[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3677947B2 - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP3677947B2
JP3677947B2 JP17623997A JP17623997A JP3677947B2 JP 3677947 B2 JP3677947 B2 JP 3677947B2 JP 17623997 A JP17623997 A JP 17623997A JP 17623997 A JP17623997 A JP 17623997A JP 3677947 B2 JP3677947 B2 JP 3677947B2
Authority
JP
Japan
Prior art keywords
combustion
ratio
fuel
equivalence ratio
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17623997A
Other languages
Japanese (ja)
Other versions
JPH1122508A (en
Inventor
初雄 永石
隆正 上田
岩野  浩
祐樹 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP17623997A priority Critical patent/JP3677947B2/en
Priority to KR1019980025490A priority patent/KR100317159B1/en
Priority to DE69838199T priority patent/DE69838199T2/en
Priority to EP98112067A priority patent/EP0889218B1/en
Priority to US09/108,409 priority patent/US6058905A/en
Publication of JPH1122508A publication Critical patent/JPH1122508A/en
Application granted granted Critical
Publication of JP3677947B2 publication Critical patent/JP3677947B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、機関の運転条件に応じて均質燃焼と成層燃焼とを切り換える内燃機関において、該燃料切換時の燃料噴射制御技術に関する。
【0002】
【従来の技術】
近年、直噴火花点火式内燃機関が注目されており、このものでは、機関の運転条件に応じて、燃焼方式を切換制御、すなわち、吸気行程にて燃料を噴射することにより、燃焼室内に燃料を拡散させ均質の混合気を形成して行う均質燃焼と、圧縮行程にて燃料を噴射することにより、点火栓回りに集中的に層状の混合気を形成して行う成層燃焼とに切換制御するのが一般的である(特開昭59−37236号公報参照)。
【0003】
上記燃焼切換を行なう機関において、機関の回転速度と負荷(トルク) に基づいて燃焼領域を設定したマップに、成層燃焼領域と均質燃焼領域に挟まれる領域に、燃料を吸気行程と圧縮行程との2回に分けて噴射する弱成層燃焼領域を設定するようにしたものがある。
すなわち、成層燃焼領域と均質燃焼領域とを切換時にトルク段差がつかないように当量比を連続的に設定して隣接させると、両領域の境界付近では当量比がいずれの燃焼にも適合しなくなり、境界付近の成層燃焼領域では点火栓周りが過剰にリッチとなって失火やスモークの増大を生じ、一方境界付近の均質燃焼領域では均質混合気が過剰にリーンとなって失火が発生したり燃焼が不安定となったりする。
【0004】
そこで、成層燃焼領域と均質燃焼領域との間に設定した領域で、点火時期の設定等により基本的には成層燃焼を行い、燃料噴射を吸気行程と圧縮行程との2回に分けて噴射する構成としており、これにより、点火栓周りの混合比が過剰にリッチとなることを抑制しつつ成層燃焼を行って失火やスモークの増大を抑制すると同時に、均質燃焼による失火や燃焼不安定の発生も抑制できる。
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来の燃料噴射分割方式では、前記特定した弱成層燃焼領域において定常状態でも2回に分けて噴射する方式であるため、以下のような問題を生じていた。
噴射を2回に分けると1回当たりの噴射量が減少するため、燃料噴射弁のオフセット誤差(パルス幅−燃料量特性のドリフト分) が大きくなり、1回噴射方式に比較して空燃比制御精度が低下し、排気エミッション特性,運転性が悪化する。
【0007】
吸気行程で噴射される燃料量が少ないため均質混合気が過剰にリーンで成層燃焼での燃焼火炎が消炎してしまい、HC(未燃燃料) の排出量が増加する。特に低負荷域で分割噴射すると2回目の噴射で可燃混合気を形成するため、1回目は多く噴けないので均質部分が超希薄となり、この傾向が増大する。定常運転時も分割噴射を行うため、高電圧昇圧方式の燃料噴射弁を駆動するドライブユニットの発熱量が増大し、発熱容量を満たすように2系統とするとユニットが高価についてしまう。
本発明は、このような従来の課題に着目してなされたもので、燃焼切換時の当量比制御と分割噴射とを適切に併用することにより、上記問題点を解消した内燃機関の燃料噴射制御装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
このため、請求項1に係る発明は図1に示すように、
シリンダ内に燃料を噴射供給する直接噴射式内燃機関において、
機関の運転状態を検出する運転状態検出手段と、
検出された運転状態に基づいて、吸気行程で比較的リッチな当量比となるように燃料を供給する均質燃焼条件と、圧縮行程で比較的リーンな当量比となるように燃料を供給する成層燃焼条件とを判別する燃焼条件判別手段と、
前記均質燃焼条件と成層燃焼条件との判別が切り換わったときに、前記リッチな当量比とリーンな当量比との間で当量比を徐々に切り換える当量比切換手段と、
前記当量比切換手段によって徐々に切り換えられる当量比が、切換前の燃焼条件における限界の当量比に対し所定値以上の偏差を有してから、切換後の燃焼条件における限界の当量比に対し所定値以下の偏差となるまでの間、吸気行程と圧縮行程との両方に分けて燃料を供給する燃料分割供給手段と、
を含んで構成したことを特徴とする。
【0010】
また、請求項2に係る発明は、
前記当量比切換手段は、当量比を時間の経過とともに徐々に切り換えることを特徴とする。
上記の請求項1又は請求項2の発明において、機関の運転状態、例えば回転速度と負荷とに基づいて均質燃焼条件と成層燃焼条件とを判別し、該判別が切り換わったときは、当量比を均質燃焼条件における比較的リッチな当量比と成層燃焼条件における比較的リーンな当量比との間で、徐々に時間を掛けて切り換える。
このように均質燃焼と成層燃焼との切換時に、時間を掛けた当量比の切換によってトルク段差の発生を回避できるため、均質燃焼領域と成層燃焼領域とを当量比に差をつけて隣接させることができ、この結果、均質燃焼領域と成層燃焼領域との境界付近においても、それぞれ安定した燃焼が得られ、空燃比精度を高く維持でき、失火の発生やスモークの増大を抑制できる。
【0011】
そして、該当量比を切り換える過渡時に吸気行程と圧縮行程とに分割して燃料を噴射する構成として、点火栓周辺の混合比を適度にリッチ状態に維持しつつ、その外側に均質な混合気を形成して燃焼させることにより、空燃比の燃焼限界が拡がり、失火を防止しつつ安定した燃焼を得ることができる。
また、前記分割噴射時に吸気行程での噴射により形成された燃料均質混合気が希薄になり過ぎることがあるとしても、切換時に一時的に発生するだけであり、従来のように定常的な分割噴射によるHCの増大も抑制できる。
【0012】
また、分割噴射が一時的に行うものであるため、ドライブユニットの発熱量の増大も抑制でき、定常的に分割噴射する場合のように昇圧系統を2系統設ける必要もなく、安価なユニットを使用できる。
【0015】
また、分割噴射の実行条件を、切換前後の燃焼条件における当量比に対して所定値以上の偏差を持たせて規定したことにより、より適切な範囲で分割噴射を実行して、確実に可燃混合気を形成することができ、リッチ過剰やリーン過剰による失火を防止でき、安定燃焼を確保できる。
また、請求項3に係る発明は、均質燃焼条件が理論空燃比での燃焼である場合、該理論空燃比相当の当量比に対し、前記所定値は機関回転速度に基づいて設定されることを特徴とする。
【0016】
均質燃焼のリーン限界当量比は、機関回転速度によって定まるため、機関回転速度によって分割噴射を実行する当量比を規定する偏差を設定することで、さらに適切な範囲で分割噴射を実行することができる。
また、請求項4に係る発明は、
シリンダ内に燃料を噴射供給する直接噴射式内燃機関において、
機関の運転状態を検出する運転状態検出手段と、
検出された運転状態に基づいて、吸気行程で比較的リッチな当量比となるように燃料を供給する均質燃焼条件と、圧縮行程で比較的リーンな当量比となるように燃料を供給する成層燃焼条件とを判別する燃焼条件判別手段と、
前記均質燃焼条件と成層燃焼条件との判別が切り換わったときに、前記リッチな当量比とリーンな当量比との間で当量比を加重平均により遅れ処理して徐々に切り換える当量比切換手段と、
前記当量比切換手段における加重平均の現在値に対する重みを、機関回転速度とスロットル開度とに基づいて設定する重み設定手段と、
前記当量比切換手段による当量比の切り換え期間中の少なくとも所定期間、吸気行程と圧縮行程との両方に分けて燃料を供給する燃料分割供給手段と、
を含んで構成したことを特徴とする。
【0017】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。
図2は実施の一形態を示す直噴火花点火式内燃機関のシステム図である。
車両に搭載される内燃機関1の各気筒の燃焼室には、エアクリーナ2から吸気通路3により、電制スロットル弁4の制御を受けて、空気が吸入される。
【0018】
電制スロットル弁4は、コントロールユニット20からの信号により作動するステップモータ等により開度制御される。
そして、燃焼室内に燃料(ガソリン)を直接噴射するように、電磁式の燃料噴射弁(インジェクタ)5が設けられている。
燃料噴射弁5は、コントロールユニット20から機関回転に同期して吸気行程又は圧縮行程にて出力される噴射パルス信号によりソレノイドに通電されて開弁し、所定圧力に調圧された燃料を噴射するようになっている。そして、噴射された燃料は、吸気行程噴射の場合は燃焼室内に拡散して均質な混合気を形成し、また圧縮行程噴射の場合は点火栓6回りに集中的に層状の混合気を形成し、コントロールユニット20からの点火信号に基づき、点火栓6により点火されて、燃焼(均質燃焼又は成層燃焼)する。尚、燃焼方式は、当量比制御との組合わせで、均質ストイキ燃焼、均質リーン燃焼(空燃比20〜30)、成層リーン燃焼(当量比40程度)に分けられる。
【0019】
機関1からの排気は排気通路7より排出され、排気通路7には排気浄化用の触媒8が介装されている。
コントロールユニット20は、CPU、ROM、RAM、A/D変換器及び入出力インターフェイス等を含んで構成されるマイクロコンピュータを備え、各種のセンサから信号が入力されている。
【0020】
前記各種のセンサとしては、エンジン1のクランク軸又はカム軸回転を検出するクランク角センサ21,22が設けられている。これらのクランク角センサ21,22は、気筒数をnとすると、クランク角720°/n毎に、予め定めたクランク角位置(各気筒の圧縮上死点前の所定クランク角位置)で基準パルス信号REFを出力すると共に、1〜2°毎に単位パルス信号POSを出力するもので、基準パルス信号REFの周期などからエンジン回転数Neを算出可能である。
【0021】
この他、吸気通路3のスロットル弁4上流で吸入空気流量Qaを検出するエアフローメータ23、アクセル開度(アクセルペダルの踏込み量)ACCを検出するアクセルセンサ24、スロットル弁4の開度TVOを検出するスロットルセンサ25(スロットル弁4の全閉位置でONとなるアイドルスイッチを含む)、エンジン1の冷却水温Twを検出する水温センサ26、排気通路7にて排気当量比のリッチ・リーンに応じた信号を出力するO2 センサ27、車速VSPを検出する車速センサ28などが設けられている。
【0022】
ここにおいて、コントロールユニット20は、前記各種のセンサからの信号を入力しつつ、内蔵のマイクロコンピュータにより、所定の演算処理を行って、電制スロットル弁4によるスロットル開度、燃料噴射弁5による燃料噴射量、及び、点火栓6による点火時期を制御する。
次に、本発明の第1の実施形態に係る燃焼切換時の制御機能を、図3のブロック図を参照して説明する。
【0023】
均質当量比設定部Aは、機関の回転速度,負荷等の運転条件に基づいて均質燃焼時における当量比を設定する。
同様に成層当量比設定部Bは、機関の回転速度,負荷等の運転条件に基づいて成層燃焼時における当量比を設定する。
均質/成層判定部Cは、機関の運転条件に基づいて均質燃焼,成層燃焼のいずれを行なうべきかを判定する。
【0024】
切換部Dは、前記均質/成層判定部の判定結果に基づいて、均質当量比設定部又は成層当量比設定部のいずれかで設定された当量比に切り換えて設定する。
遅延部Eは、切換部Dから出力された当量比を遅れ処理する。これは、燃焼の切換に応じて当量比をステップ的に切り換えると、吸入空気量の切換後の遅れによりトルク段差を生じるため、当量比を空気量の遅れに合わせて徐々に変化させることにより、トルクを滑らかに変化させるためである。
【0025】
燃料噴射量算出部Fは、吸入空気量,機関回転速度,前記遅れ処理された当量比を基本とし、水温や当量比フィードバック補正係数等による各種補正を施して燃料噴射量を算出する。
配分率算出部Gは、切換部D,遅延部Eのいずれかの当量比に基づいて、燃焼切換時の吸気行程で噴射される均質燃焼用の燃料噴射量と、圧縮行程で噴射される成層燃焼用の燃料噴射量との配分率を算出する。
【0026】
吸気行程噴射量算出部H及び圧縮行程用噴射量算出部Iは、前記燃料噴射量算出部Fで算出された一行程当たりの総燃料噴射量を、配分率算出部Gで算出された配分率に基づいて、吸気行程での燃料噴射量と圧縮行程での燃料噴射量とに配分する。
均質噴射時期算出部J,成層噴射時期算出部Kは、それぞれ均質燃焼時の燃料噴射時期、成層燃焼時の燃料噴射時期を算出する。
【0027】
噴射パルス生成部Lは、前記均質燃焼噴射時期算出部Jで算出された均質燃焼用の噴射時期に前記吸気行程での燃料噴射量に対応したパルス幅の燃料噴射パルスを生成し、同様に前記成層燃焼噴射時期算出部Kで算出された成層燃焼用の噴射時期に前記圧縮行程での燃料噴射量に対応したパルス幅の燃料噴射パルスを生成する。
【0028】
これにより、燃焼切換時には、前記配分率で吸気行程と圧縮行程とに前記配分率で配分された量の燃料が噴射され、二回噴射が行なわれる。
次に、前記燃料噴射量の配分率を設定するルーチンを、図4のフローチャートに従い、図5のタイムチャートを参照しつつ説明する。このルーチンは、所定時間例えば10ms毎に実行される。
【0029】
ステップ1では機関の回転速度,負荷等の運転条件に基づいて、成層燃焼,均質燃焼のいずれかを選択する(均質/成層判定部) 。
ステップ2では、いずれの燃焼が選択されたかを判定する(切換部) 。
ステップ2で成層燃焼が選択された場合は、ステップ4へ進んで成層燃焼用の当量比をマップからの検索等により算出する(成層当量比算出部) 。
【0030】
ステップ2で均質燃焼が選択された場合は、ステップ3へ進んで均質燃焼用の当量比をマップからの検索等により算出する(均質当量比算出部) 。
ステップ5では、前記算出された当量比を遅れ処理するときの加重平均の現在値に対する重みFloadを、機関の運転条件例えば機関回転速度Nとスロットル弁開度TVOとに基づいてマップ(図6参照) からの検索等により算出する。
【0031】
ステップ6では、前記重みFloadを用いて、当量比Tφdを次式により加重平均して遅れ処理する(遅延部) 。
Tφd=Tφd n ×Fload+Tφd n-1 ×(1−Fload)
例えば、成層燃焼から均質燃焼へ判定が切り換えられると、図5に示すように当量比が成層燃焼用のマップ値から遅れ処理により徐々に増大して均質燃焼用の目標値に近づけられる。
【0032】
図4に戻ってステップ7では、次式により燃料噴射量Teを算出する(燃料噴射量算出部) 。
Te=Tp×Tφd×Ktr×Ktw×Kas×(α+αm)
ここで、Tpは、エアフロメータで検出された吸入空気量Q,機関回転速度Nにより得られる基本燃料噴射量(=kQ/N;kは定数) 、Ktrは過渡補正係数, Ktwは水温補正係数, Kasは始動後増量補正係数, αは空燃比フィードバック補正係数, αmは該空燃比フィードバック補正係数αの学習値である。
【0033】
ステップ8では、成層燃焼用の燃料噴射時期ITS と、均質燃焼用の燃料噴射時期ITH とを、機関の回転速度Nと負荷に基づいて各燃焼毎のマップ(図7, 図8参照) 4からの検索等によって算出する。
ステップ9では、均質燃焼用の燃料噴射時期ITH をセットする。
ステップ10では、前記遅れ処理された当量比Tφdが、均質燃焼時の下限値TφHより所定値α1だけ小さい均質燃焼切換用判定値より大きいか否かを判定する。そして、該判定値より大きいと判定された場合は、ステップ11へ進んで均質燃焼への配分率を100 %とし、ステップ7で算出された燃料噴射量Teを全て吸気行程で噴射して完全な均質燃焼を行なわせる。
【0034】
ステップ10で当量比Tφdが均質燃焼切換用判定値以下であると判定されたときはステップ12へ進み、該当量比Tφdが成層燃焼時の上限値TφSより所定値α2だけ大きい成層燃焼切換用判定値より小さいか否かを判定する。そして、該判定値より小さいと判定された場合は、ステップ13へ進んで均質燃焼への配分率を0%、つまり成層燃焼への配分率を100 %とし、前記燃料噴射量Teを全て圧縮行程で噴射して完全な成層燃焼を行なわせる。
【0035】
また、ステップ12で当量比Tφdが成層燃焼切換用判定値より小さいと判定されたとき、つまり、当量比TφdがTφS+α2<Tφd<TφH−α1の範囲にあるときは、本発明に係る燃焼切換時の状態であって、かつ、吸気行程と圧縮行程とで2回燃料を噴射するときであると判断して、ステップ14以降へ進み2回噴射を実行する。
【0036】
ステップ14では、当量比Tφdを成層燃焼用下限値TφSと均質燃焼用上限値TφHとで内分した比率を次式により算出する。
Tφd内分比=(Tφd−TφS)/(TφH−TφS
なお、当量比Tφdを成層燃焼切換用判定値TφS+α2と、均質燃焼切換用判定値TφH−α1とで内分して、内分比(=0〜1)を算出してもよい。
【0037】
ステップ15では、前記当量比Tφdの内分比に基づいて、前記均質燃焼を基準とする燃料噴射量の配分率を、図9に示したようなテーブルから検索する。該均質燃焼の燃料配分率は、当量比Tφdが増大するほど増大するが、0より相当量大きい最小値から100 %より相当量小さい最大値の範囲に設定される。これは、吸気行程又は圧縮行程での燃料噴射量が小さくなり過ぎると燃料噴射弁による燃料噴射量の精度が維持できなくなるためである。
【0038】
このように、燃焼に切換に応じて当量比を徐々に切り換える期間中に分割噴射を行うことにより、この間の燃焼性を安定させることができ、失火の発生を防止できる。特に、本実施の形態では、当量比の範囲で分割噴射期間を設定し、かつ、切換前後の燃焼の当量比から所定の偏差を有する当量比範囲で設定してあるため、リッチ過剰やリーン過剰となることを防止して確実に安定した燃焼を確保できる。また、アイドル時等でエアコン負荷の投入等により成層燃焼から理論空燃比での均質ストイキ燃焼に切り換えられる場合、該理論空燃比相当の当量比(=1) からの偏差は、機関回転速度に基づいて設定する。均質燃焼のリーン限界当量比は、機関回転速度によって定まるためである。
【0039】
なお、燃焼の切換判断に応じてスロットル弁開度を制御し(例えば図5の例では成層燃焼から均質燃焼への切換判断時にスロットル弁開度を減少制御) 、これに応じてシリンダ吸入空気量が徐々に変化する(図5の例では漸減) 。また、トルクは、吸入空気量の遅れに応じて当量比を徐々に変化させる制御により、略一定に維持される。また、点火時期(進角値) は、分割噴射期間中は基本的に成層燃焼を行うので成層燃焼に合わせて設定しつつ当量比の変化に応じて緩やかに変化させ(図5の例では均質燃焼に近づくにつれて緩やかに遅角) る。そして、分割噴射と1回噴射による均質燃焼への切換に同期してステップ的に変化させ(均質燃焼への切換時に進角) 、均質燃焼時の当量比変化期間中は緩やかに変化させる制御とする。
【0040】
次に、上記のようにして算出された燃料噴射量の配分率に従って実行される燃料噴射制御ルーチンを、図10のフローチャートに従って説明する。このルーチンは、均質燃焼の燃料噴射時期ITH となったときに実行される。ステップ21では、前記配分率が100 %か否かを判定する。100 %でない場合は、ステップ22へ進み同じく配分率が0%か否かを判定する。0%でもない場合は、2回噴射を行なう場合であり、ステップ23以降へ進む。
【0041】
ステップ23では、吸気行程時の燃料噴射量(燃料噴射弁に出力されるパルス幅) Ti1を次式により算出する。
Ti1=Te×配分率+Ts
ここで、Tsは燃料噴射弁の開弁に要する無効噴射分である。
ステップ24では、圧縮行程時の燃料噴射量Ti2を次式により算出する。
【0042】
Ti2=Te×(1−配分率)+Ts
次いでステップ25へ進み、別ルーチンで算出された成層燃焼用の点火時期ADVSをセットする。2回噴射の場合の燃焼は基本的には成層燃焼であるため、成層燃焼用の点火時期ADVSを使用するのである。
ステップ26では、前記吸気行程での燃料噴射時期ITH で燃料噴射量Ti1の噴射が開始される。
【0043】
ステップ27で、成層燃焼用の燃料噴射時期ITS をセットし、ステップ28で前記圧縮行程での燃料噴射量Ti2をセットする。これにより、圧縮行程での成層燃焼用の燃料噴射時期ITS で燃料噴射量Ti2の燃料噴射が開始される。
また、ステップ21で配分率が100 %と判定された場合は完全な均質燃焼を行なう場合であり、ステップ29へ進んで次式に示すように、均質燃焼用の吸気行程で噴射される燃料噴射量Ti1を算出すると共に、成層燃焼用の圧縮行程で噴射される燃料噴射量Ti2を0に設定する。
【0044】
Ti1=Te(×100 %) +Ts
Ti2=0
次いで、ステップ30へ進んで、別ルーチンで算出された均質燃焼用の点火時期ADVHをセットした後、前記ステップ25以降へ進む。これにより、該点火時期で点火を行って均質燃焼を行う。
【0045】
また、ステップ22で配分率が0%と判定された場合は、完全な成層燃焼を行なう場合であり、ステップ31へ進んで次式に示すように、均質燃焼用の吸気行程で噴射される燃料噴射量Ti1を0に設定すると共に、成層燃焼用の圧縮行程で噴射される燃料噴射量Ti2を算出する。
Ti1=0
Ti2=Te(×100 %) +Ts
次いで、ステップ25へ進み、成層燃焼用の点火時期ADVSをセットした後、該点火時期で点火を行ない成層燃焼を行う。
【0046】
図11は、所定時間例えば10ms毎に実行される点火時期算出ルーチンのフローを示し、ステップ31で機関の運転条件例えば機関回転速度Nと基本燃料噴射量Tp等の負荷とに基づいて均質燃焼用の点火時期ADVHを算出し、ステップ32では同様にして成層燃焼用の点火時期ADVSを算出する。
【図面の簡単な説明】
【図1】 本発明の構成を示す機能ブロック図。
【図2】 本発明の一実施形態を示すシステム図。
【図3】 同上の実施形態に係る制御の機能を示すブロック図。
【図4】 同じく分割噴射時における吸気行程と圧縮行程との燃料量の配分率を算出するルーチンを示すフローチャート。
【図5】 同じく成層燃焼から均質燃焼に切り換える場合の各種状態の変化を示すタイムチャート。
【図6】 同じく当量比を変化させるときの加重平均演算の重み付けを設定したマップ。
【図7】 同じく均質燃焼用の点火時期を設定したマップ。
【図8】 同じく成層燃焼用の点火時期を設定したマップ。
【図9】 同じく前記配分率を設定したマップ。
【図10】 同じく燃料噴射制御ルーチンを示すフローチャート。
【図11】 同じく各燃焼用の点火時期を算出するルーチンを示すフローチャート。
【符号の説明】
1 内燃機関
4 電制スロットル弁
5 燃料噴射弁
6 点火栓
20 コントロールユニット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection control technique at the time of fuel switching in an internal combustion engine that switches between homogeneous combustion and stratified combustion in accordance with engine operating conditions.
[0002]
[Prior art]
In recent years, a direct-injection spark-ignition internal combustion engine has attracted attention. In this engine, the fuel is injected into the combustion chamber by switching the combustion method according to the operating conditions of the engine, that is, by injecting fuel in the intake stroke. Is controlled to switch between homogeneous combustion, which is performed by diffusing the gas to form a homogeneous mixture, and stratified combustion, in which fuel is injected in the compression stroke to form a stratified mixture intensively around the spark plug Is generally used (see JP 59-37236 A).
[0003]
In the engine that performs the above-described combustion switching, the fuel is divided into an intake stroke and a compression stroke in a region between the stratified combustion region and the homogeneous combustion region in a map in which the combustion region is set based on the engine speed and load (torque). There is one in which a weakly stratified combustion region that is injected in two times is set.
In other words, if the equivalence ratio is set continuously so that there is no torque step when switching between the stratified combustion region and the homogeneous combustion region, the equivalence ratio will not be suitable for any combustion near the boundary between both regions. On the other hand, in the stratified combustion area near the boundary, the spark plug is excessively rich, causing misfires and increased smoke. On the other hand, in the homogeneous combustion area near the boundary, the homogeneous mixture becomes excessively lean and misfires occur or burns. May become unstable.
[0004]
Therefore, in the region set between the stratified combustion region and the homogeneous combustion region, stratified combustion is basically performed by setting the ignition timing, etc., and the fuel injection is divided into an intake stroke and a compression stroke. With this configuration, stratified combustion is performed while suppressing the mixture ratio around the spark plug from becoming excessively rich to suppress misfire and smoke, and at the same time, misfire and instability of combustion occur due to homogeneous combustion. Can be suppressed.
[0006]
[Problems to be solved by the invention]
However, since the conventional fuel injection split method is a method in which injection is performed twice even in a steady state in the specified weak stratified combustion region, the following problems have occurred.
When the injection is divided into two times, the injection amount per time decreases, so the offset error of the fuel injection valve (pulse width-drift amount of the fuel amount characteristic) becomes larger, and the air-fuel ratio control compared to the single injection method Accuracy decreases and exhaust emission characteristics and operability deteriorate.
[0007]
Since the amount of fuel injected in the intake stroke is small, the homogeneous mixture is excessively lean and the combustion flame in stratified combustion is extinguished, resulting in an increase in the amount of HC (unburned fuel) emissions. In particular, when split injection is performed in a low load region, a combustible air-fuel mixture is formed by the second injection, so that the first injection cannot be performed much, so the homogeneous portion becomes extremely lean, and this tendency increases. Since split injection is performed even during steady operation, the amount of heat generated by the drive unit that drives the fuel injection valve of the high voltage boosting type increases, and if two systems are used to satisfy the heat generation capacity, the unit becomes expensive .
The present invention has been made paying attention to such a conventional problem, and by appropriately combining the equivalence ratio control and the divided injection at the time of combustion switching, the fuel injection control of the internal combustion engine which has solved the above-mentioned problems An object is to provide an apparatus.
[0009]
[Means for Solving the Problems]
For this reason, as shown in FIG.
In a direct injection internal combustion engine that injects fuel into a cylinder,
An operating state detecting means for detecting the operating state of the engine;
Based on the detected operating state, homogeneous combustion conditions for supplying fuel so that a relatively rich equivalent ratio is obtained in the intake stroke, and stratified combustion for supplying fuel so that a relatively lean equivalent ratio is obtained in the compression stroke Combustion condition determining means for determining the condition;
An equivalence ratio switching means for gradually switching the equivalence ratio between the rich equivalence ratio and the lean equivalence ratio when the discrimination between the homogeneous combustion condition and the stratified combustion condition is switched;
Given the equivalent ratio is gradually changed over by the equivalent ratio switching means from a predetermined value or more deviations with respect to the equivalent ratio of the limit in the combustion condition before switching, based on the equivalents ratio of the limit in the combustion condition after switching Fuel split supply means for supplying fuel in both the intake stroke and the compression stroke until the deviation becomes less than the value;
It is characterized by including.
[0010]
The invention according to claim 2
The equivalence ratio switching means is characterized in that the equivalence ratio is gradually switched over time.
In the first or second aspect of the invention, the homogeneous combustion condition and the stratified combustion condition are discriminated based on the operating state of the engine, for example, the rotational speed and the load, and when the discrimination is switched, Is gradually switched over time between a relatively rich equivalent ratio in homogeneous combustion conditions and a relatively lean equivalent ratio in stratified combustion conditions.
In this way, when switching between homogeneous combustion and stratified combustion, it is possible to avoid the occurrence of a torque step by switching the equivalent ratio over time, so the homogeneous combustion area and the stratified combustion area should be adjacent to each other with a difference in equivalent ratio. As a result, stable combustion can be obtained in the vicinity of the boundary between the homogeneous combustion region and the stratified combustion region, the air-fuel ratio accuracy can be maintained high, and the occurrence of misfire and the increase in smoke can be suppressed.
[0011]
In addition, as a configuration in which fuel is injected while being divided into an intake stroke and a compression stroke at the time of switching the corresponding amount ratio, a homogeneous air-fuel mixture is provided outside of the spark plug while maintaining a moderately rich mixture ratio. By forming and burning, the combustion limit of the air-fuel ratio is expanded, and stable combustion can be obtained while preventing misfire.
Also, even if the fuel homogeneous mixture formed by the injection in the intake stroke at the time of the divided injection may become too lean, it is only temporarily generated at the time of switching, and the steady divided injection as in the conventional case. The increase in HC due to can also be suppressed.
[0012]
Further, since the split injection is temporarily performed, it is possible to suppress an increase in the heat generation amount of the drive unit, and it is not necessary to provide two boosting systems as in the case of steady split injection, and an inexpensive unit can be used. .
[0015]
In addition, by defining the execution conditions of split injection with a deviation of a predetermined value or more with respect to the equivalence ratio in the combustion conditions before and after switching, the split injection is executed in a more appropriate range to ensure combustible mixing. Can be formed, can prevent misfiring due to excessive richness or leaning, and can ensure stable combustion.
According to a third aspect of the present invention, when the homogeneous combustion condition is combustion at the stoichiometric air-fuel ratio, the predetermined value is set based on the engine speed with respect to an equivalent ratio corresponding to the stoichiometric air-fuel ratio. Features.
[0016]
Since the lean limit equivalent ratio of homogeneous combustion is determined by the engine rotation speed, it is possible to execute the divided injection in a more appropriate range by setting a deviation that defines the equivalent ratio for executing the divided injection by the engine rotation speed. .
The invention according to claim 4
In a direct injection internal combustion engine that injects fuel into a cylinder,
An operating state detecting means for detecting the operating state of the engine;
Based on the detected operating state, homogeneous combustion conditions for supplying fuel so that a relatively rich equivalent ratio is obtained in the intake stroke, and stratified combustion for supplying fuel so that a relatively lean equivalent ratio is obtained in the compression stroke Combustion condition determining means for determining the condition;
An equivalence ratio switching means for gradually switching the equivalence ratio between the rich equivalence ratio and the lean equivalence ratio by delay processing with a weighted average when the discrimination between the homogeneous combustion condition and the stratified combustion condition is switched; ,
A weight setting means for setting a weight for the current value of the weighted average in the equivalent ratio switching means based on the engine speed and the throttle opening;
A fuel split supply means for supplying fuel to both the intake stroke and the compression stroke for at least a predetermined period during the equivalence ratio switching period by the equivalence ratio switching means;
It is characterized by including.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
FIG. 2 is a system diagram of a direct injection spark ignition type internal combustion engine showing an embodiment.
Air is sucked into the combustion chamber of each cylinder of the internal combustion engine 1 mounted on the vehicle under the control of the electric throttle valve 4 from the air cleaner 2 through the intake passage 3.
[0018]
The opening degree of the electronically controlled throttle valve 4 is controlled by a step motor or the like that is operated by a signal from the control unit 20.
An electromagnetic fuel injection valve (injector) 5 is provided to inject fuel (gasoline) directly into the combustion chamber.
The fuel injection valve 5 is energized to the solenoid by an injection pulse signal output in the intake stroke or the compression stroke in synchronization with the engine rotation from the control unit 20 to open the valve, and injects fuel adjusted to a predetermined pressure. It is like that. In the case of intake stroke injection, the injected fuel diffuses into the combustion chamber to form a homogeneous mixture, and in the case of compression stroke injection, a stratified mixture is intensively formed around the spark plug 6. Based on the ignition signal from the control unit 20, the ignition plug 6 ignites and burns (homogeneous combustion or stratified combustion). The combustion system is divided into homogeneous stoichiometric combustion, homogeneous lean combustion (air-fuel ratio 20 to 30), and stratified lean combustion (equivalent ratio of about 40) in combination with equivalent ratio control.
[0019]
Exhaust gas from the engine 1 is discharged from an exhaust passage 7, and an exhaust purification catalyst 8 is interposed in the exhaust passage 7.
The control unit 20 includes a microcomputer including a CPU, a ROM, a RAM, an A / D converter, an input / output interface, and the like, and signals are input from various sensors.
[0020]
As the various sensors, crank angle sensors 21 and 22 for detecting rotation of the crankshaft or camshaft of the engine 1 are provided. These crank angle sensors 21 and 22 have a reference pulse at a predetermined crank angle position (predetermined crank angle position before compression top dead center of each cylinder) every crank angle 720 ° / n, where n is the number of cylinders. In addition to outputting the signal REF, the unit pulse signal POS is output every 1 to 2 °, and the engine speed Ne can be calculated from the cycle of the reference pulse signal REF.
[0021]
In addition, an air flow meter 23 for detecting the intake air flow rate Qa upstream of the throttle valve 4 in the intake passage 3, an accelerator sensor 24 for detecting an accelerator opening (accelerator pedal depression amount) ACC, and an opening TVO of the throttle valve 4 are detected. The throttle sensor 25 (including an idle switch that is turned on when the throttle valve 4 is fully closed), the water temperature sensor 26 that detects the cooling water temperature Tw of the engine 1, and the exhaust passage 7 according to the rich / lean exhaust equivalence ratio. An O 2 sensor 27 that outputs a signal, a vehicle speed sensor 28 that detects a vehicle speed VSP, and the like are provided.
[0022]
Here, the control unit 20 performs a predetermined calculation process by a built-in microcomputer while inputting signals from the various sensors, so that the throttle opening by the electric throttle valve 4 and the fuel by the fuel injection valve 5 are processed. The injection amount and the ignition timing by the spark plug 6 are controlled.
Next, the control function at the time of combustion switching according to the first embodiment of the present invention will be described with reference to the block diagram of FIG.
[0023]
The homogeneous equivalence ratio setting unit A sets the equivalence ratio at the time of homogeneous combustion based on operating conditions such as engine speed and load.
Similarly, the stratified equivalent ratio setting unit B sets the equivalent ratio during stratified combustion based on operating conditions such as engine speed and load.
The homogeneity / stratification determination unit C determines whether to perform homogeneous combustion or stratified combustion based on the operating conditions of the engine.
[0024]
The switching unit D switches and sets the equivalent ratio set by either the homogeneous equivalence ratio setting unit or the stratified equivalent ratio setting unit based on the determination result of the homogeneity / stratification determination unit.
The delay unit E delays the equivalent ratio output from the switching unit D. This is because, when the equivalence ratio is switched stepwise in accordance with the switching of combustion, a torque step is generated due to the delay after the switching of the intake air amount, so by gradually changing the equivalence ratio according to the delay of the air amount, This is to smoothly change the torque.
[0025]
The fuel injection amount calculation unit F calculates the fuel injection amount by performing various corrections based on the water temperature, the equivalent ratio feedback correction coefficient, and the like based on the intake air amount, the engine rotation speed, and the delayed equivalent ratio.
Based on the equivalence ratio of either the switching unit D or the delay unit E, the distribution ratio calculating unit G is a fuel injection amount for homogeneous combustion injected in the intake stroke at the time of combustion switching and stratification injected in the compression stroke. The distribution ratio with the fuel injection amount for combustion is calculated.
[0026]
The intake stroke injection amount calculation unit H and the compression stroke injection amount calculation unit I calculate the total fuel injection amount per stroke calculated by the fuel injection amount calculation unit F and the distribution rate calculated by the distribution rate calculation unit G. Based on the above, the fuel injection amount in the intake stroke and the fuel injection amount in the compression stroke are distributed.
The homogeneous injection timing calculation unit J and the stratified injection timing calculation unit K calculate the fuel injection timing during homogeneous combustion and the fuel injection timing during stratified combustion, respectively.
[0027]
The injection pulse generation unit L generates a fuel injection pulse having a pulse width corresponding to the fuel injection amount in the intake stroke at the homogeneous combustion injection timing calculated by the homogeneous combustion injection timing calculation unit J. A fuel injection pulse having a pulse width corresponding to the fuel injection amount in the compression stroke is generated at the injection timing for stratified combustion calculated by the stratified combustion injection timing calculation unit K.
[0028]
Thus, at the time of combustion switching, the amount of fuel distributed at the distribution rate is injected into the intake stroke and the compression stroke at the distribution rate, and two injections are performed.
Next, a routine for setting the fuel injection amount distribution rate will be described according to the flowchart of FIG. 4 with reference to the time chart of FIG. This routine is executed every predetermined time, for example, every 10 ms.
[0029]
In step 1, either stratified combustion or homogeneous combustion is selected based on operating conditions such as engine speed and load (homogeneous / stratified determination unit).
In step 2, it is determined which combustion is selected (switching unit).
When stratified combustion is selected in step 2, the routine proceeds to step 4 where the equivalent ratio for stratified combustion is calculated by searching from the map or the like (stratified equivalent ratio calculating section).
[0030]
If the homogeneous combustion is selected in step 2, the process proceeds to step 3 to calculate the equivalent ratio for homogeneous combustion by searching from the map or the like (homogeneous equivalent ratio calculating unit).
In step 5, the weight Fload for the current value of the weighted average when the calculated equivalent ratio is delayed is mapped based on the engine operating conditions such as the engine speed N and the throttle valve opening TVO (see FIG. 6). ) Calculate by searching from.
[0031]
In step 6, using the weight Fload, the equivalence ratio Tφd is weighted and averaged according to the following equation and delayed (delay unit).
Tφd = Tφd n × Fload + Tφd n−1 × (1−Fload)
For example, when the determination is switched from stratified combustion to homogeneous combustion, as shown in FIG. 5, the equivalence ratio gradually increases from the map value for stratified combustion by the delay process and approaches the target value for homogeneous combustion.
[0032]
Returning to FIG. 4, in step 7, the fuel injection amount Te is calculated by the following equation (fuel injection amount calculation unit).
Te = Tp × Tφd × Ktr × Ktw × Kas × (α + αm)
Here, Tp is a basic fuel injection amount (= kQ / N; k is a constant) obtained from an intake air amount Q detected by an air flow meter and an engine speed N, Ktr is a transient correction coefficient, and Ktw is a water temperature correction coefficient. , Kas is a post-startup increase correction coefficient, α is an air-fuel ratio feedback correction coefficient, and αm is a learning value of the air-fuel ratio feedback correction coefficient α.
[0033]
In step 8, the fuel injection timing ITS for stratified combustion and the fuel injection timing ITH for homogeneous combustion are mapped for each combustion based on the engine speed N and load (see FIGS. 7 and 8). It is calculated by searching for
In step 9, the fuel injection timing ITH for homogeneous combustion is set.
In step 10, it is determined whether or not the delayed equivalent ratio Tφd is greater than a determination value for switching to homogeneous combustion that is smaller than a lower limit value TφH during homogeneous combustion by a predetermined value α1. If it is determined that it is greater than the determination value, the routine proceeds to step 11 where the distribution ratio to homogeneous combustion is set to 100%, and the fuel injection amount Te calculated in step 7 is all injected in the intake stroke to complete the process. Make homogeneous combustion.
[0034]
If it is determined in step 10 that the equivalent ratio Tφd is equal to or less than the determination value for homogeneous combustion switching, the process proceeds to step 12, and the determination for stratified combustion switching in which the corresponding amount ratio Tφd is larger by a predetermined value α2 than the upper limit value TφS during stratified combustion. It is determined whether it is smaller than the value. If it is determined that the ratio is smaller than the determination value, the routine proceeds to step 13, where the distribution ratio to homogeneous combustion is set to 0%, that is, the distribution ratio to stratified combustion is set to 100%, and all the fuel injection amounts Te are compressed. To inject completely stratified combustion.
[0035]
When it is determined in step 12 that the equivalent ratio Tφd is smaller than the determination value for stratified combustion switching, that is, when the equivalent ratio Tφd is in the range of TφS + α2 <Tφd <TφH−α1, the combustion switching according to the present invention is performed. In this state, it is determined that it is time to inject fuel twice in the intake stroke and the compression stroke, and the routine proceeds to step 14 and subsequent steps to execute twice injection.
[0036]
In step 14, the ratio obtained by dividing the equivalent ratio Tφd by the lower limit value TφS for stratified combustion and the upper limit value TφH for homogeneous combustion is calculated by the following equation.
Tφd internal ratio = (Tφd−TφS) / (TφH− TφS )
The internal ratio (= 0 to 1) may be calculated by dividing the equivalent ratio Tφd by the stratified combustion switching determination value TφS + α2 and the homogeneous combustion switching determination value TφH−α1.
[0037]
In step 15, based on the internal ratio of the equivalent ratio Tφd, the distribution ratio of the fuel injection amount based on the homogeneous combustion is retrieved from a table as shown in FIG. The fuel distribution ratio of the homogeneous combustion increases as the equivalence ratio Tφd increases, but is set in a range from a minimum value considerably larger than 0 to a maximum value considerably smaller than 100%. This is because the accuracy of the fuel injection amount by the fuel injection valve cannot be maintained if the fuel injection amount in the intake stroke or the compression stroke becomes too small.
[0038]
Thus, by performing split injection during the period in which the equivalence ratio is gradually switched according to switching to combustion, the combustibility during this period can be stabilized, and the occurrence of misfire can be prevented. In particular, in the present embodiment, the split injection period is set in the equivalence ratio range, and is set in the equivalence ratio range having a predetermined deviation from the equivalence ratio of combustion before and after switching. It is possible to ensure that stable combustion is ensured. In addition, when switching from stratified combustion to homogeneous stoichiometric combustion at the stoichiometric air-fuel ratio at the time of idling or the like by turning on an air conditioner load, the deviation from the equivalent ratio (= 1) corresponding to the stoichiometric air-fuel ratio is based on the engine speed. To set. This is because the lean limit equivalent ratio of homogeneous combustion is determined by the engine speed.
[0039]
Note that the throttle valve opening is controlled in accordance with the combustion switching determination (for example, in the example of FIG. 5, the throttle valve opening is controlled to be decreased when switching from stratified combustion to homogeneous combustion is controlled). Gradually changes (in the example of FIG. 5, gradually decreases). Further, the torque is maintained substantially constant by control that gradually changes the equivalence ratio in accordance with the delay in the intake air amount. In addition, since the ignition timing (advance value) basically performs stratified combustion during the divided injection period, it is set according to the stratified combustion, and is gradually changed according to the change in the equivalence ratio (in the example of FIG. It gradually retards as it approaches combustion. Then, the control is changed stepwise in synchronism with the switching to the homogeneous combustion by the split injection and the single injection (advance angle at the time of switching to the homogeneous combustion) and gradually changed during the equivalence ratio changing period at the homogeneous combustion. To do.
[0040]
Next, a fuel injection control routine executed in accordance with the fuel injection amount distribution rate calculated as described above will be described with reference to the flowchart of FIG. This routine is executed when the fuel injection timing ITH for homogeneous combustion is reached. In step 21, it is determined whether or not the distribution ratio is 100%. If it is not 100%, the process proceeds to step 22 where it is determined whether or not the distribution rate is 0%. When it is not 0%, it is a case where injection is performed twice, and the process proceeds to step 23 and thereafter.
[0041]
In step 23, the fuel injection amount (pulse width output to the fuel injection valve) Ti1 during the intake stroke is calculated by the following equation.
Ti1 = Te × distribution rate + Ts
Here, Ts is an invalid injection amount required for opening the fuel injection valve.
In step 24, the fuel injection amount Ti2 during the compression stroke is calculated by the following equation.
[0042]
Ti2 = Te × (1−allocation ratio) + Ts
Next, the routine proceeds to step 25, where the ignition timing ADVS for stratified combustion calculated in another routine is set. Since the combustion in the case of double injection is basically stratified combustion, the ignition timing ADVS for stratified combustion is used.
In step 26, the injection of the fuel injection amount Ti1 is started at the fuel injection timing ITH in the intake stroke.
[0043]
In step 27, the fuel injection timing ITS for stratified combustion is set, and in step 28, the fuel injection amount Ti2 in the compression stroke is set. Thus, fuel injection of the fuel injection amount Ti2 is started at the fuel injection timing ITS for stratified combustion in the compression stroke.
Further, when it is determined in step 21 that the distribution ratio is 100%, it is a case where complete homogeneous combustion is performed, and the routine proceeds to step 29, where fuel injection is injected in the intake stroke for homogeneous combustion as shown in the following equation. While calculating the amount Ti1, the fuel injection amount Ti2 injected in the compression stroke for stratified combustion is set to zero.
[0044]
Ti1 = Te (× 100%) + Ts
Ti2 = 0
Next, the routine proceeds to step 30, and after setting the ignition timing ADVH for homogeneous combustion calculated in another routine, the routine proceeds to the step 25 and thereafter. Thereby, ignition is performed at the ignition timing and homogeneous combustion is performed.
[0045]
If it is determined in step 22 that the distribution ratio is 0%, this is a case where complete stratified combustion is performed, and the process proceeds to step 31 and fuel injected in the intake stroke for homogeneous combustion as shown in the following equation. While setting the injection amount Ti1 to 0, the fuel injection amount Ti2 injected in the compression stroke for stratified combustion is calculated.
Ti1 = 0
Ti2 = Te (× 100%) + Ts
Next, the routine proceeds to step 25, and after setting the ignition timing ADVS for stratified combustion, ignition is performed at the ignition timing and stratified combustion is performed.
[0046]
FIG. 11 shows a flow of an ignition timing calculation routine executed every predetermined time, for example, every 10 ms. In step 31, based on the engine operating conditions, for example, the engine speed N and the load such as the basic fuel injection amount Tp, Ignition timing ADVH is calculated, and in step 32, the ignition timing ADVS for stratified combustion is calculated in the same manner.
[Brief description of the drawings]
FIG. 1 is a functional block diagram showing a configuration of the present invention.
FIG. 2 is a system diagram showing an embodiment of the present invention.
FIG. 3 is a block diagram illustrating a control function according to the embodiment.
FIG. 4 is a flowchart showing a routine for calculating a fuel amount distribution ratio between an intake stroke and a compression stroke at the same time in divided injection.
FIG. 5 is a time chart showing changes in various states when switching from stratified combustion to homogeneous combustion.
FIG. 6 is a map in which weights for weighted average calculation when the equivalence ratio is similarly changed are set.
FIG. 7 is also a map in which ignition timing for homogeneous combustion is set.
FIG. 8 is a map in which ignition timing for stratified combustion is also set.
FIG. 9 is a map in which the distribution ratio is similarly set.
FIG. 10 is a flowchart showing a fuel injection control routine.
FIG. 11 is a flowchart showing a routine for similarly calculating an ignition timing for each combustion.
[Explanation of symbols]
1 Internal combustion engine 4 Electric throttle valve 5 Fuel injection valve 6 Spark plug
20 Control unit

Claims (4)

シリンダ内に燃料を噴射供給する直接噴射式内燃機関において、
機関の運転状態を検出する運転状態検出手段と、
検出された運転状態に基づいて、吸気行程で比較的リッチな当量比となるように燃料を供給する均質燃焼条件と、圧縮行程で比較的リーンな当量比となるように燃料を供給する成層燃焼条件とを判別する燃焼条件判別手段と、
前記均質燃焼条件と成層燃焼条件との判別が切り換わったときに、前記リッチな当量比とリーンな当量比との間で当量比を徐々に切り換える当量比切換手段と、
前記当量比切換手段によって徐々に切り換えられる当量比が、切換前の燃焼条件における限界の当量比に対し所定値以上の偏差を有してから、切換後の燃焼条件における限界の当量比に対し所定値以下の偏差となるまでの間、吸気行程と圧縮行程との両方に分けて燃料を供給する燃料分割供給手段と、
を含んで構成したことを特徴とする内燃機関の燃料噴射制御装置。
In a direct injection internal combustion engine that injects fuel into a cylinder,
An operating state detecting means for detecting the operating state of the engine;
Based on the detected operating conditions, homogeneous combustion conditions for supplying fuel so that a relatively rich equivalence ratio is obtained in the intake stroke, and stratified combustion for supplying fuel so that a relatively lean equivalent ratio is obtained in the compression stroke Combustion condition determining means for determining the condition;
An equivalence ratio switching means for gradually switching the equivalence ratio between the rich equivalence ratio and the lean equivalence ratio when the discrimination between the homogeneous combustion condition and the stratified combustion condition is switched;
Given the equivalent ratio is gradually changed over by the equivalent ratio switching means from a predetermined value or more deviations with respect to the equivalent ratio of the limit in the combustion condition before switching, based on the equivalents ratio of the limit in the combustion condition after switching Fuel split supply means for supplying fuel in both the intake stroke and the compression stroke until the deviation becomes less than the value,
A fuel injection control device for an internal combustion engine, comprising:
前記当量比切換手段は、当量比を時間の経過とともに徐々に切り換えることを特徴とする請求項1に記載の内燃機関の燃料噴射制御装置。  2. The fuel injection control device for an internal combustion engine according to claim 1, wherein the equivalence ratio switching means gradually switches the equivalence ratio as time elapses. 均質燃焼条件が理論空燃比での燃焼である場合、該理論空燃比相当の当量比に対し、前記所定値は機関回転速度に基づいて設定されることを特徴とする請求項1または請求項2に記載の内燃機関の燃料噴射制御装置。When homogeneous combustion conditions are burned at the stoichiometric air-fuel ratio,該理Theory fuel ratio based on the equivalents ratio of equivalent, the predetermined value according to claim 1 or claim 2, characterized in that it is set based on the engine rotational speed A fuel injection control device for an internal combustion engine according to claim 1. シリンダ内に燃料を噴射供給する直接噴射式内燃機関において、
機関の運転状態を検出する運転状態検出手段と、
検出された運転状態に基づいて、吸気行程で比較的リッチな当量比となるように燃料を供給する均質燃焼条件と、圧縮行程で比較的リーンな当量比となるように燃料を供給する成層燃焼条件とを判別する燃焼条件判別手段と、
前記均質燃焼条件と成層燃焼条件との判別が切り換わったときに、前記リッチな当量比とリーンな当量比との間で当量比を加重平均により遅れ処理して徐々に切り換える当量比切換手段と、
前記当量比切換手段における加重平均の現在値に対する重みを、機関回転速度とスロットル開度とに基づいて設定する重み設定手段と、
前記当量比切換手段による当量比の切り換え期間中の少なくとも所定期間、吸気行程と圧縮行程との両方に分けて燃料を供給する燃料分割供給手段と、
を含んで構成したことを特徴とする内燃機関の燃料噴射制御装置。
In a direct injection internal combustion engine that injects fuel into a cylinder,
An operating state detecting means for detecting the operating state of the engine;
Based on the detected operating conditions, homogeneous combustion conditions for supplying fuel so that a relatively rich equivalence ratio is obtained in the intake stroke, and stratified combustion for supplying fuel so that a relatively lean equivalent ratio is obtained in the compression stroke Combustion condition determining means for determining the condition;
Equivalence ratio switching means for gradually switching the equivalence ratio between the rich equivalence ratio and the lean equivalence ratio by delay processing with a weighted average when the discrimination between the homogeneous combustion condition and the stratified combustion condition is switched; ,
Weight setting means for setting the weight for the current value of the weighted average in the equivalence ratio switching means based on the engine speed and the throttle opening;
A fuel split supply means for supplying fuel to both the intake stroke and the compression stroke for at least a predetermined period during the equivalence ratio switching period by the equivalence ratio switching means;
A fuel injection control device for an internal combustion engine, comprising:
JP17623997A 1997-07-01 1997-07-01 Fuel injection control device for internal combustion engine Expired - Lifetime JP3677947B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP17623997A JP3677947B2 (en) 1997-07-01 1997-07-01 Fuel injection control device for internal combustion engine
KR1019980025490A KR100317159B1 (en) 1997-07-01 1998-06-30 Fuel injection control system for internal combustion engine
DE69838199T DE69838199T2 (en) 1997-07-01 1998-06-30 Fuel injection control system for internal combustion engines
EP98112067A EP0889218B1 (en) 1997-07-01 1998-06-30 Fuel injection control system for internal combustion engine
US09/108,409 US6058905A (en) 1997-07-01 1998-07-01 Fuel injection control system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17623997A JP3677947B2 (en) 1997-07-01 1997-07-01 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH1122508A JPH1122508A (en) 1999-01-26
JP3677947B2 true JP3677947B2 (en) 2005-08-03

Family

ID=16010080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17623997A Expired - Lifetime JP3677947B2 (en) 1997-07-01 1997-07-01 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3677947B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3616320B2 (en) * 2000-09-21 2005-02-02 本田技研工業株式会社 Ignition timing control device for internal combustion engine
JP5276692B2 (en) * 2011-05-09 2013-08-28 三菱電機株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JPH1122508A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
JP3815006B2 (en) Control device for internal combustion engine
US6708668B2 (en) Control system and method for direct-injection spark-ignition engine
KR100314515B1 (en) Controller for an internal combustion engine
JP3683681B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP4836088B2 (en) Control device and control method for compression self-ignition internal combustion engine
JP3233039B2 (en) Control device for in-cylinder injection spark ignition internal combustion engine
JP3677954B2 (en) Control device for internal combustion engine
KR100299999B1 (en) Transient control between two spark-ignited combustion states in engine
KR100317159B1 (en) Fuel injection control system for internal combustion engine
KR980009784A (en) Exhaust Emission Apparatus for In-cylinder Injection-Type Internal Combustion Engine
US7185631B2 (en) Combustion control system and method for direct-injection spark-ignition internal combustion engine
JP3971004B2 (en) Combustion switching control device for internal combustion engine
JP3654010B2 (en) Control device for internal combustion engine
JP2007016685A (en) Internal combustion engine control device
EP1591657B1 (en) Engine starting system
JP3677947B2 (en) Fuel injection control device for internal combustion engine
JP3911855B2 (en) Control device for direct-injection spark ignition engine
JP2002130024A (en) Controller for direct injection spark ignition type internal combustion engine
JP7283450B2 (en) engine device
JP3899922B2 (en) Internal combustion engine
JP3677948B2 (en) Fuel injection control device for internal combustion engine
JP2001082220A (en) Control device for direct injection spark-ignition type internal combustion engine
JP4324297B2 (en) In-cylinder injection engine control device
JP3812301B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP3724369B2 (en) Control device for direct-injection spark ignition engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

EXPY Cancellation because of completion of term