[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3679037B2 - 導波型光回路 - Google Patents

導波型光回路 Download PDF

Info

Publication number
JP3679037B2
JP3679037B2 JP2001241369A JP2001241369A JP3679037B2 JP 3679037 B2 JP3679037 B2 JP 3679037B2 JP 2001241369 A JP2001241369 A JP 2001241369A JP 2001241369 A JP2001241369 A JP 2001241369A JP 3679037 B2 JP3679037 B2 JP 3679037B2
Authority
JP
Japan
Prior art keywords
waveguide
core
birefringence
multilayer structure
optical circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001241369A
Other languages
English (en)
Other versions
JP2002250829A (ja
Inventor
俊海 小湊
彰夫 杉田
幹隆 井藤
靖之 井上
安弘 肥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001241369A priority Critical patent/JP3679037B2/ja
Priority to US10/026,084 priority patent/US6580862B2/en
Priority to EP01130706A priority patent/EP1219983B1/en
Priority to DE60135822T priority patent/DE60135822D1/de
Publication of JP2002250829A publication Critical patent/JP2002250829A/ja
Application granted granted Critical
Publication of JP3679037B2 publication Critical patent/JP3679037B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、導波型光回路に関し、より詳細には、スラブ導波路を備えた導波型光回路に関する。
【0002】
【従来の技術】
インターネット利用の世界的な広がりにより、大量の大容量データを同時に、かつ高速に伝送できる通信システムの構築が急務となっている。この要望を満たすシステムとして光波長多重(WDM)技術を用いた光通信システムが注目されており、米国を中心に世界的な導入が始まっている。
【0003】
光WDM技術には、複数の異なる波長を合分波できる光合分波器が必要不可欠であり、実現形態の一つとして基板上の光導波路により光回路を構成する導波型光回路がある。
【0004】
導波型光回路は、光におけるICであり、LSI微細加工技術等を応用し、光導波路を平面基板上に一括形成するものである。それゆえ、集積性、量産性に優れ、複雑な回路構成を有する高機能回路を実現でき、近年、光通信システムへの関心の高まりに伴い、研究開発が盛んに進められている。
【0005】
導波型光回路は、半導体、LN、プラスチック、石英系ガラスなど、種々の材料により実現されてきているが、シリコン基板上に石英系ガラスにて形成する石英系光導波路は、光通信の伝送路である石英系光ファイバと整合性が良く、形成材料の特徴である高い安定性と長期信頼性を有し、安定な動作特性を有する光回路を実現できるなどの特徴から、他の導波路材料に比較して実用化が進んでいる。
【0006】
石英系光導波路により実用化されている光合分波器の基本構成の一つに、アレイ導波路格子がある。アレイ導波路格子は、導波路アレイとスラブ導波路を接続した単純な構成ながら、複数の異なる波長の光を一括して合分波できる高機能な光回路であり、他の構成に比較して小型化が図れる構成である。
【0007】
図1は、従来のアレイ導波路格子の基本構成を示す図で、アレイ導波路格子101は、2つのスラブ導波路102間に導波路アレイ103が接続され、入力導波路104及び出力導波路105がそれぞれ別のスラブ導波路102で接続されている。導波路アレイ103は隣接する導波路の導波路長が異なり、隣接導波路との導波路長差が光合分波する波長間隔を決めている。
【0008】
図2(a),(b)は、従来のスラブ導波路及び導波路アレイの断面構造を示す図で、図2(a)は、スラブ導波路の断面図、図2(b)は、導波路アレイの断面図である。図2(a)のスラブ導波路102の断面図において、基板201上にクラッド202でコア203を覆った構造であり、コア203の幅が基板水平方向で広くなっている。また、図2(b)の導波路アレイ103の断面図において、スラブ導波路102のコア203のコア幅をコア厚と同程度にした構造となるコア204の光導波路であり、単一モード導波路である。このような石英系光導波路においては、128波までの光合分波器が実現されている。
【0009】
しかし、基板にシリコンを用いた石英系光導波路により形成したアレイ導波路格子の光学特性は、基板と垂直な電界を有するモード(TMモード)のスペクトルが、水平方向に電界を有するモード(TEモード)に比較して長波長側にシフトする偏波依存性を有する。この波長シフト量は、分波間隔0.8nmのアレイ導波路格子では、0.2〜0.3nmである。光合分波器におけるこのような偏波依存性は、光ファイバにて伝送される信号光の偏波方向が不確定であり、かつ時間的に変動することから、透過損失やクロストークを時間変動させることになり、信号の信頼性を劣化させることになる。
【0010】
このようなアレイ導波路格子の偏波依存性の原因は、導波路アレイ103の各光導波路が、TMモードの感じる実効屈折率がTEモードの感じる実効屈折率より大きくなる導波路複屈折を有するためである。比屈折率差Δ=0.75%の光導波路では、(2−3)×10−4の導波路複屈折がある。この導波路複屈折の原因は、基板であるシリコンと光導波路の材料である石英系ガラスとの熱膨張係数差に起因する残留熱応力のためである。
【0011】
この偏波依存性を低減する方法として、(1)導波路の両脇に溝を形成し、導波路にかかる応力を低減し、導波路複屈折を低減する方法、(2)導波路上にa−Si等の応力付与膜を形成した後、光回路特性をモニターしながら応力付与膜をトリミングすることで複屈折を制御し、光回路全体の偏波依存性を低減する方法、(3)光回路特性をモニターしながら導波路へ紫外線を照射することで複屈折を制御し、光回路全体で偏波依存性を低減する方法、(4)光回路内に1/2波長板を挿入し、偏波モードを入れ替えることで光回路全体の偏波依存性を低減する方法、(5)コアを覆うクラッドにGeO、B、P等の熱膨張係数を大きくする材料をドープし、基板の熱膨張係数に近づけることで複屈折を低減する方法等が開発され、先に述べた波長シフトを0.01nmオーダーまで低減することが可能である。
【0012】
【発明が解決しようとする課題】
しかしながら、アレイ導波路格子の波長シフト量は出力導波路(図1の105)の出力ポートにより異なり、従来技術で述べた偏波依存性を低減する技術によっても、波長シフト量の出力ポート間ばらつきはほとんど低減されず、偏波依存性の低減を制限していた。
【0013】
図3は、分波間隔0.8nm、32波を光合分波するアレイ導波路格子における各出力ポートのTEモードに対するTMモードの波長シフトをプロットした図で、光は、入力導波路(図1の104)の入力ポート16より入力した。波長シフト量のばらつきは約0.02nmあり、出力ポート1から32の間で一定の傾きをもっている。この原因は、スラブ導波路102の導波路複屈折が、約1.1×10−4あるためである。
【0014】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、スラブ導波路の導波路複屈折を低減し、これにより生じていた偏波依存性を低減した導波型光回路を提供することにある。
【0015】
また、本発明の目的は、特にアレイ導波路格子の出力ポート間の波長シフト量のばらつきを低減し、一様の偏波依存性を有する導波型光回路を提供することにある。
【0016】
さらに、本発明の目的は、従来技術で述べた偏波依存性低減技術と組み合わせることで、偏波依存性低減限界を下げた導波型光回路を提供することにある。
【0017】
【課題を解決するための手段】
本発明は、このような目的を達成するために、請求項1に記載の発明は、基板上に形成され、ガラス系材料あるいは高分子材料からなるクラッド及びコアを有し、該コアは前記クラッドで覆われているスラブ導波路を備えたアレイ導波路格子を構成する導波型光回路であって、前記スラブ導波路のコアの少なくとも一部は、基板面に平行で、少なくとも3層以上からなり、隣接する層の屈折率が異なる多層構造であるとともに、該多層構造による構造複屈折がその他の導波路複屈折を補償するように、前記多層構造の層方向が形成され、かつ該多層構造による構造複屈折の大きさが、その他の導波路複屈折による導波路複屈折値の大きさの2倍未満であることを特徴とする。
【0018】
また、請求項2に記載の発明は、請求項1に記載の発明において、前記基板がシリコン基板であり、光導波路が石英系ガラスで作製されたことを特徴とする。
【0020】
また、請求項3に記載の発明は、基板上に形成され、ガラス系材料あるいは高分子材料からなるクラッド及びコアを有し、該コアは前記クラッドで覆われているスラブ導波路を備えたアレイ導波路格子を構成する導波型光回路であって、前記スラブ導波路のコアの少なくとも一部は、基板面に垂直で、少なくとも3層以上からなり、隣接する層の屈折率が異なる多層構造であり、層の界面はスラブ導波路の入力中央と出力中央とを結ぶ線分と平行であるとともに、該多層構造による構造複屈折がその他の導波路複屈折を補償するように、前記多層構造の層方向が形成され、かつ該多層構造による構造複屈折の大きさが、その他の導波路複屈折による導波路複屈折値の大きさの2倍未満であることを特徴とする。
【0021】
また、請求項4に記載の発明は、請求項に記載の発明において、前記基板が石英基板であり、光導波路が石英系ガラスで作製されたことを特徴とする。
【0026】
また、請求項に記載の発明は、請求項1乃至4のいずれかに記載の発明において、前記アレイ導波路格子の導波路アレイに複屈折補償器を設けたことを特徴とする。
【0027】
また、請求項に記載の発明は、請求項に記載の発明において、前記複屈折補償器はλ/2波長板を用いた複屈折補償器であることを特徴とする。
【0032】
また、請求項に記載の発明は、請求項1乃至のいずれかに記載の発明において、前記多層構造のコアの少なくとも1つは、コア内で屈折率分布が均等となるように、屈折率の異なる層を交互に配置したことを特徴とする。
【0033】
また、請求項に記載の発明は、請求項1乃至のいずれかに記載の発明において、前記多層構造のコアの少なくとも1つは、各層の屈折率及び各層の厚さが中央の層に対して対称となるように配置したことを特徴とする。
【0034】
また、請求項に記載の発明は、請求項1乃至6、8のいずれかに記載の発明において、前記多層構造コアの少なくとも1つは、各層の屈折率が、クラッドと接する両端の層からコア内部側層に向かって高くなるように各層を配列したことを特徴とする。
【0035】
また、請求項10に記載の発明は、請求項1乃至のいずれかに記載の発明において、前記多層構造のコアの少なくとも1つの総層数が、5層〜10層であることを特徴とする。
【0036】
また、請求項11に記載の発明は、請求項乃至10のいずれかに記載の発明において、複屈折補償器を設けたことを特徴とする。
【0037】
また、請求項12に記載の発明は、請求項11に記載の発明において、前記複屈折補償器はλ/2波長板を用いた複屈折補償器であることを特徴とする。
また、請求項13に記載の発明は、請求項1乃至11のいずれかに記載の発明において、前記導波路の複屈折の値は1.5×10 −4 以下であることを特徴とする。
また、請求項14に記載の発明は、請求項1乃至11のいずれかに記載の発明において、前記多層構造により生じる構造複屈折の値が、以下の式(1),(2)を満たす構成であることを特徴とする。
【数3】
Figure 0003679037
【数4】
Figure 0003679037
ただし、B は多層構造により生じる構造複屈折の値、Nは多層構造の層数、n 、t はそれぞれ各層の屈折率と厚さ、c 、c は、実測または計算によって導波路構造ごとに定まる定数である。
【0042】
【数2】
Figure 0003679037
【0043】
ただし、Nは多層構造の層数、n、tはそれぞれ各層の屈折率と厚さ、c、cは、実測または計算によって導波路構造ごとに定まる定数である。
【0044】
式(1)の右辺において、
【0045】
【数3】
Figure 0003679037
【0046】
は層に平行な方向の実効的な屈折率を、
【0047】
【数4】
Figure 0003679037
【0048】
は層に垂直な方向の実効的な屈折率を表す。したがって、これらの差が多層構造に由来する構造複屈折となる。そして、これらの計算値は、式(1)のように補正係数c、cによって、実測または計算によって求められる構造複屈折値Bsと結び付けられる。
【0049】
補正係数c、cは、主に、導波路構造(比屈折率差、寸法)による光の閉じ込めに依存し、光の閉じ込めが一定の光導波路では共通の値となる。したがって、適当な多層構造コアを試作して、または適当な多層構造コアについてモード解析を実行して、あらかじめ補正係数を求めておけば、所望の構造複屈折を満たすような多層構造の設計が容易に可能となる。
【0050】
本発明によれば、スラブ導波路のコアを屈折率の異なる層の多層構造とすることで、層と平行な方向に実効屈折率が高くなる構造複屈折を生じさせることができる。残留熱応力等により生じた複屈折(導波路複屈折)を補償する方向に多層構造となるコアを形成することにより、本発明の目的である、導波路複屈折を低減したスラブ導波路を実現でき、スラブ導波路の導波路複屈折により生じる光回路の偏波依存性を低減できる。特にアレイ導波路格子の各出力ポートの波長シフト量を一様とすることができる。また、従来の偏波依存性低減技術(複屈折補償器)と組み合わせることで、偏波依存性の低減限界を下げた導波型光回路を提供できる。
【0051】
また、光導波路材料が石英系ガラスである光導波路において、基板をシリコンとした場合、光導波路の実効屈折率が基板に垂直方向の電界(TMモード)に対して大きくなるため、基板に水平方向に多層構造とすることで、応力による導波路複屈折と多層構造による構造複屈折とを打ち消し合わせ、導波路複屈折を低減したスラブ導波路を実現できる。
【0052】
また、基板が石英の場合には、光導波路の実効屈折率が基板に水平方向の電界(TEモード)に対して大きくなるため、基板に垂直方向に多層構造とすることで、スラブ導波路の導波路複屈折を低減できる。これにより、スラブ導波路の導波路複屈折によって生じる光回路の偏波依存性を低減できる。特にアレイ導波路格子の各出力ポートの波長シフト量を一様とすることができる。
【0053】
また、石英系光導波路において、従来構造のスラブ導波路は、従来構造の単一モード導波路に比較して導波路複屈折が大きくなっており、この導波路複屈折を打ち消す構造複屈折となる多層構造とするためには、スラブ導波路のコアの多層構造による構造複屈折を、単一モード導波路のコアの多層構造による構造複屈折より大きくする。スラブ導波路及び単一モード導波路に導波路複屈折を解消できる個別の多層構造を適用することで、偏波依存性の小さい回路を提供できる。特にアレイ導波路格子では、各出力ポートの波長シフト量を一様にできるとともに、波長シフトそのものを低減あるいは解消できる。
【0054】
また、従来の偏波依存性低減技術と組み合わせることで、偏波依存性の低減限界を下げた導波型光回路を提供できる。
【0055】
また、屈折率が高い層と低い層とを交互に配置した多層構造とすることで、従来と同じ実効屈折率を有し、層に垂直方向での光が感じる屈折率をおおよそ均一となるスラブ導波路を実現できることから、従来と同形状のスラブ導波路を用いて光回路を構成することができる。
【0056】
また、上述したように、石英系光導波路において、スラブ導波路の導波路複屈折は単一モード導波路の導波路複屈折より大きい。光導波路の寸法等形状により導波路複屈折が異なることがあり、石英系光導波路では、光導波路のコア幅が広がるにつれて導波路複屈折が大きくなる。それゆえ、単一モード導波路、マルチモード導波路、スラブ導波路から形成されるアレイ導波路格子とマルチモード干渉型光結合器(以下、MMIという)を光結合器としたマッハ・ツェンダー干渉計と組み合わせたような光合分波回路の場合、単一モード導波路、マルチモード導波路、スラブ導波路の順で多層構造による構造複屈折が大きくなるように個別の多層構造を適用することで、それぞれの導波路複屈折を解消し、偏波依存性の小さい回路を提供できる。
【0057】
また、コアの多層構造の各層の屈折率及びその厚さを、層の中央層に対しておおよそ対称にすることで、伝搬する光の電磁界分布の中心を、従来と同様に、コアのほぼ中心に位置させることができ、また、電磁界分布の形状を基板に垂直、水平方向でコア中心よりほぼ対称にできることから、従来とほぼ同様な回路設計により、所望の回路特性を実現できる。
【0058】
また、多層構造の各層の屈折率をクラッド側の両端の層からコア内部側の層に向かって高くしたグレーデッドインデックスとすることで、従来の光導波路と異なるスポットサイズを実現しながら、光導波路の複屈折の低減、あるいは、解消できる。
【0059】
また、多層構造の層数を5〜10層とすることで、FHD法のような厚膜作製プロセスにても、コアとして多層構造を容易に実現できる。また、実施例で述べるように光ファィバとの接続損失を低減できる。
【0060】
また、多層構造を式(1)〜(3)をおおよそ満たすようにすることで、複雑な解析をすることなく、多層構造を決めることができる。屈折率の異なる少なくとも2層を交互に配置した多層構造では、補正係数c=1はコア内に光が十分に閉じこめられた場合にほぼ相当し、閉じこめが弱い場合は、主に1以下にする。
【0061】
また、従来の偏波依存性低減技術(複屈折補償器)と組み合わせることでも、導波型光回路の偏波依存性の解消を図れる。例えば、アレイ導波路格子とMMIを光結合器としたマッハ・ツェンダー光干渉計において、スラブ導波路、マルチモード導波路を多層構造のコアとする。単一モード導波路は、その複屈折により光回路の偏波依存性を生じさせアレイ導波路格子の導波路アレイ、及びマッハ・ツェンダー干渉計の光結合器間の光導波路にλ/2波長板を挿入する。これにより、偏波依存性を低減できる。
【0062】
また、導波型光回路の全ての光導波路のコアを多層構造とする必要はなく、導波型光回路の偏波依存性に影響のある光導波路部分を多層化すれば良い。例えば、上述のようにアレイ導波路格子では、導波路アレイの各導波路とスラブ導波路を多層構造にすれば良い。また、その一部分に適用するだけでも従来に比較して偏波依存性を低減でき、例えば、導波路アレイの各導波路を同程度の割合の長さを多層コアにする、すなわち、偏波依存性に影響のある光導波路部分の内の適当な一部分を多層コアとするなどである。
【0063】
また、導波型光回路の中で偏波依存性が顕著に現れるのは、一方の光結合器と他方の光結合器を導波路長の異なる複数の導波路で結ぶ光干渉型回路である。光干渉型回路の典型的な構成は、上述のマッハ・ツェンダー干渉計やアレイ導波路格子である。光干渉型回路では、導波路長差分のみ偏波依存性を低減、あるいは解消することで、回路の偏波依存性を低減、あるいは解消できる。すなわち、導波路長が最短の導波路に対する導波路長差分を多層構造コアとすれば良い。あるいは、導波路長差分と一定の長さを加えた長さを多層構造としても良い。また、多層構造コアを連続で形成する必要はなく、合計の導波路長が所定の長さとなれば良い。ラティス型フィルタ等複数の光結合器を複数の導波路で接続した光干渉型回路も本請求項に含まれる。
【0064】
【発明の実施の形態】
以下、図面を参照して本発明の実施例について説明する。
【0065】
[実施形態1]
図4は、本発明における導波型光回路の第1の実施形態を示す図で、図4(a)は、スラブ導波路の断面図、図4(b)は、単一モード導波路の断面図である。基板401にシリコン基板を用い、クラッド402及びコア403,404は石英系ガラスにより形成している。ここで、コア(スラブ導波路)403は第1コア403a及び第2コア403bを基板に水平方向にそれぞれ複数積層した多層構造を備え、また、コア404(単一モード導波路)は第1コア404a及び第2コア404bを基板に水平方向にそれぞれ複数積層した多層構造を備えている。
【0066】
第1コア403a,404a及び第2コア403b,404bの比屈折率差、層厚、層数は、コア403,404の平均比屈折率差が0.75%、コア厚が6μm(但し、コア404の導波路幅は6μm)、多層構造による構造複屈折値Bが−9×10−4(単一モード導波路換算−7×10−4)となるように、導波路のモード解析により求めた。ここで、平均比屈折率差は、各コア層の比屈折率差の面積平均とした。
【0067】
本実施の形態で用いた各層の比屈折率差Δi、層厚ti、層数Ni(但し、i=1,2)は、
第1コア403a,404a:Δ1=4.4%、t1=0.15μm、N1=7、
第2コア403b,404b:Δ2=0%、t2=0.83μm、N2=6 である。
【0068】
本実施の形態のスラブ導波路は次のように製造した。基板401としてシリコン基板を用い、基板401上に火炎堆積法により石英系下部クラッド層(コア下部のクラッド)及びコア層を形成する。コア層は、第1コア及び第2コアを交互に堆積している。第1コアには、屈折率を高めるためにGeOが44mol%添加されており、透明化温度を下げるために微量のBとPを添加している。次に、コア層の不要部分を反応性イオンエッチング法により除去し、リッジ状のコア403,404を形成した後、コア403,404を覆うように下部クラッドと同等の屈折率を有する上部クラッドを火炎堆積法により形成する。クラッド402は、この下部クラッドと上部クラッドにより構成される。
【0069】
この多層構造を有するスラブ導波路及び単一モード導波路により、図1に示すアレイ導波路格子101を作製した。即ち、前述した多層構造を有するスラブ導波路により、スラブ導波路102を作製し、また、前述した多層構造を有する単一モード導波路により、導波路アレイ103、入力導波路104、出力導波路105を作製した。
【0070】
作製したアレイ導波路格子101の各出力ポートのTEモードに対するTMモードの波長シフトを図5に示す。導波路アレイ103を多層構造にしたことにより、波長シフトが約−0.51nmとなっているが、出力ポート間のばらつきが約0.004nmと従来の0.02nmに比較して1/5に低減している。これにより、スラブ導波路の導波路複屈折が小さくなったことがわかる。
【0071】
このアレイ導波路格子101に、導波路アレイ103を垂直に横切るように1/2波長板を挿入した。各出力ポートで波長シフトは、±0.003nm以内(出力ポート間のばらつきは約0.004nm)となり、従来の±0.01nmに比較して、偏波依存性低減の限界を下げることができた。
【0072】
[実施形態2]
本発明の第2の実施形態は、第1の実施形態におけるコアの比屈折率差Δを0.75%から1.5%としたものである。比屈折率差を大きくすることは、単一モード導波路の曲げ半径を小さくでき、それにより光回路の小型化を図れる利点がある。但し、通常の光ファイバとの接続損失が大きくなるため、入出力導波路部でスポットサイズ変換技術等を適用する必要がある。
【0073】
第1コア403a,404a及び第2コア403b,404bの比屈折率差、層厚、層数は、コア403,404の平均比屈折率差が1.5%、コア厚が4μm(但し、コア404の導波路幅は4μm)、多層構造による構造複屈折値Bが−5×10−4となるように、導波路のモード解析により求めた。構造複屈折Bを第1の実施の形態に比較して小さくしたのは、従来構造のスラブ導波路の複屈折値が、比屈折率差Δが高くなると小さくなったことによる。
【0074】
本実施の形態で用いた各層の比屈折率差Δi、層厚ti、層数Ni(但し、i=1,2)は、
第1コア403a,404a:Δ1=2.7%、t1=0.58μm、N1=4
第2コア403b,404b:Δ2=0%、t2=0.57μm、N2=3
である。
【0075】
本実施の形態のスラブ導波路は、第1の実施の形態と同様に作製し、第1コアには、屈折率を高めるためにGeOが27mol%添加されている。
【0076】
この多層構造を有するスラブ導波路及び単一モード導波路により、第1の実施の形態と同様に、図1に示す回路構成のアレイ導波路格子101を作製した。その後、アレイ導波路格子101に、導波路アレイ103を垂直に横切るように1/2波長板を挿入した。各出力ポートでのTEモードに比較したTMモードの波長シフト量は、±0.005nm以内(出力ポート間のばらつきは0.005nm)となり、第1の実施の形態と同様に、従来の波長シフト量に比較して小さな値となっている。
【0077】
[実施形態3]
図6は、本発明におけるスラブ導波路の第3の実施形態を示す図で、図6(a)は、スラブ導波路の断面図、図6(b)は、単一モード導波路の断面図である。基板601に石英基板を用い、クラッド602及びコア603,604は石英ガラスにより形成している。ここで、コア(スラブ導波路)603は第1コア603a及び第2コア603bを基板に垂直方向に複数層(通常、数100層〜数1000層)形成した多層構造を備え、また、コア604(単一モード導波路)は第1コア604a及び第2コア604bを基板に垂直方向に複数層(通常、数層〜数10層)形成した多層構造を備えている。
【0078】
第1コア603a,604a及び第2コア603b,604bの屈折率、層厚は、コア603,604の平均比屈折率が0.75%、コア厚が6μm(但し、コア604の導波路幅は6μm)、多層構造による構造複屈折値Bが−9×10−4(単一モード導波路換算−7×10−4)となるように、導波路のモード解析により求めた。
【0079】
本実施の形態で用いた各層の比屈折率差Δi、層厚ti(但し、i=1,2)は、
第1コア603a,604a:Δ1=4.9%、t1=0.23μm
第2コア603b,604b:Δ2=0%、t2=1.69μm
である。
【0080】
本発明の実施形態のスラブ導波路は、次のように製造した。基板601として石英基板を用い、基板601上に火炎堆積法により第1コア603a,604aに相当するコア層を形成する。この第1コア603a,604aには、屈折率を高めるためにGeOがそれぞれ49mol%添加されている。次に、第2コアに相当する部分を反応性イオンエッチング法により除去した後、短冊状になった第1コア603a,604aを覆うようにクラッドを火炎堆積法により形成する。クラッド602と同時に第2コア603b,604bが形成される。
【0081】
なお、この際、コアを構成する第1コア及び第2コアの各層の界面は、スラブ導波路の場合は入力端の中央と出力端の中央とを結ぶ線分にほぼ平行に設けられ、単一モード導波路の場合は光の進行方向とおおよそ平行、言い換えれば導波路に沿った方向に設けられる。
【0082】
この多層構造を有するスラブ導波路及び単一モード導波路により、図1に示すようなアレイ導波路格子101を作製した。すなわち、前述した多層構造を有するスラブ導波路により、スラブ導波路102を作製し、また、前述した多層構造を有する単一モード導波路により、導波路アレイ103、入力導波路104、出力導波路105を作製した。その後、導波路アレイ103を垂直に横切るように1/2波長板を挿入した。
【0083】
各出力ポートでのTEモードに比較したTMモードの波長シフトは±0.006nm以内(出力ポート間のばらつきが約0.005nm)となり、従来、±0.01nmであった偏波依存性低減の限界を下げることができた。
【0084】
なお、本実施の形態ではコア603,604を基板601の上に直接形成したが、第1、第2の実施の形態と同様、コアの下部にクラッドを備えたものでも実現できる。
【0085】
[実施形態4]
本発明の第4の実施形態は、第1の実施形態で説明した図1に示すアレイ導波路格子101の導波路アレイ103のコアの多層構造を、スラブ導波路102より小さな構造複屈折となる多層構造としたものである。
【0086】
導波路アレイ103のコアの多層構造は、構造複屈折値Bが−2.3×10−4となるように、第1コア及び第2コアの比屈折率差Δi、層厚ti、層数Ni(但し、i=1,2)を、
第1コア:Δ1=2%、t1=0.45μm、N1=5
第2コア:Δ2=0%、t2=0.94μm、N2=4
とした。
【0087】
本実施の形態のアレイ導波路格子101は、次のように作製した。シリコン基板上に火炎堆積法により下部クラッドを形成し、その上に導波路アレイ用コア層を上記のパラメータで火炎堆積法により作製した。第1コアには、GeOが20mol%添加され、微量のBとPを含有している。スラブ導波路102を形成する部分となる導波路アレイ用コア層を反応性イオンエッチング法により除去し、その後、スラブ導波路102用コア層を第1の実施の形態と同じパラメータで火炎堆積法により形成した。導波路アレイ用コア層上に形成されたスラブ導波路102用コア層を反応性イオンエッチング法により除去した。これにより、下部クラッド上にスラブ導波路形成部分と単一モード導波路形成部分に適した多層構造となるコア層が形成できる。
【0088】
次に、コア層の不要部分を反応性イオンエッチング法により除去し、リッジ状のコアを形成し、コアを覆うように下部クラッドと同等の屈折率を有する上部クラッドを火炎堆積法により形成した。
【0089】
作製したアレイ導波路格子101の各出力ポートのTEモードに対するTMモードの波長シフト量は0.02nm以下(出力ポート間のばらつき0.004nm)であり、偏波依存性を低減する方法として1/2波長板を用いる方法と比較して偏波依存性が若干大きめであるが、偏波依存性を低減する方法適用前の波長シフト0.2〜0.3nm(出力ポート間のばらつき0.02nm)に比較して十分小さな波長シフト及び出力ポート間ばらつきを実現できる。
【0090】
[実施形態5]
本発明の第5の実施形態では、第1及び第4の実施形態のスラブ導波路の多層構造を、(1)〜(3)式によりさらに厳密に設定し、アレイ導波路格子の波長シフトのばらつきを低減したものである。
【0091】
図4(a)に示すスラブ導波路の第1コア403a及び第2コア403bの比屈折率差Δ 、層厚t(i=1,2)は、次の手順にて設定した。
【0092】
手順1) 適当な多層構造により光回路を作製し、その特性から多層構造による構造複屈折値を見積もる。その結果と式(1)〜(3)から補正係数c、cを決める。
【0093】
手順2) 多層構造による構造複屈折が所定の値となるように、式(1)〜(3)より比屈折率差Δ 、層厚t(i=1,2)を決める。手順1)は、多層構造の作製精度が良く、屈折率の異なる層を積層した多層構造による構造複屈折以外に新たに応力複屈折等が付加されない場合は、光回路を作製する代わりにモード解析を用いても良い。
【0094】
コアの平均比屈折率差Δ aveが0.75%、コア厚が6μmでの多層構造を決めるために、手順1)、図1に示すアレイ導波路格子を、次の3種類の第1コア403a及び第2コア403bの比屈折率差Δ 、層厚t(i=1,2)により作製した。層数は、総層数を13層とし、第1コアの層数N1を7層、第2コアの層数N2を6層で形成した。
【0095】
1) 第1コア403a、Δ =1.0%、t=0.64μm
第2コア403b、Δ =0%、t=0.25μm
2) 第1コア403a、Δ =3.0%、t=0.2μm
第2コア403b、Δ =0%、t=0.76μm
3) 第1コア403a、Δ =5.1%、t=0.12μm
第2コア403b、Δ =0%、t=0.86μm
スラブ導波路及び単一モード導波路は、第1の実施形態と同様に作製し、アレイ導波路格子を作製した。屈折率を高くするためにGeOを比屈折率差Δ1%当たり10mol%ドープした。
【0096】
多層構造による導波路複屈折の値Bsを見積もるために、作製したアレイ導波路格子の各出力ポートでのTEモードに対するTMモードの波長シフトのばらつきを測定した。このばらつきからスラブ導波路での複屈折値Beを見積もり、このBeから従来のコア構造で生じる導波路複屈折値Bo=1.1x10 3 を引くことで、多層構造による導波路複屈折の値Bsを見積もった。ここで、Bo=1.1x10 3 は、第1の実施形態の波長シフトから再度見積もった値である。第1コアの比屈折率差に対して多層構造による複屈折の大きさ│Bs│をプロットしたのが図7に示した黒丸である。この結果と(1)〜(3)式より補正係数cを1、cを0とした。実線は、この補正係数と(1)〜(3)式により計算したものである。
【0097】
次に、手順2)として、補正係数cを1、cを0とした(1)〜(3)式より、│Bs│=│Bo│=1.1x10 3 となる第1コア403a及び第2コア403bの比屈折率差Δ 、層厚t(i=1,2)を求める。図7の計算結果である実線より、│Bs│=│Bo│=1.1x10 3 となる第1コア403aの比屈折率差Δ は5.5%であり、(2),(3)式より、t、tは下記の値となる。
【0098】
第1コア403a、Δ =5.5%、t=0.11μm、N=7
第2コア403b、Δ =0%、t=0.87μm、N=6
図7より│Bs│はおおよそΔ の1次関数として変化していることから、数点のΔ に対する│Bs│を求め、Δ の1次関数として近似曲線を見積もり、それより所定の│Bs│に対するΔ を求めても良い。
【0099】
この多層構造となるスラブ導波路により、図1に示すアレイ導波路格子を作製した。その後、アレイ導波路格子101に、導波路アレイ103を垂直に横切るように1/2波長板を挿入した。各出力ポートでのTEモードに対するTMモードの波長シフト量は、±0.002nm以内(出力ポート間のばらつきは0.002nm)であった。
【0100】
第4の実施形態と同様に、導波路アレイ103の構造複屈折値が−2.3x10 4となる多層構造を、第1コアと第2コアの比屈折率差Δ 、層厚t、層数N(i=1,2)が
第1コア Δ =2%、t=0.45μm、N=5
第2コア Δ =0%、t=0.94μm、N=4
となるように作製した。各出力ポートでのTEモードに比較したTMモードの波長シフト量は、±0.008nm以内(出力ポート間のばらつきは0.002nm)であった。
【0101】
第1及び第4の実施形態のスラブ導波路の多層構造を、(1)〜(3)式によりさらに厳密に設定することで、アレイ導波路格子の偏波依存性を低減できた。
【0102】
[実施形態6]
本発明の第6の実施形態は、第5の実施形態におけるコアの層数を約1/3〜約2倍の範囲で変えた。
【0103】
図4(a)に示すスラブ導波路のコア403の多層構造は、第5の実施形態と同様に、平均比屈折率差Δ aveが0.75%、コア厚が6μm、第1コア403aの比屈折率差Δ を5.5%、第2コア403bの比屈折率差Δ を0%(多層構造による複屈折の大きさ│Bs│が1.1x10 3)とした。第1コアの層数Nを2〜11層の範囲で変えた10種類の構造にて、図1に示すアレイ導波路格子を作製した。第2コアの層数Nは、(N−1)層である。第1コア403aの層厚tと、第2コア403bの層厚tは、次のように設定した。
【0104】
1) N=2、t=0.39μm、t=5.22μm
2) N=3、t=0.26μm、t=2.61μm
3) N=4、t=0.20μm、t=1.74μm
4) N=5、t=0.16μm、t=1.31μm
5) N=6、t=0.13μm、t=1.04μm
6) N=7、t=0.11μm、t=0.87μm
7) N=8、t=0.10μm、t=0.75μm
8) N=9、t=0.09μm、t=0.65μm
9) N=10、t=0.08μm、t=0.58μm
10) N=11、t=0.07μm、t=0.52μm
導波路の製造工程は、第1の実施形態と同じである。
【0105】
各出力ポートでのTEモードに比較したTMモードの波長シフトのポート間ばらつきは、Nが2で、0.005nmであり、│Bs│が所定値より2.5x10 4 大きくなっている。これは、従来構造の電磁界分布に比較して波形のひずみが大きいためである。総層数5以上では、ポート間ばらつきは、0.003nmであり、所定の│Bs│に対して1.5x10 4 以内で設定できていることがわかる。これより、総層数は、5以上にすることが望ましい。
【0106】
[実施形態7]
本発明の第7の実施形態は、単一モード導波路、マルチモード導波路、及びスラブ導波路の3種類の異なる幅の光導波路により構成される導波型光回路であり、単一モード導波路、マルチモード導波路、スラブ導波路の順に構造複屈折が大きくなる多層構造を適用したものである。導波型光回路は、図1に示すアレイ導波路格子101、及び図8に示すMMIを光結合器に用いたマッハ・ツェンダー干渉計801にて構成している。
【0107】
以下、参考例として、導波型光回路をマッハ・ツェンダー干渉計で構成したものについて説明する。
図8(a)は、マッハ・ツェンダー干渉計801の構成を示す図で、光結合器であるMMI802と、2つのMMIを繋ぐ光導波路803と、一方のMMIと繋がる入力導波路804と、他方のMMIと繋がる出力導波路805とで構成されている。図8(b)は、MMI811の構成を示す図で、マルチモード導波路812とその一方の端に接続される入力導波路813と他方の端に接続される出力導波路814より構成されている。
【0108】
コアの平均比屈折率差Δ aveを0.75%、コア高さを6μmとし、単一モード導波路のコア幅は6μm、マルチモード導波路のコア幅は24μm、スラブ導波路の幅を2mmとした。多層構造による複屈折の大きさ│Bs│は、単一モード導波路で、2.3x10 4、マルチモード導波路で5x10 4、スラブ導波路で1.1x10 3となるように、多層構造を(1)〜(3)式を用いて各層の比屈折率差Δ 、層厚t、層数Nを以下の値に設定した。補正係数は、単一モード導波路でc=0.8、c=0、マルチモード導波路でc=0.97、c=0、スラブ導波路でc=1、c=0とした。
【0109】
単一モード導波路:
第1コア Δ =2%、t=0.45μm、N=5
第2コア Δ =0%、t=0.94μm、N=4
マルチモード導波路:
第1コア Δ =3.1%、t=0.28μm、N=5
第2コア Δ =0%、t=1.15μm、N=4
スラブ導波路:
第1コア Δ =5.5%、t=0.16μm、N=5
第2コア Δ =0%、t=1.31μm、N=4
導波型光回路は、第4の実施形態と同様の手順で作製し、スラブ導波路、マルチモード導波路、単一モード導波路の順にコアを形成した。
【0110】
作製した導波型光回路のマッハ・ツェンダー干渉計の特性は、波長シフトが従来の0.25nmから0.01nm、TEモードとTMモードのピーク波長の損失差が従来の0.2dBから0.03dB以下となり、アレイ導波路格子の特性は各出力ポートでのTEモードに対するTMモードの波長シフト量は、従来の±0.13nm以内(出力ポート間ばらつき0.02nm)から±0.01nm以内(出力ポート間のばらつきは0.002nm)と低減した。これにより、単一モード導波路、マルチモード導波路及びスラブ導波路より構成される導波型光回路に、それぞれ適切な多層構造を適用することで、偏波依存性を低減できることが確認できた。
【0111】
[実施形態8]
本発明の第8の実施形態は、3種類の異なる比屈折率差を有する層をほぼ交互に多層化したコア構造である。
【0112】
図9は、本発明における第8の実施形態のスラブ導波路の断面図を示す図で、基板901にシリコン基板を用い、クラッド902及びコア903は石英系ガラスにより形成している。コア903は、第1コア903a、第2コア903b、及び第3コア903cを、基板側より第1コア903a、第2コア903b、第3コア903c、膜厚が1/2の第2コア903b、第1コア903a、膜厚が1/2の第2コア903b、第3コア903c、第2コア903b、第1コア903aの順で積層した構造であり、コア中央層に対して各層を対称に配置した。
【0113】
コアの平均比屈折率差Δ aveを0.75%、コア厚を6μm、第1コア903aの比屈折率差Δ を6%、第2コア903bの比屈折率差Δ を5%、第3コア903bの比屈折率差Δ を0%とし、多層構造による構造複屈折│Bs│が1.1x10 3となる各層の層厚を、実施の形態5で求めた補正係数c=1、c=0を用いた(1)〜(3)式により次のように設定し、図1に示すアレイ導波路格子を作製した。製造工程は、第1の実施形態と同様である。
【0114】
第1コア層903a、Δ =6%、t=0.12μm、N=3
第2コア層903b、Δ =5%、t=0.14μm、N=4
(膜厚が1/2の第2コア層903bの膜厚は0.07μm、
=6は、膜厚が1/2の2層を含む)
第3コア層903b、Δ =0%、t=2.61μm、N=2
作製したアレイ導波路格子の各出力ポートでのTEモードに比較したTMモードの波長シフト量は、±0.01nm以内(出力ポート間のばらつきは0.003nm)であった。3種類の異なる屈折率層をほぼ交互に配置した構造でも偏波依存性を解消した導波型光回路を実現できることを確認した。
【0115】
3種類の異なる比屈折率差の層を交互に配置して多層構造を構成する利点は、2種類の異なる比屈折率差の層を交互に配置して多層構造を構成するのに比べて、比屈折率差、膜厚の選択の自由度が上がることである。コアの平均比屈折率差と多層構造による構造複屈折│Bs│は、主に、多層構造を構成する層の比屈折率差と膜厚により決まる。2種類の層の交互層で構成する場合、多層構造を規定するパラメータは、2種類の比屈折率差と2種類の膜厚であり、その内の1つを設定すると、平均比屈折率差と構造複屈折│Bs│が決まっているため、他の3つの値が自動的に設定される。3種類の層の交互配置で構成する場合、多層構造を規定するパラメータは、6種類であり、その内の3つを定めると、平均比屈折率差と│Bs│が決まっているため、他の3つの値が決まる。それゆえ、例えば、2種類の層の交互配置では、第1〜第7の実施形態のように、第2コアの比屈折率差を0%に設定したため、第1コアの比屈折率差、第1コア及び第2コアの膜厚が自動的に決まった。3種類の層の交互配置では、各層の比屈折率差を設定すれば、各層の膜厚が自動的に決まる。
【0116】
すなわち、比屈折率差を適当に選択することができる。これは、作製精度を出しにくいパラメータがある場合、例えば、所定の3種類の比屈折率差にしか設定できない場合、膜厚を高い精度に設定できれば、適切な構造複屈折を与えることができ、複屈折を低減できる利点がある。別の利点として、石英系光導波路においては、光誘起屈折率変化を効率よく生じさせることができる。GeOを高濃度に添加した石英系ガラスは、高い光誘起屈折率を得ることができる。それゆえ、3種類の層の交互配置において、GeOを高濃度に添加した層、すなわち、比屈折率の高い層を設定し、構造複屈折の値は膜厚により調整すれば良い。
【0117】
本発明は、コアの平均比屈折率差、寸法、多層構造による構造複屈折値を、コアの各層の比屈折率差、厚さ、層数により調整すれば良い。それゆえ、上述した実施形態のコアの平均比屈折率差、寸法、多層構造による複屈折値、コアの各層の比屈折率差、厚さ、層数に限定されるものでない。
【0118】
本発明における導波路アレイ等に用いている単一モード導波路は、2モード程度の導波路で、回路内ではおおよそ単一モード導波路として機能する疑似単一モード導波路を含むこととする。
【0119】
上述した実施形態では、スラブ導波路を用いた導波型光回路として、アレイ導波路格子を用いたが、これに限定されるものでなく、スターカップラ等に適用できる。
【0120】
また、上述した実施形態では、多層構造による構造複屈折値を、従来のコア構造で生じる導波路複屈折値にほぼ等しくなるようにしたが、従来のコア構造で生じる導波路複屈折値の2倍未満の値であれば、少なくとも従来のものよりも光導波路の複屈折を低減でき、光回路の偏波依存性を低減できる。
【0121】
また、上述した実施形態では、火炎堆積法によりコア形成したが、作製法に限定されるものでなく、他の石英ガラスによる多層構造を形成できる手段、例えば、スパッタ、プラズマCVD、ECR−CVDなどにより形成しても導波路複屈折を低減・解消できる。また、屈折率を調整するのにGeOを用いたが、屈折率を所望の値に設定できれば良いので、TiO等、他のドーパントを適用しても良い。さらに、導波路材料として石英系ガラスを用いたが、屈折率の異なる層を多層化できれば良く、他のガラス系材料、高分子材料なども適用できる。
【0122】
本実施形態の層数では、単一モード導波路と光ファィバとの接続損失を0.1〜0.3dB程度低減でき、層数が少ない方が小さな値となる。作製した光回路の回路としての過剰損失は、従来と同程度である。それゆえ、層数を適切に選択することで、回路特性を損なわずに、入出力導波路を伝搬する光のスポットサイズを光ファイバに近づけることができ、光ファィバとの接続損失を低減することができる。
【0123】
また、上述した実施形態では、屈折率の異なる数種類の層をほぼ交互に配置した多層構造としたが、これに限定されるものでなく、クラッド側の層からコア中心に向かって屈折率が高くなるグレーデッドインデックス構造等にも適用できる。交互に配置の場合、光は、応力による複屈折分布の平均的な値を感じ、その大きさは従来の光導波路構造での導波路複屈折とほぼ同程度になっていたが、グレーデッドインデックスの場合、コア中央付近の層で電界分布が強くなるためコア内に顕著な応力分布がある場合に、上述した実施形態の補正係数cをそのまま用いることができなくなる。それゆえ、数種類の適当な構造を作製し、それにフィットするような補正係数c、cを見積もる必要がある。
【0124】
【発明の効果】
以上説明したように本発明によれば、スラブ導波路の導波路複屈折を低減でき、スラブ導波路の導波路複屈折により生じていた偏波依存性を低減でき、特にアレイ導波路格子の各出力ポートの波長シフトを一様とすることができる。また、従来の偏波依存性低減技術と組み合わせることで、偏波依存性の低減限界を下げることができ、高性能な導波型光回路を提供することができる。これは、光合分波器では、光合分波器を通過する信号の損失やクロストークの揺らぎを低減することであり、光WDM技術を用いた光通信システムにおける信号の信頼性を高めることになる。
【図面の簡単な説明】
【図1】従来のアレイ導波路格子の構成図である。
【図2】従来のスラブ導波路及び導波路アレイの断面図である。
【図3】従来のアレイ導波路格子における各出力ポートの波長シフトを示すグラフである。
【図4】本発明の導波型光回路の第1、第2、第4の実施形態を示す断面図である。
【図5】第1の実施形態によるアレイ導波路格子における各出力ポートの波長シフトを示すグラフである。
【図6】本発明の導波型光回路の第3の実施形態を示す断面図である。
【図7】本発明の第5の実施形態を説明するための多層構造のコアにおける第1コアの比屈折率差Δ1に対する多層構造による複屈折の大きさ│Bs│のグラフである。
【図8】(a)はマッハ・ツェンダー干渉計、(b)はマルチモード干渉型光結合器を示す図である。
【図9】本発明の第8の実施形態を示す断面図である。
【符号の説明】
101 アレイ導波路格子
102 スラブ導波路
103 導波路アレイ
104 入力導波路
105 出力導波路
201 基板
202 クラッド
203 コア(スラブ導波路)
204 コア(単一モード導波路)
401 基板
402 クラッド
403 コア(スラブ導波路)
404 コア(単一モード導波路)
403a,404a 第1コア
403b,404b 第2コア
601 基板
602 クラッド
603 コア(スラブ導波路)
604 コア(単一モード導波路)
603a,604a 第1コア
603b,604b 第2コア
801 マッハ・ツェンダー干渉計
802 マルチモード干渉型光結合器(MMI)
803 光導波路
804 入力導波路
805 出力導波路
811 マルチモード干渉型光結合器(MMI)
812 マルチモード導波路
813 入力導波路
814 出力導波路
901 基板
902 クラッド
903 コア
903a 第1コア
903b 第2コア
903c 第3コア

Claims (14)

  1. 基板上に形成され、ガラス系材料あるいは高分子材料からなるクラッド及びコアを有し、該コアは前記クラッドで覆われているスラブ導波路を備えたアレイ導波路格子を構成する導波型光回路であって、
    前記スラブ導波路のコアの少なくとも一部は、基板面に平行で、少なくとも3層以上からなり、隣接する層の屈折率が異なる多層構造であるとともに、該多層構造による構造複屈折がその他の導波路複屈折を補償するように、前記多層構造の層方向が形成され、かつ該多層構造による構造複屈折の大きさが、その他の導波路複屈折による導波路複屈折値の大きさの2倍未満であることを特徴とする導波型光回路。
  2. 前記基板がシリコン基板であり、光導波路が石英系ガラスで作製されたことを特徴とする請求項1に記載の導波型光回路。
  3. 基板上に形成され、ガラス系材料あるいは高分子材料からなるクラッド及びコアを有し、該コアは前記クラッドで覆われているスラブ導波路を備えたアレイ導波路格子を構成する導波型光回路であって、
    前記スラブ導波路のコアの少なくとも一部は、基板面に垂直で、少なくとも3層以上からなり、隣接する層の屈折率が異なる多層構造であり、層の界面はスラブ導波路の入力中央と出力中央とを結ぶ線分と平行であるとともに、該多層構造による構造複屈折がその他の導波路複屈折を補償するように、前記多層構造の層方向が形成され、かつ該多層構造による構造複屈折の大きさが、その他の導波路複屈折による導波路複屈折値の大きさの2倍未満であることを特徴とする導波型光回路。
  4. 前記基板が石英基板であり、光導波路が石英系ガラスで作製されたことを特徴とする請求項3に記載の導波型光回路。
  5. 前記アレイ導波路格子の導波路アレイに複屈折補償器を設けたことを特徴とする請求項1乃至4のいずれかに記載の導波型光回路。
  6. 前記複屈折補償器はλ/2波長板を用いた複屈折補償器であることを特徴とする請求項5に記載の導波型光回路。
  7. 前記多層構造のコアの少なくとも1つは、コア内で屈折率分布が均等となるように、屈折率の異なる層を交互に配置したことを特徴とする請求項1乃至6のいずれかに記載の導波型光回路。
  8. 前記多層構造のコアの少なくとも1つは、各層の屈折率及び各層の厚さが中央の層に対して対称となるように配置したことを特徴とする請求項1乃至7のいずれかに記載の導波型光回路。
  9. 前記多層構造コアの少なくとも1つは、各層の屈折率が、クラッドと接する両端の層からコア内部側層に向かって高くなるように各層を配列したことを特徴とする請求項1乃至6、8のいずれかに記載の導波型光回路。
  10. 前記多層構造のコアの少なくとも1つの総層数が、5層〜10層であることを特徴とする請求項1乃至9のいずれかに記載の導波型光回路。
  11. 複屈折補償器を設けたことを特徴とする請求項7乃至10のいずれかに記載の導波型光回路。
  12. 前記複屈折補償器はλ/2波長板を用いた複屈折補償器であることを特徴とする請求項11に記載の導波型光回路。
  13. 前記導波路の複屈折の値は1.5×10 −4 以下であることを特徴とする請求項1乃至11のいずれかに記載の導波型光回路。
  14. 前記多層構造により生じる構造複屈折の値が、以下の式(1),(2)を満たす構成であることを特徴とする請求項1乃至11のいずれかに記載の導波型光回路。
    Figure 0003679037
    Figure 0003679037
    ただし、B は多層構造により生じる構造複屈折の値、Nは多層構造の層数、n 、t はそれぞれ各層の屈折率と厚さ、c 、c は、実測または計算によって導波路構造ごとに定まる定数である。
JP2001241369A 2000-12-22 2001-08-08 導波型光回路 Expired - Lifetime JP3679037B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001241369A JP3679037B2 (ja) 2000-12-22 2001-08-08 導波型光回路
US10/026,084 US6580862B2 (en) 2000-12-22 2001-12-21 Optical waveguide circuit
EP01130706A EP1219983B1 (en) 2000-12-22 2001-12-21 Polarization independent optical waveguide circuit
DE60135822T DE60135822D1 (de) 2000-12-22 2001-12-21 Polarisationsunabhängige optische Wellenleiteranordnung

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-391100 2000-12-22
JP2000391100 2000-12-22
JP2001241369A JP3679037B2 (ja) 2000-12-22 2001-08-08 導波型光回路

Publications (2)

Publication Number Publication Date
JP2002250829A JP2002250829A (ja) 2002-09-06
JP3679037B2 true JP3679037B2 (ja) 2005-08-03

Family

ID=26606416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001241369A Expired - Lifetime JP3679037B2 (ja) 2000-12-22 2001-08-08 導波型光回路

Country Status (1)

Country Link
JP (1) JP3679037B2 (ja)

Also Published As

Publication number Publication date
JP2002250829A (ja) 2002-09-06

Similar Documents

Publication Publication Date Title
US6580862B2 (en) Optical waveguide circuit
JP2843222B2 (ja) 光デバイス
JP3784720B2 (ja) 導波路型光干渉計
JP3177563B2 (ja) 光導波路装置と集積光導波路マルチプレクサ/ディマルチプレクサ装置
JP2005010805A6 (ja) 導波路型光干渉計
JP4190733B2 (ja) アレイ導波路回折格子型光合分波器
JP4675336B2 (ja) 導波路型可変光減衰器
CN111226147B (zh) 中阶梯光栅复用器或解复用器
US6778278B2 (en) Temperature insensitive Mach-Zehnder interferometers and devices
JP3679036B2 (ja) 導波型光回路
JP2003050327A (ja) 光導波路装置及びその製造方法
KR100563489B1 (ko) 실리카/폴리머 하이브리드 광도파로를 이용한 광소자
JP3679037B2 (ja) 導波型光回路
JP2003207665A (ja) 光導波路
JP3963255B2 (ja) 光導波路
JP3682000B2 (ja) 導波路型光合分波回路
JP4375256B2 (ja) 導波路型温度無依存光合分波器
JP3746776B2 (ja) 導波路型光波長合分波器
JP3941613B2 (ja) 光導波回路および光導波回路モジュール
JP3249960B2 (ja) アレイ格子型光合分波器
JPH11119043A (ja) 光導波回路およびその製造方法
JP2001221924A (ja) 光導波路およびそれを用いた光回路
JP2001066446A (ja) アレイ導波路型回折格子
JP2000241635A (ja) 光波長合分波器
JP2001116939A (ja) アレイ導波路回折格子

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050511

R151 Written notification of patent or utility model registration

Ref document number: 3679037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term