JP3679823B2 - 炉心シュラウドの交換方法 - Google Patents
炉心シュラウドの交換方法 Download PDFInfo
- Publication number
- JP3679823B2 JP3679823B2 JP33131094A JP33131094A JP3679823B2 JP 3679823 B2 JP3679823 B2 JP 3679823B2 JP 33131094 A JP33131094 A JP 33131094A JP 33131094 A JP33131094 A JP 33131094A JP 3679823 B2 JP3679823 B2 JP 3679823B2
- Authority
- JP
- Japan
- Prior art keywords
- shroud
- core
- reactor
- core shroud
- new
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Description
【産業上の利用分野】
本発明は沸騰水型軽水冷却原子炉などの原子炉内に設置される炉心シュラウドの交換方法に関する。
【0002】
【従来の技術】
一般に、この種の原子炉の炉心シュラウドは、ステンレス鋼製の部材を溶接することによって構成されている。このような炉心シュラウドの炭素含有量が高い場合、長期間の運転の間に溶接部あるいはその付近に応力腐食割れ等により、クラックが生じる可能性がある。このような事象が発生した場合には、原子炉の安全性確保のため、炉心シュラウドの補修あるいは、取換えを行う必要が生じ得る。
【0003】
しかしながら、長期間使用された炉心シュラウドは中性子照射のために脆化しており、溶接した場合には溶着金属の周辺にさらに細かい割れが生じることもあるため、溶接による補修を難しくしている。また補強部材をボルト結合する方法も考えられるが、高地震地帯に設置された原子炉においてはその採用は限られたものとなる可能性がある。
【0004】
そこで、最も望ましい方法は炉心シュラウドの取換えと考えられるが、炉心シュラウド自体は下端で炉心シュラウドのサポートリングに溶接されており、またインコアスタビライザ,炉内核計装案内管等との干渉,原子炉内の高放射線量、さらに炉心シュラウドの内部に設置されている上部格子板と炉心支持板との位置調整の困難性、撤去した炉心シュラウドの原子炉外での取扱いの困難性、および大量に発生する廃棄物の処理の困難性等、種々の問題があるため、これまでは交換が極めて困難であると予測されていた。
【0005】
しかしながら、原子炉の実用運転後、長期間が経過した近年においては、上述した炉心シュラウドの交換が急務となりつつあり、種々の技術が提案されるようになってきている(例;特開昭63−36195号等)。
【0006】
ただし、これまでの提案技術では、炉内の高放射化に過敏なあまり、依然として炉心シュラウドの切断や撤去、新シュラウドの据付け等についての全ての操作を遠隔操作によって行うものに偏している。このような全ての操作を遠隔で行う技術では、膨大な手間と時間が掛かり、また細部における具体性が欠けて実用化するには多くの不明確な点が存在するものとなっている。
【0007】
【発明が解決しようとする課題】
これに対し、近年では原子炉設備の汚染物質除去(以下、「除染」という)についての技術が著しく進歩し、例えば過マンガン酸塩溶液等の化学薬剤を用いて放射線汚染個所を極めて有効に洗浄する提案等もなされている(例:特公平3−10919号等)。ところが、このような原子炉内の放射線量当量率の低減技術を応用して炉心を洗浄し、遠隔作業以外の作業員によるシュラウド交換技術については、これまで特に提案されていない。
【0008】
原子力発電所では、給水・復水系、原子炉一次系等に使用される材料からの腐食生成物が溶解または剥離(エロージョン)によって一次系に放出され、炉心領域に付着して放射化される。その一部は再び放射化腐食生成物として放出され、炉心外領域の原子炉圧力容器、構造物、配管等を汚染する。
【0009】
汚染形態としては、一般に内層と呼ばれる材料表面に生成する酸化被膜に取込まれる放射化腐食生成物による固着した汚染と、外層と呼ばれる一次冷却材中に浮遊する不溶解性の放射化腐食生成物が内層の上に弱く付着した汚染が考えられる。
【0010】
化学除染法は上記内層、外層を構成する金属酸化物を化学除染剤の還元反応によって溶解することによって、汚染した放射能を除去する方法である。高圧ジェット水等の機械除染法では比較的付着力の小さい外層部分を剥離・除去することに特徴があるのに比べて、化学除染法は外層だけでなく、固着した内層の酸化皮膜まで取除くことから、高い除染効率が得られるのが特長である。化学除染により得られる除染係数(DF)は通常、数10〜数100が可能であり、汚染レベルが高いほど大きい値が得られる。
【0011】
本発明者等においてはシュラウド取替え工事について、原子炉内における気中作業に着目した。この場合、特にシュラウドサポートリングのレベルにおける開先加工、手動溶接に時間を要する。このレベルの雰囲気線量当量率が1mSv/hの場合、約1時間の作業が可能である。炉内化学除染とその後に放射化炉内構造物を鉄板等で遮蔽することにより、炉底部分の気中線量当量率は0.1mSv/h以下にすることが可能である。したがって、原子炉内での作業被曝を低く抑え、長時間の作業が可能となる。また、放射化した腐食生成物が除去されることから、乾燥して大気を汚染するダストの問題が軽減され、作業員の内部被曝防護の観点でも安全性を高めることとが可能となる。
【0012】
本発明は以上のような事情に鑑みてなされたもので、原子炉内の炉心シュラウドを交換する必要が生じた場合、遠隔操作のみに依存する必要なく、しかも被曝の問題を生じることなく、短い時間で効率よく、元の炉心シュラウドと殆ど同様の構造体との交換を行うことができる炉心シュラウドの交換方法を提供することを目的とする。
【0013】
【課題を解決するための手段および作用】
前記の目的を達成するために、本発明に係る炉心シュラウドの交換方法は、原子炉圧力容器上蓋、蒸気乾燥機および燃料を取外した後、既設の原子炉再循環ポンプおよび既設のジェットポンプを用いて表面酸化物を除去する化学薬剤を炉内に注入し循環して除染し、次に炉心シュラウドをシュラウドサポートシリンダとの溶接部よりも一定長さ下方位置で切断して撤去し、シュラウドサポートシリンダの略上端高さ位置の炉心シュラウド内方に人が作業できる作業架台を設置した状態で作業員が炉内に入り、残ったシュラウドサポートシリンダ上面を整形加工し、新炉心シュラウドをシュラウドサポートシリンダの上方に固定して溶接することを特徴とする。
【0014】
このような本発明の方法によれば、炉心シュラウド内に作業員が入り込んで作業を行うことが可能となり、遠隔操作のみに依存する場合に比較して、構造物に損傷を来すことなく構造剤の取外しや装着が行える。また、作業誤差や測定誤差を防止できるとともに、短時間で作業が可能となり、遠隔操作を行う場合に比べて費用も低減できるようになる。
【0015】
また、炉心シュラウドの内外を開放した状態で化学薬剤により表面酸化物を除去する炉内除染を行なうようにし、この工程で、原子炉再循環ポンプ系統に化学薬剤を注入してジェットポンプによる炉水循環を行うことにより、原子炉圧力容器内の表面酸化物を除去することで、炉内において作業員の被曝低減が確実に図れ、作業員の炉内へのアクセスが可能となり、前記の作用が実現できる。また、この化学除染においては、既存の原子炉再循環ポンプ系およびジェットポンプなどを主に使用することで、新しくポンプ類を設置する必要がなく、また炉水全体を容易に循環させることができるので、作業効率を向上することができる。
【0016】
なお、本発明の望ましい態様は、以下の通りである。
【0017】
炉内除染の後、炉心シュラウド切断の前に、ジェットポンプインレットミキサを取外して、炉心シュラウド上部周辺の空間を拡大する。これにより、炉心シュラウドを吊り上げて取り外す場合のスペースが拡大され、シュラウドの取外し作業が容易になるとともに、その吊り上げ時に炉心シュラウドが横揺れしてジェットポンプインレットミキサ部に接触して破損する等の不都合を回避することができる。
【0018】
ジェットポンプインレットミキサ取外しの後、ジェットポンプディフューザ上端を遮蔽体で被覆する。これにより、炉内で最も放射線量の高い部位である、ジェットポンプディフューザの遮蔽効果が得られる。また、炉内線量に応じ、炉心シュラウド内のジェットポンプ対応位置に筒状の遮蔽体を配置する。これにより、炉内の作業員に対する放射線被曝防止がさらに確実となる。
【0019】
炉心シュラウドの切断工程において、放電加工、機械加工またはウォータジェット加工により、炉心シュラウドを上方から順に複数の短かい筒状セグメントとして切断しながら撤去する。例えば炉心シュラウドの上部胴と中間部胴との間で切断し、その上部胴のみを切断撤去する場合には、中間部胴から下の部分を再利用することができるので、取換え日程が少なく、また廃棄物を減少することができる。また、炉心シュラウドを短かい筒状セグメントとして切断撤去することで、機器貯蔵プール等への分散または積層状態での収納が各種選択でき、保管も容易に行えるようになる。
【0020】
炉心シュラウドの各切断工程においては、まず炉心シュラウドの周方向に沿って間隔的に切断開口部を形成してゆき、その複数の切断開口部に支持用のブロックを挿入した状態で、残存した非切断部の切断を行って炉心シュラウドの傾動を阻止するようにする。このような切断手順を行うことによって、切断した炉心シュラウドを垂直状態に保持して、接触や外れ等を防止して安全に撤去することができる。
【0021】
炉心シュラウドの切断に際しては、炉心シュラウドとシュラウドサポートシリンダとの溶接部近傍での切断位置を、溶接による熱影響を受けるシュラウドサポートリング上端側部位、例えば5mmを除いた高さ位置とする。これにより、シュラウドサポートシリンダの溶接部近傍が熱影響によって変質している可能性を考慮し、交換後の炉心シュラウドの強度的な信頼性を得ることができる。例えば炉心シュラウドがSUS304鋼製、シュラウドサポートシリンダがインコネル製である場合、異素材の溶接により撤去されずに残存するシュラウドサポートシリンダの溶接部の熱影響部(約5mm程度)では応力腐食割れの可能性がある。この応力腐食割れの可能性のある部分を全て撤去することで、例えば新シュラウドを溶接固定する場合の再加熱による熱影響を防止して、新シュラウドの耐用寿命を長期化することができる。
【0022】
炉内各計装配管の切断作業は、インコアスタビライザの上方で行うことが望ましい。これにより、再度インコアスタビライザを取付ける必要がなくなり、工期の短縮および被曝低減が有効に図れる。
【0023】
取外した蒸気乾燥器および気水分離器兼シュラウドヘッドは、機器貯蔵プール内に積重ね状態で収容する。また、切断した炉心シュラウドのセグメントを、取外した炉内構造物と積重ね状態で機器貯蔵プール内に収容する。これにより、機器貯蔵プール内のスペースを有効に利用して、蒸気乾燥器、気水分離器および切断した炉心シュラウド等を効率よく保管することができる。
【0024】
蒸気乾燥器を気水分離器兼シュラウドヘッドの上方に重ねる場合には、機器貯蔵プール内に組込んだ支持部材によって、原子炉内における組立てと略同様な高さおよび同心的配置とすることが望ましい。これにより蒸気乾燥器が原子炉内の設置状態と同様の支持状態となり、破損防止等が有効に図れる。
【0025】
作業架台は、上面に炉心シュラウドの周壁と平行なガイドを有するものとし、このガイドに沿って炉心シュラウドの切断機器、切断面整形機器または新炉心シュラウド固定用の溶接機器等を移動させることにより、炉心シュラウドの切断、切断面の整形または溶接固定等を行う。これにより、炉心シュラウドの切断、切断面整形または新炉心シュラウド固定用の溶接作業等を効率よく、また高精度で、確実かつ安全に行うことができる。
【0026】
新シュラウドの溶接固定に際しては、予め新シュラウドとシュラウドサポートとの少なくともいずれか一方で、これらの溶接により熱影響を受けることとなる部位の内周面側または外周面側に、耐食性金属その他の強化材料からなる溶接肉盛りを施す。炉心シュラウドが例えばSUS304材である場合、含有炭素料が多い等の理由で応力腐食割れの感受性が高いので、新シュラウドについてはSUS316等の応力腐食割れが少ない材料製のものに交換することができるが、新シュラウドをSUS304材製とする場合、また交換せずに残存するSUS304材製のシュラウドサポートシリンダについては、熱影響を受ける部位に溶接肉盛りを施すことで、溶接部からの応力腐食割れ等による損傷の予防を図ることができる。なお、炉心シュラウドの下端部に必要に応じてインコネルの肉盛りを施してもよい。
【0027】
新シュラウドのシュラウドサポートシリンダへの固定は溶接による固着、またはボルト締め、ピン結合その他の機械的接合手段による着脱可能な接合固定とする。炉心シュラウドとシュラウドサポートシリンダとの固定は通常、溶接による場合が多いが、さらに後の交換を考慮した場合には、機械的接合手段による着脱可能な固定構造の採用が有力なものとなる。なお、炉心シュラウドをシュラウドサポートシリンダに溶接する場合には、溶接作業をシュラウド内周側から行う。これにより、外周側から行う場合に比較して広い空間を利用して効率よく溶接作業を行うことができる。
【0028】
炉心シュラウドの交換に際しては、作業員が乗り込み可能なカプセルを準備し、このカプセルを燃料交換作業フロアあるいは原子炉圧力容器フランジから作業架台上まで、原子炉建屋の天井クレーンあるいはエレベータによって昇降させる。これにより、作業の迅速性および安全性が確保できる。
【0029】
また、炉心シュラウドの交換に際し、炉心シュラウドの取外し前または取外し後にジェットポンプも交換する。炉心シュラウドを設置した状態でジェットポンプのみを単体で交換しようとしても、ジェットポンプが設置される原子炉圧力容器の炉壁と炉心シュラウドとの空間は狭隘であってジェットポンプの交換設置は不可能である。したがって、シュラウド交換に関連してジェットポンプも交換することで、効率よく両者の交換が行えるようになる。
【0030】
炉心シュラウドの交換に際し、シュラウド交換の工程で原子炉内に設置した作業架台上で、作業員により原子炉圧力容器内に据え付けられている機器の検査、補修、あるいは応力腐食割れ等に対する予防保全処理を行う。このような方法によれば、前述した化学除染によって炉内の放射線レベルが低下し、原子炉新設時と略同様に作業員が入り込むことができることから、遠隔操作では困難な検査、補修、予防保全処理等を有効的に行うことができる。
【0031】
切断撤去した炉心シュラウドは、原子炉建屋に隣接した場所に設けたライニング槽に移送して保管する。これにより、オペレーションフロア上でのスペースが確保できるとともに、作業員の被曝防止が図れる。
【0032】
炉心シュラウドの交換に際し、炉内核計装配管および差圧・ホウ酸水注入配管を一旦切断し、撤去しておく。これにより、交換すべき炉心シュラウドの撤去の際に、移動を阻害する構造物を除外して容易に炉心シュラウドの交換が行える。新シュラウドの据付け後においては、新規に制作した炉内核計装配管および差圧・ホウ酸水注入配管を継合して復旧させればよい。この場合、作業架台には、その下方に配置されることになる炉内各計装案内管の溶接を可能とする部分的な開口部を設けておくことで、被曝防止が有効に図れる状態で作業員による溶接作業が可能となる。
【0033】
また、差圧・ホウ酸水注入配管の継合については機械的に圧接したり、シールやネジ等の接続方法も考えられるが、溶接によって接続することが、漏れ防止および流れの抵抗低減のために望ましい。なお、炉内核計装配管および差圧・ホウ酸水注入配管は小径であるため、溶接による継合が困難な場合には、形状記憶合金製の継手を使用して、遠隔操作による接合を行うこともできる。これにより、作業員の被曝を大幅に低減することが可能となる。
【0034】
一方、原子炉圧力容器のフランジ上に設ける足場から上方に例えば2m程度突出する延長棒を用意し、この延長棒を差圧・ホウ酸水注入配管または炉内各計装管の先端に取付け、これをガイドとして炉心支持板に貫通させて炉心支持板を吊下すようにすれば、炉心支持板の円周方向のずれや炉心方向のずれを少くして、炉心支持板を容易に炉心シュラウドの定位置に据え付けることができる。
【0035】
また、炉心シュラウドの交換に際しての自動溶接時あるいは検査待ち時に、作業員が退避できる放射せん遮蔽壁を有する退避室を作業架台上に用意しておけば、作業の合間にエレベータ等でオペレーションフロアまで上がる場合等に比較して作業効率を一層向上することができるとともに、作業員の被曝防止を確実に図れる。なお、退避室は必要な場合には吊上げ等によって上方に移動できるようにすることが、より望ましい。
【0036】
また、炉心シュラウド交換における炉水の水位上昇をアニュラス部のみに限定し、新上部格子板および新炉心支持板の取付けが完了した後に、シュラウド内の水位を上げるようにすれば、水による放射線の高遮蔽効果により、炉心シュラウド内の作業員への原子炉圧力容器またはジェットポンプからの放射線被曝を効果的に防止することができる。
【0037】
原子炉圧力容器または炉底部に据付られている機器の予防保全処理については、原子炉圧力容器の炉底部の炉水を抜き、炉内に設置した作業架台の一部に開けた開口からショットピーニング装置を炉底部に下ろし、スタブチューブ、制御棒駆動機構ハウジングおよび炉内核計装ハウジング等の炉底部に据付けられている機器をショットピーニング施工することにより、材料や溶接部の表面を圧縮応力に変えるようにする。これにより、材料や溶接部に発生する亀裂(応力腐食割れ等)を防止することができる。この場合の機器の予防保全処理方法としては、例えば炉底部に据付けられている機器の表面に白金(Pt)、パラジウム(Pb)等を含有するステンレス鋼またはインコネル鋼等を溶射し、白金やパラジウム等が水の放射線分解により生成した水素および酸素を再結合させる触媒として働くようにする。これにより、炉内の溶存酸素を減少させ、腐食電位を定価させることで、応力腐食割れ等を防止することができる。
【0038】
なお、取出した上部格子板および炉心支持板の健全性が維持されている場合には、再度これら上部格子板および炉心支持板を利用することで低コスト化および廃棄物の低減が図れる。
【0039】
【実施例】
以下、図面を参照して本発明の実施例を説明する。
【0040】
図1〜図42は本発明の一実施例を示している。図1は炉心シュラウドを切断撤去した状態を示す原子炉建屋の全体構成図、図2〜図4は本実施例による一連の手順を示すフローチャート、図5〜図23は炉心シュラウドの交換作業を順次に示す構成図、図24〜図42は作業の要点を詳細に示す構成図である。
【0041】
本実施例による炉心シュラウドの交換方法の対象となる沸騰水型原子炉では、図5に示すように、原子炉圧力容器1内に、炉心シュラウド2が配置され、この炉心シュラウド2がシュラウドサポートシリンダ3によって支持されている。シュラウドサポートシリンダ3は、シュラウドサポートレグ4によって原子炉圧力容器1との底部に支持されている。炉心シュラウド2の上部には上部格子板5が設けられ、下部には炉心支持板6が設けられている。炉心シュラウド2の外周側にはジェットポンプ7が設けられ、このジェットポンプ7は、ジェットポンプディフューザ7a,ジェットポンプライザ管7b,ジェットポンプインレットミキサ7cにより構成されている。ジェットポンプ7の下方にはバッフルプレート8が設けられている。
【0042】
また、炉心シュラウド2内には、制御棒9および燃料10が設けられ、炉心シュラウド2の上方には、制御棒案内管11,炉心スプレイ配管12,低圧注水配管13,差圧検出・ホウ酸水注入配管14,蒸気乾燥器15,気水分離器兼シュラウドヘッド16等の機器が設けられている。
【0043】
このような構成の原子炉圧力容器1における炉心シュラウドの交換方法を、まず、図2〜図4のフローチャートおよび図5〜図23の構成図によって説明する。
【0044】
(1)通常の定期検査時と同様に、図5の状態において、原子炉圧力容器1から原子炉圧力容器上蓋17および蒸気乾燥器15を原子炉建屋23の天井クレーン24により取外す(ステップ101)。この時、炉水は原子炉圧力容器1のフランジ下部に維持される。
【0045】
(2)原子炉ウェル18を満水とし、天井クレーンに24より気水分離器兼シュラウドヘッド16を取外し(ステップ102)、この後、炉心部から燃料10を全数燃料プールに移動して(ステップ103)、炉水水位レベルを原子炉圧力容器1のフランジ下部に戻し、図6に示す状態とする。
【0046】
(3)炉内核計装案内管25内を通って上部格子板5と炉心支持板6との間を占めているドライチューブ・LPRM検出器集合体22を取外し、上部格子板5と炉心支持板6との間を空にする(ステップ104)。なお、以上の手順は、炉心シュラウド2を取外した後に上方へ撤去する空間を確保するために行うもので、順序は前後してもよい。
【0047】
(4)この状態から、燃料支持金具10a,制御棒9および制御棒案内管11を取外す(ステップ105)。制御棒案内管11を取外す際には、ペデスタル室19より、制御棒駆動機構20および図示しないサーマルスリーブを制御棒駆動機構ハウジング21から引抜いておく必要がある。取外した制御棒駆動機構20およびサーマルスリーブは収納箱に収納し、ペデスタル室19から燃料交換作業フロア等に移動し、保管しておく。あるいは制御棒案内管11を取外した後に、制御棒駆動機構ハウジング21の中に戻しておくこともできる。
【0048】
(5)炉心シュラウド2の上方に設置されている給水スパージャ26の取外し(ステップ106)、炉心スプレイ系配管12の切断撤去(ステップ107)、原子炉圧力容器1内壁のブラケットから吊り下がり、炉心シュラウドのブラケットの穴に差し込まれている案内棒27の切断撤去(ステップ108)、および低圧注入配管13のカップリングの取外し(ステップ109)等を行う。これにより、図7に示すように、炉心シュラウド2の内部は空の状態となる。
【0049】
(6)この状態から図8に示すように、上部格子板5および炉心支持板6を順次に吊上げて取外す(ステップ110,111)。この上部格子板5および炉心支持板6の取外しについては後に詳述する。また、炉内核計装案内管25の上部ならびにインコアスタビライザ28の全部または一部を切断撤去するとともに(ステップ112)、原子炉圧力容器1の底部を貫通して炉心シュラウド2の内壁に沿って立上がっている差圧検出・ホウ酸水注入配管14も切断撤去する。切断された配管は炉心シュラウド2の内壁に取付けた金具に引掛かり、炉心シュラウド2に残留する。炉心シュラウド2とシュラウドサポートシリンダ3との溶接線の位置がインコアスタビライザ28の位置に対して高い位置にあるプラントでは、既存のインコアスタビライザ28を残して、炉内核計装案内管25を切断することもできる。
【0050】
(7)原子炉ウェル18内における原子炉圧力容器1の上方部位に、上下開口の筒状のシール容器29を取付け、周囲から液密に隔離する(ステップ114)。これは、次のステップにおける炉内の化学除染の際、炉内を周囲から隔離するためである。
【0051】
(8)原子炉圧力容器1の内部を化学薬剤により除染する(ステップ115)。
【0052】
この工程については後に詳述するが、原子炉再循環ポンプ系統に化学薬剤を注入し、ジェットポンプ7を利用して炉内で循環させることで、作業員が炉内に入ることができるレベルまで放射線量率を低減させるものである。
【0053】
(9)シール容器29を一旦取外し(ステップ116)、ジェットポンプインレットミキサ7cを取外す(ステップ117)。これは、ジェットポンプ7における同部分の汚染度が高ことから、炉内作業時の線量率を低下させるために行うものである。この化学除染についても後に詳述する。
【0054】
(10)この後、図9に示すように、炉心シュラウド2の内方下部に作業架台30を据付ける(ステップ118)。そして、図9および図10に示すように、炉心シュラウド2の切断撤去を行う(ステップ119)。この炉心シュラウド2の切断工程においては、放電加工、機械加工またはウォータジェット加工により、炉心シュラウド2を上方から順に複数の短かい筒状セグメント2a,2b…として、最終的にシュラウドサポートシリンダ3との溶接部下側部から切断しながら撤去する。詳細な手順については後述する。
【0055】
(11)図11に示すように、前述したシール容器29を再び原子炉ウェル18に据付けて炉内を周囲から隔離し、炉水位を作業架台30の下方まで降下させる(ステップ120)。そして、ジェットポンプインレットミキサ取外し後のジェットポンプディフューザ7a上端を遮蔽体31で被覆する。ジェットポンプディフューザ7a上端にはコバルトを含有するステライトが耐摩耗材料として使用されており、放射線照射量は極めて高いため、この部分に遮蔽体31を被せて被曝量を低減するのである。さらに炉内線量率に応じ、炉心シュラウド2内の作業架台30上に筒状の遮蔽体32を配置する。また、遮蔽体32内にエレベータ34を設置し(ステップ121)、カプセル35内で作業員33を炉上から昇降させるようにする。
【0056】
(12)図12に示すように、作業架台30上にガイド36を取付け、このガイドに沿って切断面成形機器37を移動させて、シュラウドサポートシリンダ3上面加工を行う(ステップ122)。
【0057】
(13)この後、図13に示すように、新シュラウド38を炉心部に吊り込み(ステップ123)、内部に図示しない円筒状の遮蔽体を設置して(ステップ124)、図14に示すように作業員35が炉内に入り、図15に示すように、作業架台30上に取付けた芯出し装置39によって、新シュラウド38の芯出しを行う(ステップ125)。
【0058】
(14)次いで図16に示すように、溶接装置40により新シュラウド38をシュラウドサポートシリンダ3に溶接し(ステップ126)、その後、図17に示すように、炉内核計装案内管25、インコアスタビライザ28および差圧検出・ホウ酸水注入配管14の接続を行う(ステップ127)。
【0059】
(15)作業架台30およびエレベータ34を取外して(ステップ127a)、図18の状態とした後、図19に示すように、新炉心支持板42を新シュラウド38に吊り込み(ステップ128)、新炉心支持板の芯調整を行った後、ボルト締めにより固定する(ステップ129)。
【0060】
(16)図20に示すように、新上部格子板43を吊り込み、芯位置調整を行う(ステップ130)。この後、図21に示すように、炉心スプレイ系配管12の立上がり管の溶接(ステップ131)、給水スパージャ44の据付け(ステップ132)および新案内棒11の取付けを行う(ステップ133)。
【0061】
(17)図22に示すように、原子炉圧力容器1のフランジ下部まで炉水水位レベルを上昇し(ステップ134)、低圧注水配管カップリングを復旧して(ステップ135)、原子炉ウェルを満水とする(ステップ136)。
【0062】
(18)図23に示すように、ドライチューブ・LPRM検出器集合体22を復帰させ(ステップ137)、燃料支持金具10a,制御棒9および制御棒案内管11を復帰させて(ステップ138)、燃料を装荷する(ステップ139)。
【0063】
そして、気水分離機兼シュラウドヘッド16を取付け(ステップ140)、蒸気乾燥器15および原子炉圧力容器上蓋17を取付けて(ステップ141)、作業完了となる。
【0064】
次に、図24〜図42によって以上の工程(ステップ1〜ステップ141)のうち、主要な工程について詳細に説明する。
【0065】
図24は上部格子板5の炉心シュラウド2への支持状態を示している。上部格子板5は炉心シュラウド上端リングの段差部に載置され、ブラケット51および楔52によって周囲を固定されている。L形のストッパ53は、上部格子板5上面に固定したスタッド54に螺合したボルト55に溶接部56を介して固着されている。そこで、上部格子板5を取外す場合には、同図に示すように、炉心シュラウ2に固定している楔52,ストッパ53およびボルト55を遠隔操作で取外し、これにより上部格子板5を炉心シュラウド2の上方に吊り上げる。
【0066】
図25は炉心支持板6の炉心シュラウド2への支持状態を示している。炉心支持板6は、炉心シュラウド2の下部段差部のフランジ57にボルト58およびナット59を介して固定され、ナット59に被せたコ字形キャップ60がボルト58端部にブロック61を介して溶接部62により固着されている。そこで、この炉心支持板6を撤去する場合には、図25に示すように、溶接部62を遠隔操作で外し、炉心シュラウド2に固定しているボルト58およびナット59の取外しを行うことにより、炉心シュラウド2の上方に吊り上げることができる。
【0067】
このようにして取外した上部格子板5および炉心支持板6は、満水状態とした原子炉ウェル18に、一旦蒸気乾燥器15,気水分離器兼シュラウドヘッド16の保管用ビットに保管し、あるいは原子炉建屋に隣接して設けた槽内に移動して保管等する。なお、上部格子板5および炉心支持板6の他の撤去方法として、放電加工あるいはプラズマ切断等の方法により、小さなセグメントに切断しながら撤去してもよい。
【0068】
図26は、化学除染装置システムの構成例を示している。本実施例では前述したように、炉心シュラウド2の撤去および炉水位の低下時の放射線被曝を低減するため、炉心シュラウド2の内側,外側および原子炉圧力容器1の内面部、原子炉圧力容器1の炉底部等の洗浄を行うものである。化学除染は、図26に示すように、上部格子板5および炉心支持板6を取外した後、炉心シュラウド2およびジェットポンプ7を残した状態で行う。原子炉圧力容器1上部に遮蔽体を取付けて炉水を満水した状態で、原子炉再循環ポンプ63の流入配管64に接続した化学薬剤注入装置65から化学薬剤を注入し、再循環入口ノズルからジェットポンプ7により炉内に薬剤を流入させ炉内で循環させる。この液は過マンガン酸塩養液等を用いたもので、原子炉圧力容器1内の放射化されている酸化物を還元、除去し、再循環出口ノズルから炉外の流出配管66に排出され、外部に取付けられた冷却材浄化装置67により循環される。
【0069】
そして、原子炉再循環ポンプ63を通って再び炉内に戻される。この過程を何度か繰返すことにより、炉内の各機器および圧力容器内表面についた放射化物質を安全に除去し、これにより炉内の放射線量を飛躍的に低減できる。廃ガスは、廃ガス装置68によって処理する。なお、この他に炉内の放射線雰囲気の線量を下げるため適宜に炉内構造物の表面のブラシ洗浄あるいはクラッド吸引洗浄を行ってもよい。
【0070】
例えばシュラウドサポートリング3のレベルにおける開先加工、手動溶接には一定以上の時間を要する。このレベルの雰囲気線量当量率が1mSv/hの場合、約1時間の作業が可能である。炉内化学除染とその後に放射化炉内構造物を鉄板等で遮蔽することにより、炉底部分の気中線量当量率は0.1mSv/h以下にすることができる。したがって、原子炉内での作業被曝を低く抑え、長時間の作業が可能となる。また、放射化した腐食生成物が除去されることから、乾燥して大気を汚染するダストの問題が軽減され、作業員の内部被曝防護の観点でも安全性を高めることができる。また、この化学除染においては、既存の原子炉再循環ポンプ系およびジェットポンプなどを主に使用することで、新しくポンプ類を設置する必要がなく、また炉水全体を容易に循環させることができるので、作業効率を向上することができる。
【0071】
図27〜図32は炉心シュラウド2の交換方法を詳細に示している。
【0072】
図27は炉心シュラウド2の切断工程の一例を示している。放電加工、機械加工またはウォータジェット加工により、炉心シュラウド2を上方から順に例えば2つの短かい筒状セグメント2a,2bとして切断しながら撤去するものである。
【0073】
図28は、その切断を行うためのシュラウド切断装置70および切断作用を示している。炉心シュラウド2の上端段差上に載置する吊上げ可能な基台71の下面に回動および伸縮する駆動機構72を設け、この駆動機構72の先端に連結した回動爪73を炉心シュラウド2に穿設した係止孔74に挿入係止して、炉心シュラウド2を吊上げるようにする。また、基台71の下面から垂下する筒状支持具75の下端に円周方向に沿うガイドレール76を設け、このガイドレール77に車輪を介して走行する放電加工,機械加工あるいは高圧水ジェット方式の切断装置78を設け、この切断装置78で炉心シュラウド2の切断を行うようにする。シュラウド切断装置30は作業架台29のガイド上に沿って走らせて炉心シュラウド2の切断を行うようにしてもよい。
【0074】
図29(A)〜(D)は炉心シュラウド2の各切断工程を示している。なお、図29では炉心シュラウド2とシュラウドサポートシリンダ3との切断を示しているが、他の部分の切断も同様である。
【0075】
まず、図29(A)の状態から、同図(B)に示すように、炉心シュラウド2の周方向に沿って間隔的に切断開口部80を形成してゆく。そして同図(C)に示すように、その複数の切断開口部80に支持用のブロック81を挿入した状態で、残存した非切断部の切断を行って、炉心シュラウドの傾動を阻止するようにする。このような切断手順を行うことによって、切断中に炉心シュラウド2のセグメントを垂直状態に保持して、接触や外れ、あるいは切断装置70が炉心シュラウド2に挟まれること等を防止して安全に撤去することができる。
【0076】
図30、31、32は炉心シュラウドの撤去の状態を示している。図30は図28に示した状態に対応する全体図であり、原子炉建屋23に設置するクレーン24を使用して切断装置70を吊り、炉心シュラウド2を切断する様子を示している。この状態で例えば上部セグメント2aの切断が終了したら、図31の上側に示すように、この切断した上部セグメント2aをクレーン24で吊上げて撤去する。その後、図31の下側に示すように、下部セグメント2bの切断に移行する。下部セグメント2bの切断が終了したら、図32に示すように、同様にクレーン24で吊上げて撤去する。
【0077】
撤去した炉心シュラウド2のセグメント2a,2bは、図1に示すように、機器貯蔵ピット79に移動して収納保管する。この場合、例えばセグメント2a,2bの一方を、予め撤去した上部格子板5および炉心支持板6の上方に、棚板等の支持具80を介して設置することで、機器貯蔵ピット79内のスペースを有効に利用することができる。
【0078】
なお、最初の段階で取外した蒸気乾燥器15および気水分離器兼シュラウドヘッド16についても同様に、図1に示すように、気水分離器兼シュラウドヘッド16を覆う支持台81を介して上方に蒸気乾燥器15を積層することで、原子炉内におけると同様の状態で効率よく保管することができる。この場合、機器貯蔵ピット79の水上に蒸気乾燥器15が突出するようなときは、放射線遮蔽材からなるカバー82で空気露出部分を被覆することで、被爆防止が確実に図れる。
【0079】
図33は、炉心シュラウド2をシュラウドサポートシリンダ3から切断撤去する場合の切断位置を詳細に示したものである。本例では炉心シュラウド2とシュラウドサポートシリンダ3との間にシュラウドサポートリング83を溶接部84,85を介して接続した構成を示しているが、このシュラウドサポートリング83がない場合でも同様である。
【0080】
すなわち、本実施例では、シュラウドサポートシリンダ3の溶接部85から一定長さhだけ下方位置で切断を行う。この長さhは、例えば溶接による熱影響を受けるシュラウドサポートリング3の上端側部位から5mmに設定する。これにより、シュラウドサポートシリンダ3の溶接部近傍が熱影響によって変質している可能性を考慮し、交換後の炉心シュラウドの強度的な信頼性を得ることができる。例えば炉心シュラウドが2SUS304鋼製、シュラウドサポートシリンダ3がインコネル製である場合、異素材の溶接により撤去されずに残存するシュラウドサポートシリンダ3の溶接部の熱影響部(約5mm程度)では応力腐食割れの可能性がある。この応力腐食割れの可能性のある部分を全て撤去することで、例えば新シュラウド38を溶接固定する場合の再加熱による熱影響を防止して、新シュラウド38の耐用寿命を長期化することができる。
【0081】
次に、撤去された炉心シュラウド2に代えて新シュラウドを接合シュラウドサポートシリンダ3上に接合固定する場合について詳説する。
【0082】
図34は、新シュラウド38レベル調整についての説明図であり、図35および図36は溶接方法についての説明図である。なお、シュラウドサポートシリンダ3の切断面は、前述したように、予め放電加工あるいは機械加工方式の仕上げ加工装置を作業架台29の円周状ガイドに沿って走行させて平坦に加工してある。
【0083】
図34に示すように、新シュラウド38の内周面側に予め仮設ブラケット86を取付けてあり、作業架台30の周囲にジャッキ87を何台か置き、新シュラウド38の仮設ブラケット86を支持してレベル調整を行う。そして、取付け治具88を新シュラウド38とシュラウドサポートシリンダ3との間に仮付けして溶接する。なお、作業台30上には溶接装置走行のためのレール89を取付けるとともに、溶接部には溶接裏当金90を設けておく。
【0084】
このようにして新シュラウド38のレベル調整を行った後、図35に示すように、溶接装置91によって溶接を行う。新シュラウド38の溶接は内周側から行うが、溶接からみて裏側にあたる外側のアニュラス部は充分に乾燥させ、溶接時の酸化を防ぐため不活性ガスを封入する。
【0085】
溶接士を作業架台30の上に下し、シュラウドサポートシリンダ3の上端面に新シュラウド38を溶接する。新シュラウド38がシュラウドサポートシリンダ3の上端部に何パスか溶接され、アニュラス部19の不活性ガスが新シュラウド38の内部に漏洩しなくなるまでは溶接士は気密服あるいはマスクを着用し空気を供給する必要がある。作業架台30の中央に大気室を設け、溶接装置91のセッティングは大気室より出て行い、自動溶接時の監視は大気室にて行うことにより放射線被曝を減じることも可能である。
【0086】
新シュラウド38の溶接時には、原子炉圧力容器1の上部よりアライメントスコープあるいは下げ振りを吊り下げることにより、新シュラウド38の変形および位置ずれを測定し次のパスの溶接スタート位置の変更あるいは化粧盛りパス溶接等により、それらが設計規定値内になるよう工夫しながら溶接を進める。溶接後あるいは溶接途中で、新シュラウド38から仮設ブラケット86および仮付け用の治具88を除去する。
【0087】
図36は、新シュラウドの溶接固定に際して、予め新シュラウド38とシュラウドサポートシリンダ3との溶接により熱影響を受けることとなる部位の内周面側に、耐食性金属その他の強化材料からなる溶接肉盛り38b,3bを施す場合を示している。炉心シュラウドが例えばSUS304材である場合、含有炭素料が多い等の理由で応力腐食割れの感受性が高いので、新シュラウドについてはSUS316等の応力腐食割れが少ない材料製のものに交換することができるが、新シュラウドをSUS304材製とする場合、また交換せずに残存するSUS304材製のシュラウドサポートシリンダについては、熱影響を受ける部位に溶接肉盛り38a,3bを施すことで、溶接部からの応力腐食割れ等による損傷の予防を図ることができる。なお、炉心シュラウドの下端部に必要に応じてインコネルの肉盛りを施してもよい。また、シュラウドサポートシリンダ3のみに施してもよい。
【0088】
なお、これらの前提として、新シュラウド38をサポートシリンダ3の上端に吊降す。この場合、原子炉圧力容器1の内壁に沿って幾つかの案内を取付け、新シュラウド37の吊降しの際にジェットポンプ7等他の機器を損傷しないようにする。新シュラウド38はジェットポンプディフューザ7a上端のステライト部からの高いレベルの放射線照射を防ぐ遮蔽としての役割をなすが、さらに遮蔽効果を得るため、新シュラウド38の内壁に沿って遮蔽体を取付けてもよい。また炉水水位を下げた場合のアニュラス部19からの放射線照射を防ぐため、新シュラウド38の上端と原子炉圧力容器1との間にも遮蔽体を設けてもよい。炉水水位レベルを作業架台30が気中に現れるまで下げる。
【0089】
また、新シュラウド38と原子炉圧力容器1との間のアニュラス部19からのダストの舞い上がり防止と不活性ガス封入装置の準備のため、新シュラウド38の上端のシート養生を行う。
【0090】
なお、図37に示すように、新シュラウド38のシュラウドサポートシリンダ3への固定は、両接合部位に重合部分を設けて連結ピン91で接合するようにしてもよく、また図38に示すように、新シュラウド38およびシュラウドサポートシリンダ3にブラケット92,93を設け、これらをボルト94,95で結合し、新シュラウド38を締結するようにしてもよい。
【0091】
なお、インコアスタビライザ28の取付けについては、制御棒駆動機構ハウジング21の上に設置した脚上に足場を設置して行うことができる。その足場は井桁状に組まれたインコアスタビライザ28を避けて取外せるように、幾つかのセグメントに分けることが望ましい。
【0092】
炉心シュラウド交換後は、炉心シュラウド内の作業架台30および足場等を撤去すし、シュラウド中間部胴上部まで炉水水位レベルを上昇する。
【0093】
そして、前記のように原子炉圧力容器1のフランジ上に仮足場を設置し、新炉心支持板42を原子炉圧力容器1のフランジ上に吊上げ、数十本ある炉内核計装案内管25および差圧検出・ホウ酸水流入配管14の先端に取付けた延長棒を新炉心支持板42の相当する位置の貫通穴に差し込む。全数差し込んだら、原子炉圧力容器1のフランジ上の仮足場を撤去する。
【0094】
図39〜図42は、新炉心支持板42および芯上部格子板43を取付ける場合の芯出し作業を示している。
【0095】
この芯出し作業には、図39〜図42に示すように、アライメント測定装置96を用いて行うことができる。すなわち、図39に示すように、新炉心支持板42の制御棒案内管用の孔97と制御棒駆動機構ハウジング21の上端部との間、あるいは図42に示す新上部格子板43の方形の開口部98と炉心支持板42の制御棒案内管用の孔97との間に筒状の容器96aを固定し、筒状の容器96aの中に吊下げた下げ振り96bのずれを計測することにより、筒状の容器96aの傾きを計算・測定する装置を用いる。下げ振り96bは自在継手部96cにより上端部が支持され、常時垂直である。制御棒駆動機構ハウジング21の上端部に対する新炉心支持板42の制御棒案内管用の孔97位置のずれ、あるいは新炉心支持板42の制御棒案内管用の孔98位置に対する新上部格子板43の方形の開口部の位置のずれを何点か調べることにより、新炉心支持板42あるいは新上部格子板43の位置を知ることができる。この後、新炉心支持板42および新上部格子板43を新シュラウド38にボルト締結する。ボルトの回り止めのためにタック溶接を遠隔で行うこともできる。なお、99a,99bはアライメント測定装置96を新炉心支持板42に係止するためのピンおよびブラケットである。
【0096】
なお、他の作業としては、例えば原子炉圧力容器の炉底部の炉水を抜き、炉内に据付けた作業架台30の一部に開けてある開口部から各種点検、補修装置を炉底部に下ろし、制御棒駆動機構ハウジング21およびスタブチューブ回りの溶接補修を行う。
【0097】
また、材料の表面部を圧縮応力に変え、応力腐食割れ等に対する予防保全処理を行う方法として、原子炉圧力容器の炉底部の炉水を抜き、ショットピーニング装置を炉底部に下ろし、スタブチューブ、制御棒駆動機構ハウジングおよび炉内各計装ハウジングなどの炉底部に据付けられている機器の溶接部周辺をショットピーニング施工することも容易にできる。
【0098】
あるいは、炉内の溶存酸素を減少させ腐食電位を低下することにより、応力腐食割れ等に対する予防保全処理を行う方法として、原子炉圧力容器の炉底部の炉水を抜き、溶射装置を炉底部に下ろし、炉底部に据付けられている機器の表面にPtあるいはPdを含有するステンレス鋼あるいはインコネル鋼を溶射施工することも容易にできる。原子炉が再起動した際に、溶射金属内PtあるいはPdが水の分解により生成した水素および酸素を再結合させる触媒として働き、炉内の溶存酸素料を減少させ、腐食電位を低下させる効果がある。
【0099】
以上のように、本実施例によれば、遠隔操作および炉内作業により、元の炉心シュラウドとほとんど同じ構造に復旧することができる。作業員が原子炉圧力容器1内部に入り込める環境を利用し、原子炉圧力容器の内面あるいは炉底部に据え付けられている機器の溶接補修あるいは応力腐食割れ等に対する予防保全処理を行うことが容易に行える。
【0100】
次に、図43〜図67によって本発明に関連する技術を開示例として説明する。この開示例は、炉心シュラウド2の交換とともに、ジェットポンプ7の交換を行う方法に関するものである。図43は炉心シュラウドを切断撤去した状態を示す原子炉建屋の全体構成図、図44〜図47は本実施例による一連の手順を示すフローチャート、図48〜図67は炉心シュラウドの交換作業を順次に示す構成図である。
【0101】
本開示例においては、ジェットポンプ7の交換以外は前記実施例と略同様である。すなわち、処理の流れを示す図44〜図47において、ステップ201〜ステップ247に示した工程のうち、前記実施例と異なる点は、炉心シュラウド2の切断撤去の後、ジェットポンプ7を取り外す工程を追加した点である。すなわち、本開示例では、炉心シュラウド2の切断撤去の後、図45に示すステップ220〜ステップ226までにおいて、ジェットポンプ7の切断、撤去、加工、溶接、取付けならびに原子炉再循環ポンプの切断および撤去を行っている。
【0102】
このように、炉心シュラウドの交換方法において、炉心シュラウドの取外し前または取外し後にジェットポンプも交換することで、炉心シュラウドを設置した状態でジェットポンプのみを単体で交換しようとした場合にジェットポンプが設置される原子炉圧力容器の炉壁と炉心シュラウドとの空間が狭隘であるためジェットポンプの交換設置は不可能であるに対して、シュラウド交換に関連してジェットポンプも交換することで、効率よく両者の交換が行えるようになる。
【0103】
また、図68は本発明のさらに他の開示例を示している。この開示例では、切断撤去した炉心シュラウド2を、原子炉建屋23に隣接した場所に設けたライニング槽23aに移送して保管する。この場合、別に設けたクレーン24aなどを用いることで、運搬が可能である。なお、周囲には所定の放射線遮蔽を設けて、被爆防止を図るようにする。本開示例によれば、機器ピット内のスペースおよび原子炉建屋23のオペレーションフロア上のスペースを有効利用することができる。
【0104】
【発明の効果】
以上の実施例で説明したように本発明に係る炉心シュラウドの交換方法によれば、原子炉内の炉心シュラウドを交換する必要が生じた場合、遠隔操作のみに依存する必要なく、しかも被曝の問題を生じることなく、短い時間で効率よく、元の炉心シュラウドと殆ど同様の構造体との交換を行うことができる。特に、炉内除染の工程で、原子炉再循環ポンプ系統に化学薬剤を注入してジェットポンプによる炉水循環を行うことにより、原子炉圧力容器内の表面酸化物を除去することで、炉心シュラウド内に作業員が入り込んで作業を行うことが可能となり、遠隔操作のみに依存する場合に比較して、構造物に損傷を来すことなく構造剤の取外しや装着が行える。また、作業誤差や測定誤差を防止できるとともに、短時間で作業が可能となり、遠隔操作を行う場合に比べて費用も低減できるようになる。
【図面の簡単な説明】
【図1】本発明に係る炉心シュラウドの交換方法の一実施例を示す説明図で、炉内から構造材を取出して収納した状態を示す全体図。
【図2】前記一実施例の作用手順を示すフローチャート。
【図3】前記一実施例の作用手順を示すフローチャート。
【図4】前記一実施例の作用手順を示すフローチャート。
【図5】前記一実施例を適用する原子炉構造を示す図。
【図6】図5に示す原子炉を開放した状態を示す図。
【図7】図5に示す原子炉から順次に部品を取外す状態を示す図。
【図8】図5に示す原子炉から順次に部品を取外す状態を示す図。
【図9】図5に示す原子炉から順次に部品を取外す状態を示す図。
【図10】前記一実施例において、炉心シュラウドを撤去した状態を示す図。
【図11】前記一実施例において、エレベータ設置状態を示す図。
【図12】前記一実施例において、シュラウドサポートリングの上端面の整形の様子を示す図。
【図13】前記一実施例において、順次に構造部材を組込む状態を示す図。
【図14】前記一実施例において、順次に構造部材を組込む状態を示す図。
【図15】前記一実施例において、順次に構造部材を組込む状態を示す図。
【図16】前記一実施例において、順次に構造部材を組込む状態を示す図。
【図17】前記一実施例において、順次に構造部材を組込む状態を示す図。
【図18】前記一実施例において、順次に構造部材を組込む状態を示す図。
【図19】前記一実施例において、順次に構造部材を組込む状態を示す図。
【図20】前記一実施例において、順次に構造部材を組込む状態を示す図。
【図21】前記一実施例において、順次に構造部材を組込む状態を示す図。
【図22】前記一実施例において、順次に構造部材を組込む状態を示す図。
【図23】前記一実施例において、交換完了状態を示す図。
【図24】前記一実施例の作用を詳細に示す図で、上部格子板の取付け構造を示す図。
【図25】前記一実施例の作用を詳細に示す図で、炉心支持板の取付け構造を示す図。
【図26】前記一実施例の作用を詳細に示す図で、化学除染の方法を示す図。
【図27】前記一実施例の作用を詳細に示す図で、炉心シュラウドの切断方法を示す図。
【図28】前記一実施例の作用を詳細に示す図で、炉心シュラウドの切断方法を示す図。
【図29】(A)〜(D)は炉心シュラウドの切断手順を順次に示す図。
【図30】前記一実施例の作用を詳細に示す図で、炉心シュラウドの切断方法を示す図。
【図31】前記一実施例の作用を詳細に示す図で、炉心シュラウドの切断方法を示す図。
【図32】前記一実施例の作用を詳細に示す図で、炉心シュラウドの切断方法を示す図。
【図33】前記一実施例の作用を詳細に示す図で、炉心シュラウドの切断位置を示す図。
【図34】前記一実施例の作用を詳細に示す図で、新炉心シュラウドの接合状態を示す図。
【図35】前記一実施例の作用を詳細に示す図で、新炉心シュラウドの溶接状態を示す図。
【図36】前記一実施例の作用を詳細に示す図で、肉盛溶接の状態を示す図。
【図37】前記一実施例の作用を詳細に示す図で、新炉心シュラウドの取付けに関する変形例を示す図。
【図38】前記一実施例の作用を詳細に示す図で、新炉心シュラウドの取付けに関する変形例を示す図。
【図39】前記一実施例の作用を詳細に示す図で、新炉心支持板の芯出し作用を示す図。
【図40】前記一実施例の作用を詳細に示す図で、新炉心支持板の芯出し作用を示す図。
【図41】前記一実施例の作用を詳細に示す図で、新炉心支持板の芯出し作用を示す図。
【図42】前記一実施例の作用を詳細に示す図で、新炉心支持板の芯出し作用を示す図。
【図43】本発明に係る炉心シュラウドの交換方法に関連する開示例を示す説明図で、炉内から構造材を取出して収納した状態を示す全体図。
【図42】前記一実施例の作用手順を示すフローチャート。
【図43】前記開示例の作用手順を示すフローチャート。
【図44】前記開示例の作用手順を示すフローチャート。
【図45】前記開示例の作用手順を示すフローチャート。
【図46】前記開示例の作用手順を示すフローチャート。
【図47】前記開示例の作用手順を示すフローチャート。
【図48】前記開示例を適用する原子炉構造を示す図。
【図49】図5に示す原子炉を開放した状態を示す図。
【図50】図5に示す原子炉から順次に部品を取外す状態を示す図。
【図51】図5に示す原子炉から順次に部品を取外す状態を示す図。
【図52】図5に示す原子炉から順次に部品を取外す状態を示す図。
【図53】前記開示例において、炉心シュラウドを撤去した状態を示す図。
【図54】本発明の開示例においてジェットポンプを取外した状態を示す図。
【図55】前記開示例において、エレベータ設置状態を示す図。
【図56】前記開示例において、シュラウドサポートリングの上端面の整形の様子を示す図。
【図57】前記開示例において、シュラウドサポートリングの上端面の整形の様子を示す図。
【図58】前記開示例において、順次に構造部材を組込む状態を示す図。
【図59】前記開示例において、順次に構造部材を組込む状態を示す図。
【図60】前記開示例において、順次に構造部材を組込む状態を示す図。
【図61】前記開示例において、順次に構造部材を組込む状態を示す図。
【図62】前記開示例において、順次に構造部材を組込む状態を示す図。
【図63】前記開示例において、順次に構造部材を組込む状態を示す図。
【図64】前記開示例において、順次に構造部材を組込む状態を示す図。
【図65】前記開示例において、順次に構造部材を組込む状態を示す図。
【図66】前記開示例において、順次に構造部材を組込む状態を示す図。
【図67】前記開示例において、交換完了状態を示す図。
【図68】本発明のさらに他の開示例を示す説明図。
【符号の説明】
1 原子炉圧力容器
2 炉心シュラウド
2a,2b… 筒状セグメント
3 シュラウドサポートシリンダ
4 シュラウドサポートレグ
5 上部格子板
6 炉心支持板
7 ジェットポンプ
7a ジェットポンプディフューザ
7b ジェットポンプライザ管
7c ジェットポンプインレットミキサ
8 バッフルプレート
9 制御棒
10 燃料
10a 燃料支持金具
11 制御棒案内管
12 炉心スプレイ配管
13 低圧注水配管
14 差圧検出・ホウ酸水注入配管
15 蒸気乾燥器
16 気水分離器兼シュラウドヘッド
17 原子炉圧力容器上蓋
18 原子炉ウェル
19 ペデスタル室
20 制御棒駆動機構
21 制御棒駆動動機構ハウジング
22 ドライチューブ・LPRM検出器集合体
23 原子炉建屋
24 天井クレーン
25 炉内核計装案内管
26 給水スパージャ
27 案内棒
28 インコアスタビライザ
29 シール容器
30 作業架台
31,32 遮蔽体
33 作業員
34 エレベータ
35 カプセル
36 ガイド
37 切断面成形機器
38 新シュラウド
39 芯出し装置
40 溶接装置
42 新炉心支持板
43 新上部格子板
44 給水スパージャ
51 ブラケット
52 楔
53 ストッパ
54 スタッド
55 ボルト
56 溶接部
57 フランジ
58 ボルト
59 ナット
60 コ字形キャップ
61 ブロック
62 溶接部
63 原子炉再循環ポンプ
64 流入配管
65 化学薬剤注入装置
66 流出配管
67 冷却材浄化装置
68 廃ガス装置
70 シュラウド切断装置
71 基台
72 駆動機構
73 回動爪
74 係止孔
75 筒状支持具
76 ガイドレール
77 ガイドレール
78 切断装置
80 切断開口部
81 ブロック
83 シュラウドサポートリング
84,85 溶接部
87 ジャッキ
86 仮設ブラケット
88 取付け治具
89 レール
90 溶接裏当金
91 連結ピン
92,93 ブラケット
94,95 ボルト
96 アライメント測定装置
96a 容器
97 孔
98 開口部
99a,99b ピンおよびブラケット
Claims (1)
- 原子炉圧力容器上蓋、蒸気乾燥機および燃料を取外した後、既設の原子炉再循環ポンプおよび既設のジェットポンプを用いて表面酸化物を除去する化学薬剤を炉内に注入し循環して除染し、次に炉心シュラウドをシュラウドサポートシリンダとの溶接部よりも一定長さ下方位置で切断して撤去し、シュラウドサポートシリンダの略上端高さ位置の炉心シュラウド内方に人が作業できる作業架台を設置した状態で作業員が炉内に入り、残ったシュラウドサポートシリンダ上面を整形加工し、新炉心シュラウドをシュラウドサポートシリンダの上方に固定して溶接することを特徴とする炉心シュラウドの交換方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1994331310A JP3679823B6 (ja) | 1994-11-28 | 1994-11-28 | 炉心シュラウドの交換方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1994331310A JP3679823B6 (ja) | 1994-11-28 | 1994-11-28 | 炉心シュラウドの交換方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
JPH08152495A JPH08152495A (ja) | 1996-06-11 |
JP3679823B2 true JP3679823B2 (ja) | 2005-08-03 |
JP3679823B6 JP3679823B6 (ja) | 2023-11-06 |
Family
ID=18242259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1994331310A Expired - Lifetime JP3679823B6 (ja) | 1994-11-28 | 1994-11-28 | 炉心シュラウドの交換方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3679823B6 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5687206A (en) * | 1996-03-15 | 1997-11-11 | Mpr Associates, Inc. | Method of replacing a boiling water reactor core shroud |
US5828713A (en) * | 1996-10-15 | 1998-10-27 | Mpr Associates, Inc. | Replacement core shroud assembly for a boiling water reactor |
JP3897928B2 (ja) * | 1999-03-31 | 2007-03-28 | 株式会社東芝 | 炉心シュラウドの取替方法 |
US6549601B1 (en) | 1999-09-17 | 2003-04-15 | Hitachi, Ltd. | Mounting method for core internals |
JP4850214B2 (ja) * | 2008-06-30 | 2012-01-11 | 日立Geニュークリア・エナジー株式会社 | 炉内構造物の搬出方法 |
JP2011090011A (ja) * | 2010-12-28 | 2011-05-06 | Hitachi-Ge Nuclear Energy Ltd | 炉内構造物の搬出方法 |
JP5784515B2 (ja) * | 2012-01-30 | 2015-09-24 | 株式会社東芝 | 原子炉内燃料取出し方法及び装置 |
JP5814896B2 (ja) * | 2012-09-26 | 2015-11-17 | 日立Geニュークリア・エナジー株式会社 | 炉心差圧及び液体注入制御装置の取替方法 |
JP2017078671A (ja) * | 2015-10-22 | 2017-04-27 | 日立Geニュークリア・エナジー株式会社 | 放射線遮蔽ボックスおよび放射線遮蔽ボックス組み立てセット |
CN114147712B (zh) * | 2021-11-29 | 2023-12-05 | 中国煤炭地质总局一二九勘探队 | 一种放射源远程控制更换器 |
-
1994
- 1994-11-28 JP JP1994331310A patent/JP3679823B6/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08152495A (ja) | 1996-06-11 |
JP3679823B6 (ja) | 2023-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3679823B2 (ja) | 炉心シュラウドの交換方法 | |
JP3660770B2 (ja) | 炉内構造物の交換方法 | |
JP2007155726A (ja) | 加圧水型軽水炉のための多用途ツーリングを使用するシステム及び方法 | |
JPH0580187A (ja) | 炉内構造物の保全方法 | |
JP3897928B2 (ja) | 炉心シュラウドの取替方法 | |
JP3343447B2 (ja) | 原子炉圧力容器の搬出方法 | |
JPH0886896A (ja) | 原子炉内シュラウドならびにその据付方法および交換方法 | |
JPH03115998A (ja) | 貯蔵状態の炉内構造物からの放射線を遮蔽する方法及び構造体 | |
EP1596400A2 (en) | Methods of repairing leaking elongate hollow members in boiling water reactors | |
JP4276808B2 (ja) | 原子力プラントの機器搬出方法 | |
JP4212175B2 (ja) | 炉心シュラウドの交換方法 | |
JP2766195B2 (ja) | 原子炉内部構造物の取替工法 | |
JP3456783B2 (ja) | 炉心シュラウドの交換方法 | |
JP3101095B2 (ja) | 原子炉圧力容器の廃炉方法及びそのシステム | |
JP4316130B2 (ja) | 炉心スプレイ系配管取替工法 | |
JP3471295B2 (ja) | 炉心スプレイスパージャの取替方法 | |
JP2000304890A (ja) | 炉内構造物取替方法 | |
JP4393011B2 (ja) | 炉心スプレイ系統機器の取替方法 | |
JP3562900B2 (ja) | 炉心シュラウドの据付方法および原子炉圧力容器内の放射線遮蔽構造 | |
JP3425217B2 (ja) | 圧力容器貫通ハウジングの補修用シール装置 | |
JPH08233972A (ja) | 原子炉内部構造物の取替工法 | |
JP2000304892A (ja) | 炉内構造物取替工法 | |
JPH10260290A (ja) | 原子炉圧力容器内構造物の取り替え方法およびそのための装置 | |
WO2001069608A1 (fr) | Procede de manipulation d'une cuve de reacteur | |
JP2766179B2 (ja) | 炉内構造物の保全方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20000831 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20000831 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20020528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20021015 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20021216 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20031014 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20031215 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040105 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20040220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050516 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090520 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090520 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100520 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110520 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110520 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120520 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120520 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130520 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130520 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140520 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |