[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3673127B2 - Boil-off gas reliquefaction method - Google Patents

Boil-off gas reliquefaction method Download PDF

Info

Publication number
JP3673127B2
JP3673127B2 JP31718299A JP31718299A JP3673127B2 JP 3673127 B2 JP3673127 B2 JP 3673127B2 JP 31718299 A JP31718299 A JP 31718299A JP 31718299 A JP31718299 A JP 31718299A JP 3673127 B2 JP3673127 B2 JP 3673127B2
Authority
JP
Japan
Prior art keywords
gas
boil
liquid
drum
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31718299A
Other languages
Japanese (ja)
Other versions
JP2001132896A (en
Inventor
俊和 入江
宣夫 幡中
孝司 三橋
栄治 富永
和彦 大竹
勝 岡
守孝 中村
元裕 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Mitsubishi Heavy Industries Ltd
Nippon Yusen KK
Osaka Gas Co Ltd
Original Assignee
Chiyoda Corp
Mitsubishi Heavy Industries Ltd
Nippon Yusen KK
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Mitsubishi Heavy Industries Ltd, Nippon Yusen KK, Osaka Gas Co Ltd filed Critical Chiyoda Corp
Priority to JP31718299A priority Critical patent/JP3673127B2/en
Publication of JP2001132896A publication Critical patent/JP2001132896A/en
Application granted granted Critical
Publication of JP3673127B2 publication Critical patent/JP3673127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液化ガスの貯蔵・運搬において貯槽から発生するボイルオフガスを再液化するための再液化方法に関し、特に液化手段にて液化した後に気液分離を行い、ここで得られた液のみを貯槽に戻すようにした再液化方法に関するものである。
【0002】
【従来の技術】
LNGの貯槽から発生するボイルオフガス(以下、BOGと呼称する)の再液化を行う際に、BOGを熱交換器で飽和状態まで冷却して液化した後、一旦気液分離ドラムに導き、ここで分離された液のみを貯槽に戻す方法が知られている(特開平7−157782号公報参照)。
【0003】
【発明が解決しようとする課題】
この方法では、気液分離ドラム内のガス体に、メタン等の炭化水素の未凝縮分と、不純物としての窒素を主体とした非凝縮分とが含まれ、その取り扱いが問題となる。すなわち、単に廃ガスとしてボイラー等で処理したのでは、有用な炭化水素を放出することになり、経済性の面で望ましくなく、他方、炭化水素の回収を優先させて圧縮機の上流等へ合流させるようにすると、不純物としての窒素により圧縮機や冷却器での処理量を徒に増加させる不都合が生じる。
【0004】
本発明は、このような従来技術の問題点を解消するべく案出されたものであり、その主な目的は、メタン等の有用分の排出を抑えつつ、不純物としての窒素を効率的に除去することが可能なBOGの再液化方法を提供することにある。
【0005】
【課題を解決するための手段】
このような目的を果たすために、本発明においては、窒素を不純物として含む液化ガスの貯槽から発生するBOGを、液化手段にて液化した後に気液分離を行い、ここで得られた液を貯槽に戻すようにしたBOGの再液化方法において、気液分離により得られた液を、貯槽から液化手段に向かうBOGを流通させるドラムに環流し、ここで液中に含まれる窒素を減圧によりBOG中にフラッシュさせた上で、その液を当該ドラムから引き抜いて貯槽に戻し、ドラムに環流された液が当該ドラムにおいてBOGと接触することにより、BOGの温度を液化手段の入口で一定に保持するようにしたものとした。
【0006】
これによると、BOG中にフラッシュした窒素は、BOGと共に圧縮機や冷却器等からなる液化手段に送られ、この液化手段や気液分離用のドラムとこれらの連絡配管等で構成される再液化装置内に窒素が濃縮される。そして、気液分離により得られたガス体はボイラーで燃焼させることによって系外に排出され、これによりメタン等の有用分の排出を抑えつつ、不純物としての窒素を効率的に除去することが可能となる。しかも、液化手段上流のドラムに環流された液が貯槽からのBOGと接触することにより、BOG温度を液化手段の入口で一定に保持することができるため、BOG発生量の増減による負荷変動に対するBOG液化装置内の温度制御が容易になる。なお、窒素分をフラッシュさせるためのドラムは、貯槽からのBOGに同伴する液滴を除去するために液化手段上流に設けられるミスト分離用ドラムと兼用することが構成を簡略化する上で望ましい。
【0007】
【発明の実施の形態】
以下に添付の図面を参照して本発明の構成を詳細に説明する。
【0008】
図1は、本発明が適用されたBOGの再液化を行う冷却システムの概略構成を示している。ここでは、液化ガスとしてのLNGの貯蔵・運搬においてLNGタンク1から発生するBOGが、BOGコンプレッサ2により圧縮された後、熱交換器3により冷却されて再液化するようになっている。
【0009】
BOGコンプレッサ2の上流には、ドラム内にデミスタを備えた構造のミスト分離用ドラム5が設けられており、LNGタンク1から送られてくるBOGに含まれる液滴が除去され、これによりBOGコンプレッサ2への液滴の同伴を防止している。
【0010】
熱交換器3の下流側には、気液分離用ドラム6が設けられている。この気液分離用ドラム6では、熱交換器3にてBOGを飽和状態まで冷却して得られた液から、炭化水素の未凝縮分、並びに不純物としての窒素を主体とした非凝縮分を含むガス体が分離され、適宜にバルブ7を開放させることでガス体を抜き出すことができる。
【0011】
他方、気液分離用ドラム6内の飽和状態の液は、バルブ8を開放させてLNGタンク1に戻される他、制御バルブ10にて気液分離用ドラム6内の液面を一定に保持しながら連絡配管9を経てミスト分離用ドラム5に環流される。ここで、飽和液は減圧され、その中に含まれる窒素が、LNGタンク1から送られてきたBOG中にフラッシュして液から分離される。BOG中にフラッシュした窒素は、BOGと共にBOGコンプレッサ2に送られる。ミスト分離用ドラム5に残留する液は、返送ポンプ11により引き抜かれてLNGタンク1へ圧送される。
【0012】
これにより、BOGコンプレッサ2、熱交換器3、ミスト分離用ドラム5、気液分離用ドラム6、並びにこれらの連絡配管で構成される再液化装置内に窒素分が濃縮され、気液分離用ドラム6内のガス体をバルブ7の開放によりボイラーで燃焼させて系外に排出することで、メタン等の有用分の排出を抑えつつ、不純物としての窒素を効率的に除去することができる。他方、液体は不純物量が減少して濃縮された状態でLNGタンク1ヘ戻される。そして、ミスト分離用ドラム5に環流された液がLNGタンク1からのBOGと接触することにより、BOG温度をBOGコンプレッサ2の入口で一定に保持することができるため、BOG発生量の増減による負荷変動に対してBOG再液化装置内の温度制御が容易になる。
【0013】
熱交換器3においてBOGを液化するための冷熱は、窒素を冷媒としたクローズドエキスパンダサイクルによる窒素冷凍サイクル13により供給される。この窒素冷凍サイクル13では、熱交換器3を出た冷媒窒素が、窒素コンプレッサ14〜16、並びにインタクーラ17・18及びアフタクーラ19により冷却されながら圧縮される。
【0014】
アフタクーラ19を出た冷媒窒素は、さらにブースタコンプレッサ20で圧縮され、ついでアフタクーラ21で冷却された後、熱交換器3へ送られる。熱交換器3では、窒素冷却部22において冷媒窒素が低温窒素との熱交換により冷却される。熱交換器3を出た冷媒窒素は、エキスパンダ23に送られ、ここで減圧により膨張してBOG再液化に要する冷熱を生成し、熱交換器3に送られる。エキスパンダ23での冷媒窒素を減圧する際の仕事でブースタコンプレッサ20が駆動される。
【0015】
なお、本実施形態においては、LNGを例に説明を行ったが、本発明はこれに限定されるものではなく、この他の液化ガス、例えばLPGにも適用することができる。
【0016】
【実施例】
以下に、本発明による方法をLNGのボイルオフガスの再液化に適用した際の非凝縮ガス中の窒素含有量に関する算出結果を示す。また比較のために従来の方法による値も併記する。なお、ここでは、ボイルオフガス中の窒素濃度を2.5%、5%、10%とした3ケースに分け、各ケース毎に非凝縮ガス量を50kgmol/h、100kgmol/h、150kgmol/hとした例を示す。
【0017】
まず、ボイルオフガス中の窒素濃度が2.5%の場合の例を次の表1、表2及び表3に示す。
【0018】
【表1】

Figure 0003673127
【0019】
【表2】
Figure 0003673127
【0020】
【表3】
Figure 0003673127
【0021】
次に、ボイルオフガス中の窒素濃度が5%の場合の例を、次の表4、表5及び表6に示す。
【0022】
【表4】
Figure 0003673127
【0023】
【表5】
Figure 0003673127
【0024】
【表6】
Figure 0003673127
【0025】
さらに、ボイルオフガス中の窒素濃度が10%の場合の例を、次の表7、表8及び表9に示す。
【0026】
【表7】
Figure 0003673127
【0027】
【表8】
Figure 0003673127
【0028】
【表9】
Figure 0003673127
【0029】
以上の例から明らかなように、本発明による方法によれば、従来方法に比較して非凝縮ガス中の窒素濃度が高まり、本発明の有効性が確認された。
【0030】
【発明の効果】
このように本発明によれば、BOGを液化した後に気液分離を行って得られた液中の窒素分を液化手段上流のドラムでフラッシュさせることにより、再液化装置内に窒素分を濃縮させることができ、これによりメタン等の有用分の排出を抑えつつ、不純物としての窒素を効率的に除去することが可能となる。しかも、BOG温度を液化手段の入口で一定に保持することができるため、BOG液化装置内の温度制御が容易になるので、制御システムを簡略化することができる。
【図面の簡単な説明】
【図1】本発明が適用されたボイルオフガスの再液化システムの概略構成を示すブロック図である。
【符号の説明】
1 LNGタンク
2 BOGコンプレッサ
3 熱交換器
5 ミスト分離用ドラム
6 気液分離用ドラム
7・8 バルブ
9 連絡配管
10 制御バルブ
11 返送ポンプ
13 窒素冷凍サイクル
14〜16 窒素コンプレッサ
17・18 インタクーラ
19 アフタクーラ
20 ブースタコンプレッサ
21 アフタクーラ
22 窒素冷却部
23 エキスパンダ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a re-liquefaction method for re-liquefying boil-off gas generated from a storage tank in storage / transport of liquefied gas, and in particular, gas-liquid separation is performed after liquefaction by liquefaction means, and only the liquid obtained here The present invention relates to a re-liquefaction method that returns to a storage tank.
[0002]
[Prior art]
When re-liquefying the boil-off gas (hereinafter referred to as BOG) generated from the LNG storage tank, the BOG is cooled to a saturated state with a heat exchanger and liquefied, and then led to a gas-liquid separation drum. A method is known in which only the separated liquid is returned to the storage tank (see JP-A-7-157782).
[0003]
[Problems to be solved by the invention]
In this method, the gas body in the gas-liquid separation drum includes an uncondensed portion of hydrocarbon such as methane and a non-condensed portion mainly composed of nitrogen as an impurity, and handling thereof becomes a problem. In other words, if the waste gas is simply treated with a boiler or the like, useful hydrocarbons will be released, which is undesirable in terms of economy. On the other hand, priority is given to the recovery of hydrocarbons and the upstream of the compressor. In this case, there arises a problem that the amount of processing in the compressor and the cooler is increased by nitrogen as an impurity.
[0004]
The present invention has been devised to solve such problems of the prior art, and its main purpose is to efficiently remove nitrogen as an impurity while suppressing emission of useful components such as methane. An object of the present invention is to provide a BOG reliquefaction method that can be used.
[0005]
[Means for Solving the Problems]
In order to achieve such an object, in the present invention, BOG generated from a storage tank of liquefied gas containing nitrogen as an impurity is liquefied by a liquefying means, and then gas-liquid separation is performed, and the liquid obtained here is stored in the storage tank. In the BOG re-liquefaction method, the liquid obtained by gas-liquid separation is circulated to a drum through which the BOG is directed from the storage tank to the liquefaction means, where nitrogen contained in the liquid is reduced in the BOG after having flashed on, to return to the reservoir by pulling out the liquid from the drum, by the liquid that is circulated in the drum is in contact with the BOG in the drum, kept constant at the inlet of the liquefying means the temperature of the BOG It was supposed to be.
[0006]
According to this, the nitrogen flushed in the BOG is sent together with the BOG to the liquefaction means consisting of a compressor, a cooler, etc., and the reliquefaction composed of the liquefaction means, the gas-liquid separation drum and their connecting pipes, etc. Nitrogen is concentrated in the apparatus. And the gas body obtained by gas-liquid separation is discharged out of the system by burning with a boiler, and this makes it possible to efficiently remove nitrogen as impurities while suppressing the discharge of useful components such as methane. It becomes. In addition, since the liquid recirculated to the drum upstream of the liquefaction means comes into contact with the BOG from the storage tank, the BOG temperature can be kept constant at the inlet of the liquefaction means. Temperature control in the liquefaction device is facilitated. In order to simplify the structure, it is desirable that the drum for flushing the nitrogen content is also used as a mist separation drum provided upstream of the liquefaction means in order to remove droplets accompanying the BOG from the storage tank.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.
[0008]
FIG. 1 shows a schematic configuration of a cooling system for reliquefying BOG to which the present invention is applied. Here, BOG generated from the LNG tank 1 in storing and transporting LNG as liquefied gas is compressed by the BOG compressor 2 and then cooled by the heat exchanger 3 to be liquefied again.
[0009]
A mist separation drum 5 having a demister in the drum is provided upstream of the BOG compressor 2, and droplets contained in the BOG sent from the LNG tank 1 are removed, whereby the BOG compressor 2 is prevented from being accompanied by droplets.
[0010]
A gas-liquid separation drum 6 is provided on the downstream side of the heat exchanger 3. The gas-liquid separation drum 6 includes an uncondensed portion of hydrocarbons and a non-condensed portion mainly composed of nitrogen as an impurity from a liquid obtained by cooling the BOG to a saturated state in the heat exchanger 3. The gas body is separated, and the gas body can be extracted by opening the valve 7 as appropriate.
[0011]
On the other hand, the saturated liquid in the gas-liquid separation drum 6 is returned to the LNG tank 1 by opening the valve 8, and the liquid level in the gas-liquid separation drum 6 is held constant by the control valve 10. However, it is circulated to the mist separating drum 5 through the connecting pipe 9. Here, the saturated liquid is decompressed, and nitrogen contained therein is separated from the liquid by flushing into the BOG sent from the LNG tank 1. The nitrogen flushed into the BOG is sent to the BOG compressor 2 along with the BOG. The liquid remaining in the mist separation drum 5 is drawn out by the return pump 11 and is pumped to the LNG tank 1.
[0012]
As a result, the nitrogen content is concentrated in the BOG compressor 2, the heat exchanger 3, the mist separation drum 5, the gas-liquid separation drum 6, and the reliquefaction apparatus constituted by these connecting pipes, and the gas-liquid separation drum The gas body in 6 is burned by a boiler by opening the valve 7 and discharged out of the system, so that nitrogen as an impurity can be efficiently removed while suppressing discharge of useful components such as methane. On the other hand, the liquid is returned to the LNG tank 1 in a state where the amount of impurities is reduced and concentrated. Since the liquid recirculated to the mist separation drum 5 comes into contact with the BOG from the LNG tank 1, the BOG temperature can be kept constant at the inlet of the BOG compressor 2. Temperature control in the BOG reliquefaction device is facilitated against fluctuations.
[0013]
Cold heat for liquefying BOG in the heat exchanger 3 is supplied by a nitrogen refrigeration cycle 13 by a closed expander cycle using nitrogen as a refrigerant. In the nitrogen refrigeration cycle 13, the refrigerant nitrogen exiting the heat exchanger 3 is compressed while being cooled by the nitrogen compressors 14 to 16, the intercoolers 17 and 18, and the aftercooler 19.
[0014]
The refrigerant nitrogen that has exited the aftercooler 19 is further compressed by the booster compressor 20, then cooled by the aftercooler 21, and then sent to the heat exchanger 3. In the heat exchanger 3, the refrigerant nitrogen is cooled in the nitrogen cooling unit 22 by heat exchange with low-temperature nitrogen. The refrigerant nitrogen exiting the heat exchanger 3 is sent to the expander 23, where it expands due to decompression to generate cold heat required for BOG reliquefaction, and is sent to the heat exchanger 3. The booster compressor 20 is driven by the work when decompressing the refrigerant nitrogen in the expander 23.
[0015]
In the present embodiment, LNG has been described as an example. However, the present invention is not limited to this, and can be applied to other liquefied gases such as LPG.
[0016]
【Example】
Below, the calculation result regarding the nitrogen content in non-condensable gas at the time of applying the method by this invention to reliquefaction of the boil-off gas of LNG is shown. For comparison, the values according to the conventional method are also shown. Here, the nitrogen concentration in the boil-off gas is divided into three cases of 2.5%, 5%, and 10%, and the amount of non-condensable gas is 50 kgmol / h, 100 kgmol / h, and 150 kgmol / h for each case. An example is shown.
[0017]
First, the following Table 1, Table 2, and Table 3 show examples when the nitrogen concentration in the boil-off gas is 2.5%.
[0018]
[Table 1]
Figure 0003673127
[0019]
[Table 2]
Figure 0003673127
[0020]
[Table 3]
Figure 0003673127
[0021]
Next, examples where the nitrogen concentration in the boil-off gas is 5% are shown in the following Table 4, Table 5 and Table 6.
[0022]
[Table 4]
Figure 0003673127
[0023]
[Table 5]
Figure 0003673127
[0024]
[Table 6]
Figure 0003673127
[0025]
Furthermore, the following Table 7, Table 8 and Table 9 show examples when the nitrogen concentration in the boil-off gas is 10%.
[0026]
[Table 7]
Figure 0003673127
[0027]
[Table 8]
Figure 0003673127
[0028]
[Table 9]
Figure 0003673127
[0029]
As apparent from the above examples, according to the method of the present invention, the nitrogen concentration in the non-condensed gas is increased as compared with the conventional method, and the effectiveness of the present invention has been confirmed.
[0030]
【The invention's effect】
As described above, according to the present invention, the nitrogen content in the liquid obtained by gas-liquid separation after liquefying BOG is flushed with the drum upstream of the liquefaction means, thereby concentrating the nitrogen content in the reliquefaction apparatus. This makes it possible to efficiently remove nitrogen as an impurity while suppressing discharge of useful components such as methane. In addition, since the BOG temperature can be kept constant at the inlet of the liquefaction means, temperature control in the BOG liquefaction apparatus is facilitated, and the control system can be simplified.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of a boil-off gas reliquefaction system to which the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 LNG tank 2 BOG compressor 3 Heat exchanger 5 Drum for mist separation 6 Drum for gas-liquid separation 7 and 8 Valve 9 Connection pipe 10 Control valve 11 Return pump 13 Nitrogen refrigeration cycle 14-16 Nitrogen compressor 17 and 18 Intercooler 19 After cooler 20 Booster compressor 21 Aftercooler 22 Nitrogen cooling part 23 Expander

Claims (2)

窒素を不純物として含む液化ガスの貯槽から発生するボイルオフガスを、液化手段にて液化した後に気液分離を行い、ここで得られた液を前記貯槽に戻すボイルオフガスの再液化方法であって、
前記気液分離により得られた液を、前記貯槽から前記液化手段に向かうボイルオフガスを流通させるドラムに環流し、ここで液中に含まれる窒素を減圧によりボイルオフガス中にフラッシュさせた上で、その液を当該ドラムから引き抜いて前記貯槽に戻し、前記ドラムに環流された液が当該ドラムにおいてボイルオフガスと接触することにより、ボイルオフガスの温度を前記液化手段の入口で一定に保持するようにしたことを特徴とするボイルオフガスの再液化方法。
A boil-off gas re-liquefaction method in which boil-off gas generated from a storage tank of liquefied gas containing nitrogen as an impurity is gas-liquid separated after liquefying by liquefaction means, and the liquid obtained here is returned to the storage tank,
The liquid obtained by the gas-liquid separation is circulated to a drum through which the boil-off gas from the storage tank toward the liquefaction means is circulated, where nitrogen contained in the liquid is flushed into the boil-off gas by decompression, it returns the liquid to the reservoir is withdrawn from the drum, by the liquid that is circulated in the drum is in contact with the BOG in the drum, so as to maintain the temperature of the boil-off gas constant at the inlet of said liquefied means A method for re-liquefying boil-off gas.
前記液中の窒素をフラッシュさせるためのドラムが、前記貯槽からのボイルオフガスに同伴する液滴を除去するために前記液化手段の上流に設けられるミスト分離用のドラムであることを特徴とする請求項1に記載のボイルオフガスの再液化方法。    The drum for flushing nitrogen in the liquid is a mist separation drum provided upstream of the liquefying means in order to remove droplets accompanying the boil-off gas from the storage tank. Item 2. The boil-off gas reliquefaction method according to Item 1.
JP31718299A 1999-11-08 1999-11-08 Boil-off gas reliquefaction method Expired - Fee Related JP3673127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31718299A JP3673127B2 (en) 1999-11-08 1999-11-08 Boil-off gas reliquefaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31718299A JP3673127B2 (en) 1999-11-08 1999-11-08 Boil-off gas reliquefaction method

Publications (2)

Publication Number Publication Date
JP2001132896A JP2001132896A (en) 2001-05-18
JP3673127B2 true JP3673127B2 (en) 2005-07-20

Family

ID=18085376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31718299A Expired - Fee Related JP3673127B2 (en) 1999-11-08 1999-11-08 Boil-off gas reliquefaction method

Country Status (1)

Country Link
JP (1) JP3673127B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3790393B2 (en) * 1999-11-05 2006-06-28 大阪瓦斯株式会社 Cargo tank pressure control device and pressure control method for LNG carrier
GB0400986D0 (en) * 2004-01-16 2004-02-18 Cryostar France Sa Compressor
US20060156758A1 (en) * 2005-01-18 2006-07-20 Hyung-Su An Operating system of liquefied natural gas ship for sub-cooling and liquefying boil-off gas
JP2008064213A (en) * 2006-09-08 2008-03-21 Chugoku Electric Power Co Inc:The Compressor with bog warmer and power generation system having the same
KR100804954B1 (en) 2007-02-13 2008-02-20 대우조선해양 주식회사 Apparatus and method for reliquefying boil-off gas capable of stabilizing operation start-up
KR100804953B1 (en) 2007-02-13 2008-02-20 대우조선해양 주식회사 Apparatus and method for reliquefying boil-off gas capable of refrigeration load variable operation
UA97403C2 (en) * 2007-07-09 2012-02-10 ЕлЕнДжи ТЕКНОЛОДЖИИ ПТИ ЛТД Process and system for liquefying a hydrocarbon gas
US9003828B2 (en) 2007-07-09 2015-04-14 Lng Technology Pty Ltd Method and system for production of liquid natural gas
JP5132452B2 (en) * 2008-07-07 2013-01-30 東京瓦斯株式会社 BOG reliquefaction equipment
KR101386543B1 (en) 2012-10-24 2014-04-18 대우조선해양 주식회사 System for treating boil-off gas for a ship
KR101640768B1 (en) * 2013-06-26 2016-07-29 대우조선해양 주식회사 Method for building a ship
JP6501527B2 (en) * 2015-01-09 2019-04-17 大阪瓦斯株式会社 Boil-off gas reliquefaction plant
CN107166871A (en) * 2017-06-01 2017-09-15 西安交通大学 Using the re-liquefied system of natural gas vaporization gas of twin-stage mixed-refrigerant cycle
JP6366870B1 (en) * 2018-01-17 2018-08-01 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Boil-off gas reliquefaction device and LNG supply system including the same
KR102542651B1 (en) * 2021-05-11 2023-06-14 에이치디현대중공업 주식회사 Boil-off gas re-liquefaction system and ship having the same

Also Published As

Publication number Publication date
JP2001132896A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
JP3908881B2 (en) Boil-off gas reliquefaction method
JP3673127B2 (en) Boil-off gas reliquefaction method
AU733788B2 (en) Use of a turboexpander cycle in liquefied natural gas process
KR101722597B1 (en) Reliquefaction System And Method For Boil Off Gas
US4843829A (en) Reliquefaction of boil-off from liquefied natural gas
JP2020121715A (en) Vessel
KR20190135982A (en) System for treating boil-off gas of a marine structure
KR101741790B1 (en) BOG Treatment System
KR101751860B1 (en) Reliquefaction System And Method For Boil Off Gas
KR101711955B1 (en) Fuel gas supplying system in ships
KR20160128639A (en) Boil Off Gas Treatment System
KR20170066737A (en) Fuel gas supplying system in ships
KR101767560B1 (en) Reliquefaction System And Method For Boil Off Gas
KR101818523B1 (en) Vessel
KR20180116921A (en) Boil-Off Gas Re-liquefaction System
KR101788753B1 (en) Boil Off Gas Treatment System And Method Of Ship
KR101537277B1 (en) Fuel gas supplying system
KR20160142421A (en) Fuel gas supplying system in ships
KR102705009B1 (en) Boil-Off Gas Reliquefaction System and Method for Vessels
KR102276362B1 (en) Boil-off Gas Reliquefaction System and Method
KR20180100760A (en) Vessel
KR20170000180A (en) Device and method for BOG re-liquefaction
JPS586116B2 (en) Processing method for displacement purge gas from a low-temperature liquefied gas carrier
KR102248130B1 (en) Boil-Off Gas Reliquefaction System and Method for a Vessel
KR101938179B1 (en) BOG Re-liquefaction System for Vessel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350