装置の要部構成の斜視図を示したのが図2である。同図に示すように、導光体21は、その受発光部15、16の反射部23側の下面に受発光素子32、33が配置されるように、基板31上に接着など適宜の手段により装着される。また、導光体21に空隙部25が形成されることにより、空隙部25の内側に連続した内枠36が形成されるが、この内枠36は導光体21の補強、及びタッチパネル表面の周囲の目隠しになる。なお、導光体21は射出成形などにより一体形成する。
【0033】
さて、上述したような基板31に導光体21を装着した本実施の形態の光学式位置検出装置において、基板31に実装された発光素子32から出た上向きの光は、図3に矢印で示すように、導光体21の発光部15の下面から導光体21に入射する。導光体21に入射した光は反射部23で反射して90°向きを変えられ、集光部24に導かれて集光される。この集光部24とスリット22とが相俟って光の散乱を防止する。したがって、微弱光でも十分大きな光量を取り出すことができる。集光部24で集光された光は、空隙部25を通って発光部15の発光面27から一度導光体21を出て受光部16に向けて放射される。受光部16の受光面28より再び導光体21に入射した光は、空隙部25を通過して反射部23に到り、ここで反射して90°向きを変えられ、受光部16の下面から出射して、受光部16の下面に配置されている受光素子33で検出される。
【0034】
ここで、外乱光20が同図に示す角度で、受光部16の受光面28より受光部16に入った場合には、その光は空隙部25によって曲げらるので、受光素子33に到る前に、受光部15から出てしまう。このため、空隙部25がない場合のように、導光体21に入射した外乱光20が導光体21の上下面で反射を繰返して受光素子33に届いてしまうようなことが少なくなり、その結果、外乱光による誤動作を低減できる。なお、この効果は、発光部15においても言えることであり、発光部15に入射した外乱光20が光源である発光素子32に影響を与えることが少なくなる。
【0035】
また、受発光素子32、33の上部は導光体21の発光部15及び受光部16で覆われているので、上方から来る外乱光は発光部15及び受光部16により遮光され、直接受発光素子32、33に外乱光が入射することがないので、この点からも外乱光による誤動作を低減することができる。
【0036】
以上述べたように本実施の形態によれば、受発光素子を導光体で覆って光を導光体で導くようにしたので、従来のような可視光カットフィルタを必要としない。また、水平方向の光の向きを垂直方向に変える反射部、光の拡散を防止する光路を形成するためのスリット、光を集光する集光部、外乱光の侵入を軽減する空隙部等を一体形成した導光体を使用することにより光の伝達ロスをなくし、かつ集光することにより検出光量を増やし、しかも外乱光の侵入を軽減できるようにしたので、受発光素子に受発光量の少ない低出力で小形のベアチップタイプを採用することができ、導光体を使用しない従来例と比較して、実装コストの低減、薄形化、小形かつ安価な装置を作ることができる。また低電力であるため電池駆動が可能となり、ポータブル用途にも使用できる。また、特に凹面鏡を有するチップタイプの受発光素子を用いれば、より大きな受発光量が得られて受発光間の距離が取れるので、チップタイプの受発光素子でありながら、より大型の検出装置にも適用することができる。
【0037】
なお、上述した実施の形態では、発光部15の発光面27または受光部16の受光面28を構成する導光体21の両内側面を、光路と垂直になるようにカットしたが、図4に示すように、対向する内側面が断面ハの字になるように、斜めにカットして内側面にテーパ34を形成するとよい。このようにテーパ34を形成すると、上方から導光体21に入り込む外乱光の光量をより有効に減らすことができる。
【0038】
また、図6のように対向する内側面が断面ハの字の逆になるようにカットして内側面にテーパ34を形成すると、発光部から発光した光が広がり、発光部と垂直方向のテーパに反射し、受光部に入る光量を低減させることが可能である。
【0039】
また、上述した実施の形態では受発光部15、16に空隙部25を設けるようにしたが、図5に示すように、外乱光防止機能は低下するけれども、空隙部25を省略し、内枠の内側面にレンズ効果のある曲面を形成することにより内枠を集光部24としてもよい。
【0040】
また、上述した実施の形態では、受発光部15、16の端面に反射部23を設けて、光を導光体21の下面から入射させ、導光体21の下面に出射するようにしたが、図6に示すように、受発光部15、16の端面を垂直カットとして反射部を設けないようにしてもよい。その場合には、受発光素子32、33は、導光体21の下面ではなく、端面と対向する位置に配置する必要がある。これによれば導光体21と受発光素子32、33が同一面上に来るので、受発光素子32、33を導光体21の下面に配置したものよりも、装置の外径は大きくなるが、厚みを薄くすることができる。
【0041】
また、同図に示すように、タッチパネル表面30を保護するために、タッチパネル表面30を覆う接触パネル35を、受発光部15、16よりも一段低くダウンセットして導光体21と一体に形成するようにしてもよい。
【0042】
なお、本実施の形態による導光体は左右非対称としたが、使い勝手をよくするために、左右対称に形成してもよい。
【0043】
本発明は、例えば交通用ナビゲーションシステムの光学式位置検出装置に最適である。
【0044】
【実施例】
次の仕様の光学式位置検出装置を作製した。
【0045】

Figure 0003682109
これによりベアチップタイプの受発光素子でも、受発光素子間に十分な距離をとれ、実用に耐えることが確認できた。
【0046】
【発明の効果】
本発明の導光体によれば、集光部、空隙部、反射部などを導光体に一体形成するようにしたので、構造が簡単で、光の伝達ロスを低減できる。また、集光部を設けたので検出光量を増すことができる。また、スリットを設けた場合には、光の光の回り込みや拡散を有効に防止することができる。また、空隙部やテーパを設けた場合には、外乱光の導光体への入射を軽減できる。そして、反射部を設けた場合には、受発光素子と導光体とを上下に重ねることができるので、装置の小形化を図ることができる。
【0047】
また、上記導光体を使用した本発明の光学的位置検出装置によれば、ワンタッチで組立ができる。また、装置の薄形化、実装コストの低減、及び小形、低電力化が図れる。また、電池駆動が可能となりポータブル用途にも使用できる。さらに受発光部間の距離が取れるので、受発光量の小さなチップタイプの受発光素子を用いた場合でも大型検出装置に適用できる。
【図面の簡単な説明】
【図1】本発明の実施の形態の光学的位置検出装置の分解図であり、(a)は導光体の平面図、(b)は基板の平面図である。
【図2】本実施の形態の導光体の要部の斜視図である。
【図3】本実施の形態の光学的位置検出装置の光路の説明図である。
【図4】他の実施の形態による光学的位置検出装置の導光体の発光面または受光面にテーパを付けたときの外乱光の説明図である。
【図5】他の実施の形態の導光体の要部の斜視図である。
【図6】他の実施の形態の光学的位置検出装置の要部の斜視図である。
【図7】従来例の光学的位置検出装置の平面図である。
【図8】従来例のディスクリートタイプの受発光素子の説明図である。
【図9】従来例のチップタイプの受発光素子の説明図である。
【図10】従来例の受発光素子を可視光カットフィルタで覆った説明図である。
【符号の説明】
21 導光体
22 スリット
23 反射部
24 集光部
25 空隙部
26 曲面
27 発光面
28 受光面
30 光学式タッチパネル面
31 基板
32 発光素子
33 受光素子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light guide used for an optical touch panel and an optical position detection device. In particular, the use of a chip-type light receiving / emitting element that has a small amount of light emission / reception, but is advantageous in terms of component mounting cost and device thickness. The present invention relates to a device that enables power saving, external noise resistance, and large size.
[0002]
[Prior art]
As shown in FIG. 7, a pair of light emitting elements 2 and light receiving elements 3 are separated from each other by a predetermined distance, and a plurality of pairs are arranged to form a detection panel 1, and each pair of light emitting elements 2 and light receiving elements 3 are sequentially scanned. Then, the position or presence of the object 4 on the optical touch panel surface 5 is detected by detecting whether or not the light emitted from each light emitting element 2 toward the corresponding light receiving element 3 is blocked by the object 4. Position detecting devices are known.
[0003]
The light receiving / emitting elements 2 and 3 arranged on the detection panel 1 are substantially spindle-shaped light receiving / emitting elements 6 having a relatively large size and a large light receiving / emitting amount as shown in FIG. 8 (FIGS. 8A and 8B). In addition, a discrete type having a lead terminal 8 such as a side-view type light emitting / receiving element 7 (FIG. 8C) having a light emitting / receiving portion on a side surface is generally used.
[0004]
However, the discrete type light emitting / receiving elements 6 and 7 formed by sealing the bare chip mounted on the stem with a large amount of light received and emitted can take a large distance between the light emitting and receiving elements. Since it is necessary to solder after inserting into the hole provided in the board, the mounting to the board 9 is troublesome, and the mounting cost of components is increased. Further, since the outer diameter is large, the mounting thickness is increased, which is not suitable for thinning, and the apparatus cannot be miniaturized. In addition, because of the high power consumption, it cannot be used for portable applications.
[0005]
Therefore, in recent years, a chip-type light emitting / receiving element 10 having a small light receiving / emitting amount as shown in FIG. This chip-type light emitting / receiving element 10 has no leads and can be directly surface mounted on the substrate 9, which is advantageous for mounting surface and thinning. Also, since it is small and has low power, the device can be miniaturized. It can also be used for portable applications by battery operation. Further, the mounting surface can be selected without bending the lead as in the discrete type, and the light emitting / receiving surface can be easily turned sideways (FIG. 9A) or faced upward (FIG. 9 ( b)).
[0006]
Normally, an infrared light receiving / emitting element is used, but the visible light wavelength component cannot be ignored. Therefore, in actual use, the visible light cut filter 13 is disposed on the front surface of the light receiving / emitting element 10 as shown in FIG. As a covering structure, it does not react to visible light.
[0007]
[Problems to be solved by the invention]
By the way, the chip type light receiving and emitting elements are the same chip type, but the bare type (FIG. 9C) having the concave mirror 11 with the bare chip 12 attached to the concave mirror 11 and the bare chip 12 that is not so. There is a light emitting / receiving element shown in FIG. Since the optical output with a concave mirror is large to some extent, it is optimal for a small apparatus. However, the structure is very expensive, and it is particularly necessary to select a device with a large light receiving / emitting amount. On the other hand, those without concave mirrors are smaller, cheaper and very attractive, but the light output is considerably weaker than with concave mirrors, so they are opposed to obtain a detectable level of optical signal. The distance between the light emitting and receiving elements to be made must be reduced. With such a small distance, even a small position detection device cannot secure a necessary touch panel area. In particular, as shown in FIG. 9B, when the light receiving / emitting surface is directed upward to reflect light and reach the opposing light receiving / emitting element, a light amount loss occurs. It was difficult to put to practical use.
[0008]
In addition, the chip type, whether with a concave mirror or a bare chip without a concave mirror, is much less light than the discrete type, so it is greatly affected by diffusion and disturbance in the optical path from the light emitting element to the light receiving element. Therefore, it is necessary to select a light emitting element having a large light output and a light receiving element having a large light receiving ability to withstand that, and the selecting operation is very troublesome and the yield is poor. Further, since a visible light cut filter is required separately, the advantage of the chip type is not utilized in terms of thickness. Further, it has not been possible to cope with a large apparatus having a long distance between the light receiving and emitting elements facing each other.
[0009]
The object of the present invention is to solve the above-mentioned problems of the prior art, and while receiving and emitting light is small, it adopts a small chip type light emitting and receiving element that is advantageous in terms of mounting cost and device thickness. It is an object of the present invention to provide a light guide and an optical position detection device that can take a sufficient distance and can withstand practical use.
[0010]
[Means for Solving the Problems]
A first invention is a frame-shaped light guide that is mounted around the surface of an optical touch panel and is transparent to the wavelength of light used, and emits light that guides light from a light emitting element and radiates it to an opposing light receiving unit. A plurality of pairs of light receiving portions that receive the light from the light emitting portion and guide the light to the light receiving element, and prevent light from flowing from the light emitting portion to the light receiving portion at least at the boundary between the light emitting portion and the light receiving portion. A slit is formed, and the light emitting unit collects light emitted to the light receiving unit, and the light receiving unit integrally includes a light collecting unit that collects the light guided to the light receiving element.
As in the first aspect of the invention, a plurality of pairs of a light emitting unit that guides light from a light emitting element and emits it to an opposing light receiving unit and a light receiving unit that receives light from the light emitting unit and guides it to the light receiving element are integrally formed. As a result, the configuration can be simplified and the manufacture is facilitated as compared with the case where they are formed separately. In addition, when a slit is provided at least at the boundary between the light emitting part and the light receiving part, by restricting the light from the light emitting part from passing through the light guide to the light receiving part on the opposite side, It is possible to effectively prevent the sneak light from being combined with the light receiving element and malfunctioning. In this case, if the slits are also provided between the light emitting units and between the light receiving units, the diffusion of light in the light emitting unit and the light receiving unit can be regulated by the slits, so that the light amount from the light receiving unit to the corresponding light emitting unit Can be effectively prevented.
[0011]
In addition, if the light emitting part condenses the light emitted to the light receiving part and the light receiving part condenses the light guided to the light receiving element, the light condensed by the light collecting part is emitted. Since the light can be efficiently radiated from the light-receiving part to the light-receiving part, the light can be sent to the light-receiving part without reducing the amount of light. It can condense efficiently by the condensing part. Therefore, even if a chip-type light emitting element having a small light output is used, it is not necessary to select a light emitting element having a particularly large light output or a light receiving element having a large light receiving ability. Further, since the detected light quantity can be increased, the distance between the light emitting part and the light receiving part can be extended, and the present invention can be applied to a large size optical position detecting device while using a small chip type light emitting / receiving element.
[0012]
The second invention is a frame-shaped light guide that is mounted around the surface of the optical touch panel and is transparent to the wavelength of light used, and emits light that guides light from the light emitting element and radiates it to the opposing light receiving section. A plurality of pairs of light receiving portions that receive the light from the light emitting portion and guide the light to the light receiving element, and prevent light from flowing from the light emitting portion to the light receiving portion at least at the boundary between the light emitting portion and the light receiving portion. A slit is formed, and a gap portion for interposing layers having different refractive indexes to refract the disturbance light that has entered the light emitting portion or the light receiving portion and to escape outside the light emitting portion or the light receiving portion is formed in the light emitting portion and the light receiving portion. The inner surface of the gap is curved, the light emitted to the light receiving part is collected on one side of the light emitting part side gap, and the light guided to the light receiving element is collected on one side of the light receiving part side gap. Each of the light collecting parts is provided integrally.
[0013]
As in the second invention, a gap for interposing layers having different refractive indexes in the light emitting part and the light receiving part to refract the disturbance light that has entered the light emitting part or the light receiving part and to escape the light emitting part or the light receiving part to the outside. If the gap is formed, the gap part suppresses the incoming of disturbance light such as sunlight, so that the disturbance light may affect the light emitting element as the light source or be received by the light receiving element. Therefore, it is possible to make it difficult to cause malfunction due to disturbance light. Also, the inner surface of the gap is curved with a lens effect, the light emitted to the light receiving part is condensed on one side of the light emitting part side gap, and the light is guided to the light receiving element on one side of the light receiving part side gap. In the case where the condensing portions for condensing each are integrally provided, the condensing portion can be formed simultaneously with the formation of the gap portion, so that the configuration and manufacture can be simplified.
[0014]
According to a third invention, in the second invention, the disturbance light is reflected on the inner surface of the light guide constituting the light emitting surface of the light emitting unit or the light receiving surface of the light receiving unit, and the disturbance light is reflected on the light emitting unit or the light receiving unit. A taper is formed to prevent entry.
[0015]
As in the third aspect of the invention, a taper is formed on the inner surface of the light-emitting part or light-receiving part of the light guide so as to reflect disturbance light and prevent the disturbance light from entering the light-emitting part or light-receiving part. In this case, malfunction due to ambient light is less likely to occur.
[0016]
In addition, this taper spreads the light emitted from the light emitting part, reflects it to the inner surface of the light guide constituting the light receiving / emitting surface, and eliminates the optical path entering the light receiving part.
[0017]
According to a fourth aspect of the present invention, in the light guide body of the first to third aspects, the light receiving body further reflects the light incident on the light emitting section from the light emitting element provided on the lower surface of the light emitting section and faces the light receiving section. And a reflecting portion that reflects light incident on the light receiving portion and that faces the light receiving element provided on the lower surface of the light receiving portion.
[0018]
As in the fourth aspect of the invention, the light incident on the light emitting unit from the light emitting element provided on the lower surface of the light emitting unit is reflected and radiated to the opposite light receiving unit, or the light incident on the light receiving unit is reflected and reflected on the light receiving unit. In the case where the reflecting portions that lead to the light receiving element provided on the lower surface are integrally provided, the light emitting element, the light receiving element, and the light guide can be overlapped, and the light emitting element and the light receiving element do not protrude from the light guide. Therefore, the apparatus can be reduced in size as compared with the case where the light emitting element and the light receiving element are protruded from the light guide and light is incident from the side surface of the light guide. Moreover, since the reflection part is formed integrally with the light guide, the configuration can be simplified.
[0019]
According to a fifth invention, in the first to fourth inventions, a resin transparent to infrared light such as an acrylic resin, an ABS resin, or a polycarbonate is used as a material. By using a resin as defined in the fifth invention, the light guide can be integrally formed at a low cost and the transmission loss of infrared light can be reduced.
[0020]
According to a sixth aspect of the present invention, a plurality of light emitting elements and light receiving elements are arranged around the surface of the optical touch panel so as to face each other, and light from the light emitting elements to the light receiving elements is shielded to thereby detect the position or presence of the object. In the optical position detecting device for detecting the light, a plurality of light emitting elements and light receiving elements which are attached in a frame shape around the surface of the optical touch panel and are arranged around the surface of the optical touch panel are configured in a chip type. And a light guide body according to any one of the first to fourth inventions mounted on the substrate.
[0021]
As in the sixth invention, when the light emitting element and the light receiving element are configured in a chip type and these are mounted on the substrate in a planar shape, the light emitting element and the light receiving element are configured in a discrete type, Compared with the case where the leads are soldered and mounted three-dimensionally, the mounting is easy and the cost can be reduced, and the mounting thickness can be reduced and the device can be miniaturized because it is planar. In addition, since light is guided to a light guide having a condensing part, even if a chip-type light emitting / receiving element with low light output and small condensing power is used, transmission loss can be reduced and detected light quantity can be increased. Thus, the distance between the light emitting and receiving elements can be increased.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 is an exploded view of the optical position detection device of the present embodiment, where (a) is a plan view of a light guide and (b) is a plan view of a substrate. FIG. 2 is a perspective view of the main part of the light guide.
[0023]
The optical position detection apparatus mainly includes a substrate 31 attached in a frame shape around the optical touch panel surface 30, and a light guide 21 that guides light mounted on the substrate 31.
[0024]
A plurality of light emitting elements 32 and light receiving elements 33 to be arranged around the surface of the optical touch panel are mounted on a substrate 31 having a rectangular frame shape. In the illustrated example, the light emitting elements 32 are mounted on the upper side and the left side, and the light receiving elements 33 are mounted on the lower side and the right side facing these. The light receiving / emitting elements 32 and 33 are configured as a bare chip type without a concave mirror, and these are mounted on the substrate 31 in a planar shape with the light receiving / emitting surface facing up. Since a chip type is used for the light emitting / receiving elements 32 and 33 and is mounted on the substrate 31 in a planar shape, mounting is easy and the cost can be reduced, and the mounting thickness can be reduced because it is planar. The light emitting / receiving elements 32 and 33 are in the infrared region.
[0025]
In order to be mounted around the optical touch panel surface 30, the light guide 21 is formed in a rectangular frame shape like the substrate 31, and is transparent to infrared light, such as acrylic resin, ABS resin, polycarbonate, etc. Formed with.
[0026]
A plurality of slits 22 are repeatedly provided on the outer periphery of the light guide 21, and a plurality of light emitting units 15 that guide light from the light emitting elements 32 and radiate the light to the opposing light receiving units 16, and light emission between the slits 22. A plurality of light receiving portions 16 that are configured to receive light from the portion 15 and guide the light to the light receiving element 33 are formed. The slit 22 prevents light from wrapping around from the light emitting unit 15 to the light receiving unit 16 and prevents light from diffusing in each light emitting unit 15 and each light receiving unit 16. Since the slit 22 is deep on the light emitting unit 15 side and shallow on the light receiving unit 16 side, the shape of the light guide 21 is not symmetrical.
[0027]
If the slit 22 has only the function of preventing light from wrapping around, the slit 22 should be formed at least at the boundary between the light emitting portion 15 and the light receiving portion 16, that is, at two locations A and B shown in FIG. It ’s enough. This is because each pair of the light emitting element 32 and the light receiving element 33 is sequentially scanned, so that it is not necessary to consider the wraparound of light between the light emitting parts and between the light receiving parts.
[0028]
The light-emitting unit 15 reflects light incident on the light-emitting unit 15 from the light-emitting element 32 disposed on the lower surface of the light-emitting unit 15 at an angle of 90 °, changes the direction to parallel to the touch panel surface 30, and opposes the light-receiving unit 16 facing the light-emitting unit 15. A reflecting portion 23 that radiates to is integrally provided. The light receiving unit 16 is also integrally provided with a reflecting unit 23 that reflects light incident on the light receiving unit 16 at an angle of 90 ° and faces the light receiving element 33 disposed on the lower surface of the light receiving unit 16. These reflecting portions 23 can be formed by obliquely cutting the end surfaces of the light emitting portion 15 and the light receiving portion 16 that protrude outward. If necessary, a reflective film may be applied to the cut surface.
[0029]
Further, in the middle of the light path of the light emitting unit 15 and the light receiving unit 16 of the light guide 21, the disturbance light that has entered the light emitting unit 15 or the light receiving unit 16 is refracted and refracted to escape from the light emitting unit 15 or the light receiving unit 16. A gap 25 for interposing layers with different rates is formed. The gap 25 is formed discontinuously in order to connect the inner frame 36 formed inside the gap 25 to the light guide 21. An air layer or other layer having a refractive index smaller than that of the material constituting the light guide 21 may be interposed in the gap 25.
[0030]
Of the wall surfaces constituting the gap 25, the outer surface is a curved surface 26 to provide a lens effect, and the light emitted to the opposite light receiving part 16 is condensed on one side of the light emitting part side gap 25 to receive the light. A condensing part 24 for condensing light guided to the light receiving element 33 is integrally provided on one side of the part side gap part 25. Since the light condensing unit 24 is provided in the light guide 21 to prevent scattering and condense, and the amount of detected light is increased, the distance between the light receiving and emitting elements facing each other even in a bare type weak light element having no concave mirror is set. It can be extended within the practical range. In addition, it is not necessary to select a light emitting / receiving element having a large amount of light receiving / emitting light. In particular, if the light receiving / emitting element with a concave mirror is used, the distance can be further extended, so that it can be applied not only to a small detection device but also to a large detection device.
[0031]
The curved surface 26 of the gap 25 has a mirror finish similar to the flat surface 29 facing it. Further, the curvature of each curved surface 26 is set so that the focal point of the light collecting unit 24 on the light emitting unit side is formed on the light receiving surface 28 of the light receiving unit 16 and the focal point of the light collecting unit 24 on the light receiving unit side is formed on the light receiving element 33. decide. In the illustrated example, the inner side surface of the light guide 21 constituting the light emitting surface 27 of the light emitting unit 15 or the light receiving surface 28 of the light receiving unit 16 is cut so as to be perpendicular to the optical path.
[0032]
FIG. 2 shows a perspective view of the main configuration of the optical position detection apparatus described above. As shown in the figure, the light guide 21 has an appropriate means such as adhesion on the substrate 31 such that the light emitting / receiving elements 32, 33 are arranged on the lower surface of the light emitting / receiving portions 15, 16 on the reflecting portion 23 side. It is attached by. Further, by forming the gap portion 25 in the light guide 21, an inner frame 36 that is continuous inside the gap portion 25 is formed. This inner frame 36 is used to reinforce the light guide 21 and to provide a touch panel surface. Be blindfolded around. The light guide 21 is integrally formed by injection molding or the like.
[0033]
Now, in the optical position detection apparatus of the present embodiment in which the light guide 21 is mounted on the substrate 31 as described above, upward light emitted from the light emitting element 32 mounted on the substrate 31 is indicated by an arrow in FIG. As shown, the light enters the light guide 21 from the lower surface of the light emitting portion 15 of the light guide 21. The light incident on the light guide 21 is reflected by the reflecting portion 23 and changed in direction by 90 °, and is guided to the light collecting portion 24 and condensed. The condensing part 24 and the slit 22 combine to prevent light scattering. Therefore, a sufficiently large amount of light can be extracted even with weak light. The light collected by the light collecting unit 24 passes through the gap 25 and is emitted from the light emitting surface 27 of the light emitting unit 15 once through the light guide 21 toward the light receiving unit 16. The light incident on the light guide 21 again from the light receiving surface 28 of the light receiving unit 16 passes through the gap 25 and reaches the reflecting unit 23, where it is reflected and changed in direction by 90 °, and the lower surface of the light receiving unit 16. And is detected by the light receiving element 33 disposed on the lower surface of the light receiving unit 16.
[0034]
Here, when the disturbance light 20 enters the light receiving unit 16 from the light receiving surface 28 of the light receiving unit 16 at an angle shown in the figure, the light is bent by the gap 25 and reaches the light receiving element 33. Before, it comes out of the light receiving part 15. For this reason, unlike the case where there is no gap 25, the disturbance light 20 incident on the light guide 21 is less likely to reach the light receiving element 33 by repeatedly reflecting on the upper and lower surfaces of the light guide 21, As a result, malfunction due to disturbance light can be reduced. Note that this effect can also be applied to the light emitting unit 15, and the disturbance light 20 incident on the light emitting unit 15 is less likely to affect the light emitting element 32 that is a light source.
[0035]
Further, since the upper portions of the light receiving and emitting elements 32 and 33 are covered with the light emitting portion 15 and the light receiving portion 16 of the light guide 21, disturbance light coming from above is shielded by the light emitting portion 15 and the light receiving portion 16 and directly received and emitted. Since disturbance light does not enter the elements 32 and 33, malfunctions due to disturbance light can be reduced from this point.
[0036]
As described above, according to the present embodiment, since the light receiving and emitting elements are covered with the light guide and the light is guided by the light guide, the conventional visible light cut filter is not required. In addition, a reflective part that changes the direction of the light in the horizontal direction to a vertical direction, a slit for forming an optical path that prevents light diffusion, a condensing part that collects light, a gap part that reduces the intrusion of disturbance light, etc. By using an integrally formed light guide, light transmission loss is eliminated, and the amount of detected light is increased by condensing, and the intrusion of disturbance light can be reduced. A small bare chip type with low output can be adopted, and compared with the conventional example in which a light guide is not used, the mounting cost can be reduced, the thickness can be reduced, and a small and inexpensive device can be made. In addition, the battery can be driven because of its low power, and it can be used for portable applications. In particular, if a chip-type light emitting / receiving element having a concave mirror is used, a larger light receiving / emitting amount can be obtained and a distance between light receiving and light emitting can be obtained. Can also be applied.
[0037]
In the embodiment described above, both inner side surfaces of the light guide 21 constituting the light emitting surface 27 of the light emitting unit 15 or the light receiving surface 28 of the light receiving unit 16 are cut so as to be perpendicular to the optical path. As shown, the taper 34 may be formed on the inner side by cutting diagonally so that the opposing inner side has a cross-sectional shape. When the taper 34 is formed in this way, the amount of disturbance light entering the light guide 21 from above can be more effectively reduced.
[0038]
Further, as shown in FIG. 6, when the opposite inner side surface is cut so that the cross-section is reversed and the taper 34 is formed on the inner side surface, the light emitted from the light emitting portion spreads, and the taper is perpendicular to the light emitting portion. It is possible to reduce the amount of light that is reflected by the light and enters the light receiving portion.
[0039]
Further, in the embodiment described above, the gap portion 25 is provided in the light emitting / receiving portions 15 and 16, but as shown in FIG. 5, the disturbance light prevention function is reduced, but the gap portion 25 is omitted, and the inner frame The inner frame may be used as the light collecting unit 24 by forming a curved surface having a lens effect on the inner surface of the lens.
[0040]
In the above-described embodiment, the reflection unit 23 is provided on the end surfaces of the light emitting / receiving units 15 and 16 so that light is incident from the lower surface of the light guide 21 and is emitted to the lower surface of the light guide 21. As shown in FIG. 6, the end surfaces of the light emitting / receiving portions 15 and 16 may be cut vertically so that no reflecting portion is provided. In that case, it is necessary to arrange the light emitting / receiving elements 32 and 33 not at the lower surface of the light guide 21 but at a position facing the end surface. According to this, since the light guide 21 and the light receiving and emitting elements 32 and 33 are on the same surface, the outer diameter of the apparatus is larger than that in which the light receiving and emitting elements 32 and 33 are arranged on the lower surface of the light guide 21. However, the thickness can be reduced.
[0041]
In addition, as shown in the figure, in order to protect the touch panel surface 30, a contact panel 35 covering the touch panel surface 30 is downset one step lower than the light emitting / receiving portions 15 and 16 and is integrally formed with the light guide 21. You may make it do.
[0042]
Although the light guide according to the present embodiment is asymmetrical, it may be formed symmetrically for ease of use.
[0043]
The present invention is most suitable for an optical position detection device of a traffic navigation system, for example.
[0044]
【Example】
An optical position detector having the following specifications was produced.
[0045]
Figure 0003682109
As a result, it was confirmed that even a bare chip type light emitting / receiving element could withstand a practical use with a sufficient distance between the light emitting / receiving elements.
[0046]
【The invention's effect】
According to the light guide of the present invention, the condensing part, the gap, the reflection part and the like are integrally formed on the light guide, so that the structure is simple and the light transmission loss can be reduced. Moreover, since the condensing part is provided, the amount of detected light can be increased. Further, when the slit is provided, it is possible to effectively prevent the light from wrapping around and diffusing. Moreover, when a space | gap part and a taper are provided, incidence to the light guide of disturbance light can be reduced. And when a reflection part is provided, since a light emitting / receiving element and a light guide can be piled up and down, size reduction of an apparatus can be achieved.
[0047]
Moreover, according to the optical position detection apparatus of the present invention using the light guide, assembly can be performed with one touch. Further, the apparatus can be thinned, the mounting cost can be reduced, and the size and power can be reduced. In addition, the battery can be driven and can be used for portable purposes. Furthermore, since the distance between the light emitting and receiving parts can be increased, even when a chip type light emitting and receiving element with a small amount of light received and emitted is used, the present invention can be applied to a large detection device.
[Brief description of the drawings]
FIG. 1 is an exploded view of an optical position detection device according to an embodiment of the present invention, where (a) is a plan view of a light guide and (b) is a plan view of a substrate.
FIG. 2 is a perspective view of a main part of the light guide according to the present embodiment.
FIG. 3 is an explanatory diagram of an optical path of the optical position detection device according to the present embodiment.
FIG. 4 is an explanatory diagram of disturbance light when a light emitting surface or a light receiving surface of a light guide of an optical position detection device according to another embodiment is tapered.
FIG. 5 is a perspective view of a main part of a light guide according to another embodiment.
FIG. 6 is a perspective view of a main part of an optical position detection device according to another embodiment.
FIG. 7 is a plan view of a conventional optical position detection device.
FIG. 8 is an explanatory diagram of a conventional discrete type light emitting / receiving element.
FIG. 9 is an explanatory view of a conventional chip type light emitting / receiving element.
FIG. 10 is an explanatory diagram in which a conventional light receiving and emitting element is covered with a visible light cut filter.
[Explanation of symbols]
21 Light Guide 22 Slit 23 Reflector 24 Condenser 25 Gap 26 Curve 27 Light Emitting Surface 28 Light Receiving Surface 30 Optical Touch Panel 31 Substrate 32 Light Emitting Element 33 Light Receiving Element

Claims (5)

光学式タッチパネル表面の周囲に装着され使用光の波長に対して透明な枠状の導光体であって、発光素子からの光を導いて対向する受光部へ放射する発光部と、該発光部からの光を入射して受光素子へ導く受光部とを複数対一体形成し、少なくとも発光部と受光部との境界に発光部から受光部への光の回り込みを防止するスリットを形成し、上記発光部及び受光部に、発光部または受光部に侵入した外乱光を屈折させて発光部または受光部外に逃すために屈折率の異なる層を介在させるための空隙部を形成し、該空隙部の内側面を曲面にして、発光部側空隙部の一側に受光部へ放射する光を集光し、受光部側空隙部の一側に受光素子へ導く光を集光する集光部をそれぞれ一体に設けたことを特徴とする導光体。A light guide that is mounted around the surface of the optical touch panel and is transparent to the wavelength of the light used, and that emits light from the light emitting element and emits it to the opposing light receiving unit, and the light emitting unit A plurality of pairs of light receiving portions that receive light from the light and guide the light to the light receiving element are integrally formed, and at least a slit that prevents the light from flowing from the light emitting portion to the light receiving portion at the boundary between the light emitting portion and the light receiving portion A gap is formed in the light emitting part and the light receiving part for interposing layers having different refractive indexes in order to refract the disturbance light that has entered the light emitting part or the light receiving part and to escape the light emitting part or the light receiving part. The condensing part which condenses the light radiated to the light receiving part on one side of the light emitting part side gap part and condenses the light guided to the light receiving element on one side of the light receiving part side gap part. A light guide characterized by being provided integrally with each other. 請求項1に記載の導光体において、上記発光部の発光面または受光部の受光面を構成する導光体の内側面に、外乱光を反射させて外乱光が発光部または受光部に入るのを防止するためのテーパを形成した導光体。 2. The light guide according to claim 1 , wherein disturbance light is reflected on an inner surface of the light guide constituting the light emitting surface of the light emitting unit or the light receiving surface of the light receiving unit, and the disturbance light enters the light emitting unit or the light receiving unit. A light guide having a taper for preventing the above. 請求項1または2に記載の導光体おいて、該導光体にさらに、発光部の下面に設けた発光素子から発光部に入射した光を反射して対向する受光部に向ける反射部、及び受光部に入射した光を反射して受光部の下面に設けた受光素子に向ける反射部をそれぞれ一体に設けた導光体。The light guide according to claim 1 or 2 , wherein the light guide further reflects a light incident on the light emitting part from a light emitting element provided on a lower surface of the light emitting part, and directs the light toward the opposing light receiving part, And a light guide body integrally provided with a reflecting portion that reflects light incident on the light receiving portion and faces the light receiving element provided on the lower surface of the light receiving portion. 請求項1ないし3のいずれかに記載の導光体において、材質が赤外光に対して透明な樹脂である導光体。 4. The light guide according to claim 1 , wherein the light guide is made of a resin that is transparent to infrared light. 複数個の発光素子と受光素子とを対向させるように光学式タッチパネル表面の周囲に配置して、発光素子から受光素子に到る光を遮光することにより物体の位置または有無を検出する光学的位置検出装置において、上記光学式タッチパネル表面の周囲に枠状に取り付けられ、光学式タッチパネル表面の周囲に配置される上記複数個の発光素子と受光素子とをチップタイプで構成して、これらを面状に実装した基板と、該基板上に装着される請求項1ないし4のいずれかに記載の導光体とを備えた光学的位置検出装置。An optical position for detecting the position or presence of an object by arranging a plurality of light emitting elements and light receiving elements around the surface of the optical touch panel so as to face each other and blocking light from the light emitting elements to the light receiving elements. In the detection device, the plurality of light emitting elements and light receiving elements which are attached in a frame shape around the surface of the optical touch panel and are arranged around the surface of the optical touch panel are configured in a chip type, and these are planar. An optical position detecting device comprising: a substrate mounted on the substrate; and the light guide according to claim 1 mounted on the substrate.
JP1869596A 1996-02-05 1996-02-05 Light guide and optical position detection device Expired - Lifetime JP3682109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1869596A JP3682109B2 (en) 1996-02-05 1996-02-05 Light guide and optical position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1869596A JP3682109B2 (en) 1996-02-05 1996-02-05 Light guide and optical position detection device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004152192A Division JP3926808B2 (en) 2004-05-21 2004-05-21 Light guide and optical position detection device

Publications (2)

Publication Number Publication Date
JPH09212303A JPH09212303A (en) 1997-08-15
JP3682109B2 true JP3682109B2 (en) 2005-08-10

Family

ID=11978772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1869596A Expired - Lifetime JP3682109B2 (en) 1996-02-05 1996-02-05 Light guide and optical position detection device

Country Status (1)

Country Link
JP (1) JP3682109B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103034371A (en) * 2011-10-07 2013-04-10 日东电工株式会社 Input device
EP2350793B1 (en) * 2008-10-24 2017-07-12 Tactotek Oy Arrangement for a touchscreen and related method of manufacture

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4182772B2 (en) * 2003-02-20 2008-11-19 株式会社ノーリツ Operating device
JP2005276045A (en) * 2004-03-26 2005-10-06 Yokogawa Electric Corp Explosion-proof type terminal device
WO2006045142A1 (en) * 2004-10-25 2006-05-04 Rpo Pty Limited Planar lenses for integrated optics
CN101351765B (en) * 2005-10-24 2010-08-25 Rpo私人有限公司 Improved optical elements for waveguide-based optical touch screens and method therefor
US8064744B2 (en) * 2006-11-10 2011-11-22 Rpo Pty Limited Planar waveguide lens design
JP4845851B2 (en) * 2007-10-23 2011-12-28 日東電工株式会社 Optical waveguide for touch panel and touch panel using the same
JP4452305B2 (en) 2007-12-25 2010-04-21 日東電工株式会社 Optical waveguide for touch panel, touch panel using the same, and method for manufacturing optical waveguide for touch panel
JP5166920B2 (en) * 2008-03-10 2013-03-21 ローム株式会社 Display device
JP5063510B2 (en) * 2008-07-01 2012-10-31 日東電工株式会社 Optical touch panel and manufacturing method thereof
US8570304B2 (en) 2008-09-26 2013-10-29 Hewlett-Packard Development Company, L.P. Determining touch locations using disturbed light
TWI439902B (en) * 2009-06-16 2014-06-01 Raydium Semiconductor Corp Optical touch apparatus and operating method thereof
JP5764266B2 (en) * 2012-01-29 2015-08-19 ネオノード インコーポレイテッド Light-based touch-sensitive electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2350793B1 (en) * 2008-10-24 2017-07-12 Tactotek Oy Arrangement for a touchscreen and related method of manufacture
CN103034371A (en) * 2011-10-07 2013-04-10 日东电工株式会社 Input device
US8759743B2 (en) 2011-10-07 2014-06-24 Nitto Denko Corporation Input device

Also Published As

Publication number Publication date
JPH09212303A (en) 1997-08-15

Similar Documents

Publication Publication Date Title
JP3682109B2 (en) Light guide and optical position detection device
US7847255B2 (en) Multi-mode rain sensor
US4912316A (en) Detecting apparatus with resinous body
CN109886118B (en) Fingerprint identification subassembly and electronic equipment
EP0253810A1 (en) Electromagnetic radiation circuit element
JP2971750B2 (en) Backlight detection device for auto-dimming mirror
JP3997666B2 (en) Pulse wave sensor
JP2003177286A (en) Optical component for bi-directional optical communication
JP2003207695A (en) Optical communication module and single-core two-way optical modulation module
JP3926808B2 (en) Light guide and optical position detection device
JP2000193586A (en) Optical raindrop detector
CN213659463U (en) Fingerprint identification device and electronic equipment
JP2003098083A (en) Suspended particle detecting device
JPS6390866A (en) Semiconductor photodetector device
KR101024573B1 (en) Micro optic input device having a frensnel lens
CN215064885U (en) Sensor module and display device
JP4060483B2 (en) Radiation detector
JPH06342922A (en) Reflection type light-receiving device
CN110109128B (en) Infrared emission and detection integrated chip
JP2873650B2 (en) Optical position sensor
KR20170087358A (en) Image sensor package for finger-print and electronic device capable of detecting finger-print
JPH0799339A (en) Optically coupled device
CN213182775U (en) Fingerprint discernment sensing mechanism and electronic equipment under screen
CN218788087U (en) Photoelectric sensor, display module and electronic equipment
JPH1114753A (en) Object detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term