[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3662187B2 - Road slope estimation device - Google Patents

Road slope estimation device Download PDF

Info

Publication number
JP3662187B2
JP3662187B2 JP2000359858A JP2000359858A JP3662187B2 JP 3662187 B2 JP3662187 B2 JP 3662187B2 JP 2000359858 A JP2000359858 A JP 2000359858A JP 2000359858 A JP2000359858 A JP 2000359858A JP 3662187 B2 JP3662187 B2 JP 3662187B2
Authority
JP
Japan
Prior art keywords
vehicle body
vehicle
longitudinal acceleration
speed
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000359858A
Other languages
Japanese (ja)
Other versions
JP2002162225A (en
Inventor
豊 大沼
敏敬 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2000359858A priority Critical patent/JP3662187B2/en
Publication of JP2002162225A publication Critical patent/JP2002162225A/en
Application granted granted Critical
Publication of JP3662187B2 publication Critical patent/JP3662187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Hydraulic Control Valves For Brake Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、路面勾配推定装置に係り、更に詳細には検出された車体の前後加速度及び車輪速度より推定された車体の前後加速度に基づき路面の勾配を推定する路面勾配推定装置に係る。
【0002】
【従来の技術】
自動車等の車輌に於いて路面の勾配を推定する装置の一つとして、例えば特開平5−272974号公報に記載されている如く、車輪速度及び車体の前後加速度を検出し、車輪速度に基づき車体の前後加速度を推定し、検出された車体の前後加速度と推定された車体の前後加速度との差分に基づき路面の勾配を推定するよう構成された路面勾配推定装置が従来より知られている。
【0003】
一般に、前後加速度検出センサの如き車体の前後加速度を検出する前後加速度検出手段は慣性錘を含み、慣性錘に車輌の前後方向に作用する力を検出することにより車体の前後加速度を検出するようになっているので、車輌が坂道を登坂又は降坂する場合には、車体が水平方向に対し傾斜することにより、慣性錘には重力の路面に沿う方向の成分が作用し、この成分は路面の勾配に比例する。またこの成分は車輌の真の前後加速度と区別されることなく前後加速度検出センサにより検出されるのに対し、車輪速度に基づき推定される車体の前後加速度は路面の勾配の影響を受けない。従ってこれらの前後加速度の差分は慣性錘に作用する重力の路面に沿う方向の成分に相当する。
【0004】
上記公開公報に記載された路面勾配推定装置によれば、検出された車体の前後加速度と推定された車体の前後加速度との差分に基づき路面の勾配が推定されるので、上記原理により路面の勾配を推定することができる。
【0005】
【発明が解決しようとする課題】
一般に、車輌が旋回しながら坂道を走行するような場合には、車体にはスリップ角が生じ、車輌に作用する遠心力の方向が車輌の上方より見て車輌横方向に対し傾斜するため、前後加速度検出手段の慣性錘には遠心力の車輌前後方向の成分が作用し、そのため前後加速度検出手段の検出値にはこの車輌前後方向の遠心力成分に対応する求心加速度の車輌前後方向の成分が含まれる。しかるにこの求心加速度の車輌前後方向の成分は車輌の加減速や路面の勾配に起因するものでもなければ、路面の勾配に応じて変化するものでもないので、上述の従来の路面勾配推定装置に於いては、車輌が旋回しながら坂道を走行するような場合に路面の勾配を正確に推定することができないという問題がある。
【0006】
また車輌が旋回しながら坂道を走行するような場合には、操舵輪の回転移動方向は車体の前後方向と異なり、操舵輪の車輪速度は車体の実際の前後速度と一致しないので、操舵輪の車輪速度や操舵輪を含む車輪の車輪速度に基づき推定される車体の前後加速度も実際の車体の前後加速度と一致せず、そのためこの理由によっても路面の勾配を正確に推定することができない。
【0007】
本発明は、車輪速度及び車体の前後加速度を検出し、車輪速度に基づき車体の前後加速度を推定し、検出された車体の前後加速度と推定された車体の前後加速度との差分に基づき路面の勾配を推定するよう構成された従来の路面勾配推定装置に於ける上述の如き問題に鑑みてなされたものであり、本発明の主要な課題は、路面の勾配を推定するための車体の前後加速度より車輌の旋回に起因する誤差成分を除去することにより、車輌が旋回しながら坂道を走行するような場合にも路面の勾配を正確に推定することである。
【0008】
【課題を解決するための手段】
上述の主要な課題は、本発明によれば、車体の前後加速度を検出する手段と、車輪速度に基づき車体の前後加速度を推定する手段と、車体の横加速度を検出する手段と、車体のヨーレートを検出する手段と、車速を検出する手段と、車体の横加速度、車体のヨーレート、車速に基づき車体の横すべり速度を演算し、車体の横すべり速度及び車速に基づき車体のスリップ角を推定する手段と、車体の横加速度及び車体のスリップ角に基づき検出された車体の前後加速度に対する補正量を演算すると共に検出された車体の前後加速度を前記補正量にて補正する手段と、補正された車体の前後加速度と推定された車体の前後加速度との差分に基づき路面の勾配を推定する手段とを有することを特徴とする路面勾配推定装置(請求項1の構成)によって達成される。
また本発明によれば、上記請求項1の構成に於いて、前記前後加速度推定手段は非操舵輪の車輪速度に基づき車体の前後加速度を推定するよう構成される(請求項2の構成)。
また本発明によれば、上記請求項1の構成に於いて、前記前後加速度推定手段は車輪速度に基づき車輌の重心に於ける車体の前後速度を推定し、該前後速度に基づき車体の前後加速度を推定するよう構成される(請求項3の構成)。
【0009】
上記請求項1の構成によれば、車体の横加速度、車体のヨーレート、車速に基づき車体の横すべり速度が演算され、車体の横すべり速度及び車速に基づき車体のスリップ角が推定され、車体の横加速度及び車体のスリップ角に基づき検出された車体の前後加速度に対する補正量が演算され、検出された車体の前後加速度が該補正量にて補正され、補正された車体の前後加速度と推定された車体の前後加速度との差分に基づき路面の勾配が推定されるので、車輌が旋回しながら坂道を走行する場合の如く、車体にスリップ角が生じ車輌の求心加速度の方向が車輌の上方より見て車輌横方向に対し傾斜している場合にも、その影響が車体の前後加速度の検出値より除去され、これにより従来に比して正確に路面の勾配が推定される。
【0010】
また後に詳細に説明する如く、車輌が旋回しながら坂道を走行する場合にも、非操舵輪の車輪速度は操舵輪の車輪速度よりも車体の前後速度との対応関係がよいので、非操舵輪の車輪速度に基づき推定される車体の前後加速度は操舵輪の車輪速度や操舵輪を含む車輪の車輪速度に基づき推定される車体の前後加速度よりも車輌の実際の加減速による車体の前後加速度に近い。
【0011】
上記請求項2の構成によれば、上記請求項1の構成に於いて、非操舵輪の車輪速度に基づき車体の前後加速度が推定されるので、車体の前後加速度が操舵輪の車輪速度や操舵輪を含む車輪の車輪速度に基づき推定される場合に比して正確に路面の勾配が推定される。
【0012】
また上記請求項3の構成によれば、上記請求項1の構成に於いて、車輪速度に基づき車輌の重心に於ける車体の前後速度が推定され、該前後速度に基づき車体の前後加速度が推定されるので、車体の前後加速度が操舵輪の車輪速度や操舵輪を含む車輪の車輪速度に基づき推定される場合に比して正確に路面の勾配が推定される。
【0013】
【課題解決手段の好ましい態様】
本発明の一つの好ましい態様によれば、上記請求項1の構成に於いて、検出された車体の前後加速度及び横加速度をそれぞれGx及びGyとし、車体のスリップ角をβとして、補正量はGy・tanβにて演算され、車体の前後加速度Gxは補正量Gy・tanβが加算されることにより補正されるよう構成される(好ましい態様1)。
【0014】
本発明の他の一つの好ましい態様によれば、上記好ましい態様1の構成に於いて、車輪速度に基づき車体の前後加速度を推定する手段は車輌の非制動時には従動輪の車輪速度に基づき車体の前後加速度を推定し、車輌の制動時には四輪の車輪速度の最大値又は後輪の車輪速度に基づき車体の前後加速度を推定するよう構成される(好ましい態様2)。
【0015】
本発明の他の一つの好ましい態様によれば、上記請求項2の構成に於いて、車輌は前輪操舵の後輪駆動車であり、前後加速度推定手段は車輌の非制動時には左右前輪の車輪速度のうち高い方の車輪速度に基づき車体の前後加速度を推定し、車輌の制動時には四輪の車輪速度のうち最も高い車輪速度に基づき車体の前後加速度を推定するよう構成される(好ましい態様3)。
【0016】
本発明の他の一つの好ましい態様によれば、上記請求項2の構成に於いて、車輌は前輪操舵の前輪駆動車であり、前後加速度推定手段は車輌が制動中であるか否かに関係なく左右後輪の車輪速度のうち高い方の車輪速度に基づき車体の前後加速度を推定するよう構成される(好ましい態様4)。
【0017】
本発明の他の一つの好ましい態様によれば、上記請求項3の構成に於いて、前後加速度推定手段は従動輪の車輪速度に基づき車輌の重心に於ける車体の前後速度を推定し、該前後速度に基づき車体の前後加速度を推定するよう構成される(好ましい態様5)。
【0018】
本発明の他の一つの好ましい態様によれば、上記請求項3の構成に於いて、前後加速度推定手段は四輪の車輪速度に基づき車輌の重心に於ける各車輪に対応する四つの車体の前後速度を推定し、車輌の非制動時には四つの前後速度のうち最も低い前後速度に基づき車体の前後加速度を推定し、車輌の制動時には四つの前後速度のうち最も高い前後速度に基づき車体の前後加速度を推定するよう構成される(好ましい態様6)。
【0019】
【発明の実施の形態】
以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。
【0020】
第一の実施形態
図1は後輪駆動車に適用された本発明による路面勾配推定装置の第一の好ましい実施形態を示す概略構成図である。
【0021】
図1に於て、10FL及び10FRはそれぞれ車輌12の左右の前輪を示し、10RL及び10RRはそれぞれ車輌の駆動輪である左右の後輪を示している。従動輪であり操舵輪でもある左右の前輪10FL及び10FRは運転者によるステアリングホイール14の転舵に応答して駆動されるラック・アンド・ピニオン式のパワーステアリング装置16によりタイロッド18L 及び18R を介して操舵される。
【0022】
各車輪の制動力は制動装置20の油圧回路22によりホイールシリンダ24FR、24FL、24RR、24RLの制動圧が制御されることによって制御されるようになっている。図には示されていないが、油圧回路22はオイルリザーバ、オイルポンプ、ホイールシリンダ内の圧力を増減するための増減圧制御弁の如き種々の弁装置等を含み、各ホイールシリンダの制動圧は通常時には運転者によるブレーキペダル26の踏み込み操作に応じて駆動されるマスタシリンダ28により制御され、また必要に応じて後に詳細に説明する如く電気式制御装置30により増減圧制御弁が開閉制御されることによって制御される。
【0023】
車輪10FR〜10RLにはそれぞれ対応する車輪の車輪速度Vwi(i=fr、fl、rr、rl)を周速度として検出する車輪速度センサ32FR〜32RLが設けられている。また車輌12にはそれぞれ車速Vを検出する車速センサ34、車輌のヨーレートγを検出するヨーレートセンサ36、前後加速度Gxを検出する前後加速度センサ38、横加速度Gyを検出する横加速度センサ40が設けられている。尚ヨーレートセンサ36及び横加速度センサ40は車輌の右旋回方向を正としてそれぞれヨーレート及び横加速度を検出し、前後加速度センサ38は車輌の加速方向を正として前後加速度を検出する。
【0024】
図示の如く、車輪速度センサ32FR〜32RLにより検出された車輪速度Vwiを示す信号、車速センサ34により検出された車速Vを示す信号、ヨーレートセンサ36により検出されたヨーレートγを示す信号、前後加速度センサ38により検出された前後加速度Gxを示す信号、横加速度センサ40により検出された横加速度Gyを示す信号は電気式制御装置30に入力される。
【0025】
尚図には詳細に示されていないが、電気式制御装置30は例えばCPUとROMとRAMと入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続された一般的な構成のマイクロコンピュータを含んでいる。
【0026】
電気式制御装置30は、後述の如く図2に示されたフローチャートに従い、車速V等に基づき車体のスリップ角βを演算し、検出された車体の前後加速度Gxを車体の横加速度Gy及び車体のスリップ角βに基づく補正量にて補正することにより補正後の車体の前後加速度Gx′を演算し、車輪速度Vwiに基づき車体の推定前後加速度Vwdを演算し、補正後の車体の前後加速度Gx′と車体の推定前後加速度Vwdとの差分に基づき路面の勾配θを推定演算する。
【0027】
また電気式制御装置30は、図には示されていないが、車輌の走行状態に基づき車輌のスピンの程度を示すスピン状態量及び車輌のドリフトアウトの程度を示すドリフトアウト状態量を演算し、スピン状態量及びドリフトアウト状態量に基づき挙動制御の各車輪の目標スリップ率を演算し、各車輪のスリップ率が目標スリップ率になるよう各車輪の制動力を制御し、これにより車輌の挙動を安定化させる。
【0028】
尚車輌の挙動制御自体は本発明の要旨をなすものではなく、挙動制御は当技術分野に於いて公知の任意の要領にて実行されてよく、また本発明の路面勾配の推定は挙動制御以外の車輌の任意の制御に適用されてよい。
【0029】
次に図2に示されたフローチャートを参照して第一の実施形態に於ける路面勾配推定ルーチンについて説明する。尚図2に示されたフローチャートによる制御は図には示されていないイグニッションスイッチの閉成により開始され、所定の時間毎に繰返し実行される。
【0030】
まずステップ10に於いては車輪速度Vwiを示す信号等の読み込みが行われ、ステップ20に於いては横加速度Gyと車速V及びヨーレートγの積γVとの偏差Gy−γVとして横加速度の偏差、即ち車輌の横すべり加速度Vydが演算され、横すべり加速度Vydが積分されることにより車体の横すべり速度Vyが演算され、更に車体の前後速度Vx(=車速V)に対する車体の横すべり速度Vyの比Vy/Vxとして車体のスリップ角βが演算される。
【0031】
ステップ30に於いては下記の式1に従って車体のスリップ角βに起因して車体の求心加速度が車体の前後加速度Gxに与える影響が排除された補正後の車体の前後加速度Gx′が演算される。
Gx′=Gx+Gy・tanβ ……(1)
【0032】
ステップ40に於いては例えば図には示されていないストップランプスイッチがオン状態にあるか否かの判別により車輌が制動状態にあるか否かの判別が行われ、否定判別が行われたときにはステップ50に於いて左右前輪の車輪速度Vwfl及びVwfrのうちの大きい方の値に基づきその微分値として車体の推定前後加速度Vwdが演算され、肯定判別が行われたときにはステップ60に於いて四輪の車輪速度Vwiのうちの最も大きい値に基づきその微分値として車体の推定前後加速度Vwdが演算される。
【0033】
ステップ100に於いては補正後の車体の前後加速度Gx′及び車体の推定前後加速度Vwdに基づき下記の式2に従って路面の勾配θが演算される。
θ=arcsin(Gx′−Vwd) ……(2)
【0034】
かくして図示の第一の実施形態によれば、ステップ20に於いて車体のスリップ角βが演算され、ステップ30に於いて車体のスリップ角βに起因して車体の求心加速度が車体の前後加速度Gxに与える影響が排除された補正後の車体の前後加速度Gx′が演算される。そして車輌が非制動状態にあるときにはステップ50に於いて非駆動輪である左右前輪の車輪速度Vwfl及びVwfrのうちの大きい方の値に基づき車体の推定前後加速度Vwdが演算され、車輌が制動状態にあるときにはステップ60に於いて四輪の車輪速度Vwiのうちの最も大きい値に基づき車体の推定前後加速度Vwdが演算され、ステップ100に於いて補正後の車体の前後加速度Gx′と車体の推定前後加速度Vwdとの差分に基づき路面の勾配θが演算される。
【0035】
図5に示されている如く、車輌が旋回する際には車体速度Vbの方向が車輌の前後方向に対し傾斜することにより車体にスリップ角βが生じ、車体の求心加速度Gcは車輌の上方より見て車輌横方向に対し傾斜するため、前後加速度センサ38の検出値Gxにはこの求心加速度Gcの車輌前後方向の成分(Gy・tanβ)が含まれ、車輌の加減速による車体の前後加速度をGbxとし、路面の傾斜に起因する車体の前後加速度をGixとすると、GxはGbx+Gix−Gy・tanβである。従って従来の路面勾配推定装置に於いては車輌が旋回状態にて坂道を走行する場合に求心加速度Gcの車輌前後方向の成分による誤差に起因して路面の勾配を正確に推定することができない。
【0036】
これに対し図示の第一の実施形態によれば、求心加速度Gcの車輌前後方向の成分(Gy・tanβ)が除去された補正後の車体の前後加速度Gx′、即ち車輌の加減速及び路面の傾斜に起因する重力の路面方向の成分(Gbx+Gix)を示す補正後の車体の前後加速度が演算され、該補正後の車体の前後加速度Gx′に基づき路面の勾配が推定されるので、従来に比して車輌が旋回状態にて坂道を走行する場合にも路面の勾配を高精度に推定することができる。
【0037】
特に図示の第一の実施形態によれば、車輌が非制動状態にあるときには従動輪である左右前輪の車輪速度Vwfl及びVwfrのうちの大きい方の値に基づき車体の推定前後加速度Vwdが演算され、車輌が制動状態にあるときには四輪の車輪速度Vwiのうちの最も大きい値に基づき車体の推定前後加速度Vwdが演算されるので、例えば車輌が制動状態にあるか否かに拘わらず左右前輪の車輪速度Vwfl及びVwfrのうちの大きい方の値又は四輪の車輪速度Vwiのうちの最も大きい値に基づき車体の推定前後加速度Vwdが演算される場合に比して、正確に車体の推定加速度を演算することができ、このことによっても路面勾配を高精度に推定することができる。
【0038】
尚上述の第一の実施形態に於いては、車輌が非制動状態にあるときにはステップ50に於いて左右前輪の車輪速度Vwfl及びVwfrのうちの大きい方の値に基づき車体の推定前後加速度Vwdが演算され、車輌が制動状態にあるときにはステップ60に於いて四輪の車輪速度Vwiのうちの最も大きい値に基づき車体の推定前後加速度Vwdが演算されるようになっているが、ステップ50に於いて左右前輪の車輪速度Vwfl及びVwfrに基づきそれぞれ車体の推定前後加速度が演算され、車体の推定前後加速度Vwdがそれらの平均値として演算され、またステップ60に於いて四輪の車輪速度Vwiのうちの最も大きい値及びその次に大きい値に基づきそれぞれ車体の推定前後加速度が演算され、車体の推定前後加速度Vwdがそれらの平均値として演算されされるよう修正されてもよい(修正例1−1)。
【0039】
第二の実施形態
図3は前輪駆動車に適用された本発明による路面勾配推定装置の第二の実施形態に於ける路面勾配推定ルーチンを示すフローチャートである。
【0040】
尚図3に示されたフローチャートによる制御も図には示されていないイグニッションスイッチの閉成により開始され、所定の時間毎に繰返し実行される。また図3に於いて、図2に示されたステップに対応するステップには図2に於いて付されたステップ番号と同一のステップ番号が付されている。これらのことは後述の第三の実施形態(図4)についても同様である。
【0041】
この第二の実施形態に於いては、ステップ30の次に実行されるステップ70に於いて推定車体速度Vbwは従動輪である左右後輪の車輪速度Vwrl及びVwrrのうち大きい方の値に基づき演算され、他の点については上述の第一の実施形態と同様にして路面の勾配θが演算される。
【0042】
図6(A)に示されている如く、車輌の旋回時には前輪の移動方向は車輌12の重心102の移動方向と大きく異なり、そのため前輪の車輪速度の微分により得られる車体の推定前後加速度は車輌12の重心102に於ける車体の前後加速度と一致せず、従ってこの点からも従来の路面勾配推定装置によっては車輌が旋回状態にて坂道を走行する場合に路面の勾配を高精度に推定することができない。
【0043】
図6(B)に示されている如く、非操舵輪である後輪に着目すると、後輪は車体の前後速度Vxと同一の速度Vwrxにて車輌前方に移動した後、結果的に移動速度が後輪の移動速度になるよう横滑りにより速度Vwryにて車輌横方向に移動すると考えることができ、車輪速度センサ32RR等はVwrxを検出するので、後輪の車輪速度に基づき演算される車体の推定前後加速度Vwdは車輌の加減速による加速度を反映する値である。
【0044】
図示の第二の実施形態によれば、上述の第一の実施形態の場合と同様、求心加速度の車輌前後方向の成分が除去された補正後の車体の前後加速度Gx′が演算されると共に、車体の推定前後加速度Vwdは非操舵輪である左右後輪の車輪速度Vwrl又はVwrrに基づき演算されるので、車体の推定前後加速度Vwdが操舵輪である前輪の車輪速度に基づき演算される場合に比して正確に路面の勾配を推定することができる。
【0045】
また一般に、車輌の制動時には車輪に制動スリップが生じて従動輪の車輪速度が車体速度よりも小さくなり、車輌の非制動時には従動輪の車輪速度が車体速度よりも高くなることはないので、従動輪である左右後輪の車輪速度のうち大きい方の値の方が車体の前後速度との対応性が高い。従って左右後輪の車輪速度のうち大きい方の値に基づき演算される車体の推定前後加速度は左右後輪の車輪速度のうち小さい方の値に基づき演算される車体の推定前後加速度よりも車輌の加減速を良好に反映する。
【0046】
図示の第二の実施形態によれば、車体の推定前後加速度Vwdは左右後輪の車輪速度Vwrl及びVwrrのうち大きい方の値に基づき演算されるので、車体の推定前後加速度Vwdが左右後輪の車輪速度Vwrl及びVwrrのうち小さい方の値に基づき演算される場合に比して正確に路面の勾配を推定することができる。
【0047】
尚上述の第二の実施形態に於いては、ステップ70に於いて車体の推定前後加速度Vwdは従動輪である左右後輪の車輪速度Vwrl及びVwrrのうち大きい方の値に基づき演算されるようになっているが、左右後輪の車輪速度Vwrl及びVwrrに基づきそれぞれ推定前後加速度が演算され、車体の推定前後加速度Vwdがそれらの平均値として演算されるよう修正されてもよい(修正例2−1)。
【0048】
第三の実施形態
図4は前輪駆動車に適用された本発明による路面勾配推定装置の第三の実施形態に於ける路面勾配推定ルーチンを示すフローチャートである。
【0049】
図7に示されている如く、左右の車輪のスリップ角は等しいと仮定し、操舵角をδとすると、左右前輪のスリップ角βfl、βfr(前輪100fのスリップ角βf)及び左右後輪のスリップ角βrl、βrr(後輪100rのスリップ角βr)をそれぞれ下記の式3及び4により求めることができる。
【0050】
【数1】

Figure 0003662187
【0051】
操舵角δ等を使用して各車輪の車輪速度Vwiに基づく車輌の重心102の位置に於ける前後速度Vbwi(i=fr、fl、rr、rl)を演算することができる。例えば右前輪については図8に示されている如く下記の式5及び6が成立する。
【0052】
【数2】
Figure 0003662187
【0053】
上記式5及び6より、右前輪の車輪速度に基づく前後速度Vbwfrは下記の式7により求められ、同様にして左前輪の車輪速度に基づく前後速度Vbwflは下記の式8により求められる。
【0054】
【数3】
Figure 0003662187
【0055】
また右後輪及び左後輪の車輪速度に基づく前後速度Vbwfr及びVbwflはそれぞれ下記の式9及び10により求められる。
【0056】
【数4】
Figure 0003662187
【0057】
この第三の実施形態に於いては、ステップ30の次に実行されるステップ35に於いて各車輪の車輪速度Vwiに基づき車輌の重心102に於ける車体の前後速度Vbwiが演算され、車輌の非制動時にはステップ80に於いて前後速度Vbwiのうち最も小さい値に基づき車体の推定前後加速度Vbwdが演算され、車輌の制動時にはステップ90に於いて前後速度Vbwiのうち最も大きい値に基づき車体の推定前後加速度Vbwdが演算され、他の点については上述の第一の実施形態と同様にして路面の勾配θが演算される。
【0058】
かくして図示の第三の実施形態によれば、各車輪の車輪速度Vwiに基づき車輌の重心102に於ける車体の前後速度Vbwiが演算され、車輌の非制動時には前後速度Vbwiのうち最も小さい値、即ち加速スリップが最も小さい値に基づき車体の推定前後加速度Vbwdが演算され、車輌の制動時には前後速度Vbwiのうち最も大きい値、即ち制動スリップが最も小さい値に基づき車体の推定前後加速度Vbwdが演算されるので、車輌の旋回時にも車輌の加減速による車体の前後加速度を正確に演算することができ、これにより従来の勾配推定装置の場合に比して正確に路面勾配を推定することができる。
【0059】
尚上述の第三の実施形態に於いては、車輌の非制動時にはステップ80に於いて前後速度Vbwiのうち最も小さい値に基づき車体の推定前後加速度Vbwdが演算され、車輌の制動時にはステップ90に於いて前後速度Vbwiのうち最も大きい値に基づき車体の推定前後加速度Vbwdが演算されるようになっているが、ステップ80に於いて前後速度Vbwiのうち最も小さい値及びその次に小さい値に基づきそれぞれ車体の推定前後加速度が演算され、車体の推定前後加速度Vbwdがそれらの平均値として演算され、ステップ90に於いて前後速度Vbwiのうち最も大きい値及びその次に大きい値に基づきそれぞれ車体の推定前後加速度が演算され、車体の推定前後加速度Vbwdがそれらの平均値として演算されるよう修正されてもよい(修正例3−1)。
【0060】
また上述の第三の実施形態に於いては、車輌は前輪駆動車であるが、この実施形態は後輪駆動車や四輪駆動車に適用されてもよく(修正例3−2)、また車体の推定前後加速度Vbwdは前後速度Vbwiに基づき演算される四つの車体の推定前後加速度の平均値として演算されてもよく(修正例3−3)、更には前後速度Vbwiに基づき演算される四つの車体の推定前後加速度のうち二番目及び三番目に大きい推定前後加速度の平均値として演算されてもよい(修正例3−4)。
【0061】
以上に於いては本発明を特定の実施形態について詳細に説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであろう。
【0062】
例えば図示の各実施形態に於いては、車体のスリップ角βは車速V等に基づき演算されるようになっているが、車体のスリップ角βは検出により求められてもよい。
【0063】
また図示の各実施形態に於いては、車速Vが車速センサ34により検出され、車体のスリップ角βの演算に際し車体の前後速度Vxとして車速Vが使用されるるようになっているが、車体のスリップ角βの演算に使用される車体の前後速度Vxは各実施形態に於いて前回演算された車体の前後速度Vxが使用されるよう修正されてもよい。
【0064】
また図示の各実施形態に於いては、車輌が登坂状態にあるか降坂状態にあるかは考慮されていないが、前回の路面勾配の推定値やエンジンの出力トルクと車輌の前後加速度との関係等に基づき車輌が登坂状態にあるか降坂状態にあるかが判定され、その判定結果に応じて車体の推定前後速度Vxの推定に使用される車輪速度が変更されるよう修正されてもよい。
【0065】
【発明の効果】
以上の説明より明らかである如く、本発明によれば、車体の横加速度、車体のヨーレート、車速に基づき車体の横すべり速度が演算され、車体の横すべり速度及び車速に基づき車体のスリップ角が推定され、車体の横加速度及び車体のスリップ角に基づき車輌の旋回に起因する誤差成分が演算されるので、車輌の旋回に起因する誤差成分を正確に演算することができ、路面の勾配を推定するための車体の前後加速度より車輌の旋回に起因する誤差成分を正確に除去することができ、これにより車輌が旋回しながら坂道を走行するような場合にも路面の勾配を正確に推定することができる。
【図面の簡単な説明】
【図1】後輪駆動車に適用された本発明による路面勾配推定装置の第一の好ましい実施形態を示す概略構成図である。
【図2】第一の実施形態に於ける路面勾配推定ルーチンを示すフローチャートである。
【図3】前輪駆動車に適用された本発明による路面勾配推定装置の第二の好ましい実施形態に於ける路面勾配推定ルーチンを示すフローチャートである。
【図4】後輪駆動車に適用された本発明による路面勾配推定装置の第三の好ましい実施形態に於ける路面勾配推定ルーチンを示すフローチャートである。
【図5】車輌の旋回時に車輌の求心加速度が車体の前後加速度に与える影響を示す説明図である。
【図6】車輌の旋回時に於ける車体及び各車輪の移動方向を示す説明図(A)及び車輌の旋回時に於ける後輪の移動を示す説明図である。
【図7】車体のスリップ角β等に基づき各車輪のスリップ角βiを演算する要領を示す説明図である。
【図8】各車輪の車輪速度Vwiに基づき車輌の重心に於ける前後速度Vbwiを演算する要領を示す説明図である。
【符号の説明】
10FR〜10RL…車輪
20…制動装置
28…マスタシリンダ
30…電気式制御装置
32FR〜32RL…車輪速度センサ
34……車速センサ
36…ヨーレートセンサ
38…前後加速度センサ
40…横加速度センサ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a road surface gradient estimation device, and more particularly, to a road surface gradient estimation device that estimates a road surface gradient based on detected vehicle body longitudinal acceleration and vehicle body longitudinal acceleration estimated from wheel speed.
[0002]
[Prior art]
As one of devices for estimating the road surface gradient in a vehicle such as an automobile, as disclosed in, for example, Japanese Patent Laid-Open No. 5-272974, the wheel speed and the longitudinal acceleration of the vehicle body are detected, and the vehicle body is based on the wheel speed. 2. Description of the Related Art Conventionally, a road surface gradient estimation device configured to estimate a road surface gradient and to estimate a road surface gradient based on a difference between the detected longitudinal acceleration of the vehicle body and the estimated longitudinal acceleration of the vehicle body is conventionally known.
[0003]
Generally, the longitudinal acceleration detection means for detecting the longitudinal acceleration of the vehicle body such as the longitudinal acceleration detection sensor includes an inertia weight, and detects the longitudinal acceleration of the vehicle body by detecting a force acting on the inertia weight in the longitudinal direction of the vehicle. Therefore, when a vehicle climbs or descends a hill, the vehicle body tilts with respect to the horizontal direction, so that a component along the road surface of gravity acts on the inertial weight, and this component is Proportional to the slope. Further, this component is detected by the longitudinal acceleration detection sensor without being distinguished from the true longitudinal acceleration of the vehicle, whereas the longitudinal acceleration of the vehicle body estimated based on the wheel speed is not affected by the road surface gradient. Therefore, the difference between these longitudinal accelerations corresponds to the component in the direction along the road surface of gravity acting on the inertial weight.
[0004]
According to the road surface gradient estimation device described in the above publication, the road surface gradient is estimated based on the difference between the detected longitudinal acceleration of the vehicle body and the estimated longitudinal acceleration of the vehicle body. Can be estimated.
[0005]
[Problems to be solved by the invention]
In general, when the vehicle travels on a slope while turning, a slip angle is generated in the vehicle body, and the direction of centrifugal force acting on the vehicle is inclined with respect to the lateral direction of the vehicle as viewed from above the vehicle. The longitudinal force component of the centrifugal force acts on the inertia weight of the acceleration detecting means. Therefore, the detected value of the longitudinal acceleration detecting means includes the longitudinal component of the centripetal acceleration corresponding to the centrifugal force component in the longitudinal direction of the vehicle. included. However, the vehicle longitudinal component of the centripetal acceleration is not caused by the acceleration / deceleration of the vehicle or the gradient of the road surface, and does not change according to the gradient of the road surface. In this case, there is a problem that the slope of the road surface cannot be accurately estimated when the vehicle travels on a slope while turning.
[0006]
When the vehicle turns on a slope while turning, the rotational movement direction of the steering wheel is different from the longitudinal direction of the vehicle body, and the wheel speed of the steering wheel does not match the actual longitudinal velocity of the vehicle body. The longitudinal acceleration of the vehicle body estimated based on the wheel speed and the wheel speed of the wheels including the steered wheels also does not coincide with the actual longitudinal acceleration of the vehicle body. For this reason, the road surface gradient cannot be accurately estimated.
[0007]
The present invention detects the wheel speed and the longitudinal acceleration of the vehicle body, estimates the longitudinal acceleration of the vehicle body based on the wheel speed, and determines the road surface gradient based on the difference between the detected longitudinal acceleration of the vehicle body and the estimated longitudinal acceleration of the vehicle body. The present invention has been made in view of the above-described problems in the conventional road surface gradient estimation device configured to estimate the road surface, and the main problem of the present invention is from the longitudinal acceleration of the vehicle body for estimating the road surface gradient. By removing the error component resulting from the turning of the vehicle, the road surface gradient is accurately estimated even when the vehicle travels on a slope while turning.
[0008]
[Means for Solving the Problems]
  According to the present invention, the main problems described above are the means for detecting the longitudinal acceleration of the vehicle body, the means for estimating the longitudinal acceleration of the vehicle body based on the wheel speed, the means for detecting the lateral acceleration of the vehicle body,A means for detecting the yaw rate of the vehicle body, a means for detecting the vehicle speed, a lateral slip speed of the vehicle body is calculated based on the lateral acceleration of the vehicle body, the yaw rate of the vehicle body, and the vehicle speed, and based on the lateral slip speed of the vehicle body and the vehicle speed.Means for estimating the slip angle of the vehicle body, and a correction amount for the longitudinal acceleration of the vehicle body detected based on the lateral acceleration of the vehicle body and the slip angle of the vehicle body are calculated, and the detected longitudinal acceleration of the vehicle body is corrected by the correction amount. Means for estimating a road surface gradient based on a difference between the corrected longitudinal acceleration of the vehicle body and the estimated longitudinal acceleration of the vehicle body. (Structure of claim 1))This is achieved.
  According to the invention, in the configuration of claim 1, the longitudinal acceleration estimating means is configured to estimate the longitudinal acceleration of the vehicle body based on the wheel speed of the non-steered wheels (configuration of claim 2).
  According to the invention, the longitudinal acceleration estimating means estimates the longitudinal speed of the vehicle body at the center of gravity of the vehicle based on the wheel speed, and the longitudinal acceleration of the vehicle body based on the longitudinal speed. (Embodiment 3).
[0009]
  According to the configuration of claim 1 above,The side slip speed of the vehicle body is calculated based on the lateral acceleration of the vehicle body, the yaw rate of the vehicle body, and the vehicle speed, and the slip angle of the vehicle body is estimated based on the side slip speed of the vehicle body and the vehicle speed.A correction amount for the longitudinal acceleration of the vehicle body detected based on the lateral acceleration of the vehicle body and the slip angle of the vehicle body is calculated, and the detected longitudinal acceleration of the vehicle body is corrected by the correction amount, and the corrected longitudinal acceleration of the vehicle body is estimated. Since the slope of the road surface is estimated based on the difference between the longitudinal acceleration and the longitudinal acceleration of the vehicle body, a slip angle is generated in the vehicle body, and the direction of the centripetal acceleration of the vehicle is higher than the upper side of the vehicle as in the case of traveling on a slope while the vehicle is turning. Even when the vehicle is inclined with respect to the lateral direction of the vehicle, the influence is removed from the detected value of the longitudinal acceleration of the vehicle body, and thereby the road surface gradient is estimated more accurately than in the past.
[0010]
As will be described in detail later, even when the vehicle travels on a slope while turning, the wheel speed of the non-steering wheel has a better correspondence with the longitudinal speed of the vehicle body than the wheel speed of the steering wheel. The longitudinal acceleration of the vehicle body estimated based on the wheel speed of the vehicle is greater than the longitudinal acceleration of the vehicle body due to the actual acceleration / deceleration of the vehicle, rather than the longitudinal acceleration of the vehicle body estimated based on the wheel speed of the steering wheel and the wheels including the steering wheel. close.
[0011]
  According to the configuration of claim 2 above,In the configuration of claim 1 above,Since the longitudinal acceleration of the vehicle body is estimated based on the wheel speed of the non-steering wheel, the road surface is more accurate than when the longitudinal acceleration of the vehicle body is estimated based on the wheel speed of the steering wheel and the wheel speed including the steering wheel. Is estimated.
[0012]
  Moreover, according to the structure of the said Claim 3,In the configuration of claim 1 above,Since the longitudinal speed of the vehicle body at the center of gravity of the vehicle is estimated based on the wheel speed, and the longitudinal acceleration of the vehicle body is estimated based on the longitudinal speed, the longitudinal acceleration of the vehicle body is determined based on the wheel speed of the steering wheel and the wheel including the steering wheel. The road surface gradient is estimated more accurately than when estimated based on the wheel speed.
[0013]
[Preferred embodiment of the problem solving means]
According to one preferred aspect of the present invention, in the configuration of claim 1, the detected longitudinal acceleration and lateral acceleration of the vehicle body are Gx and Gy, the slip angle of the vehicle body is β, and the correction amount is Gy. Calculated by tanβ, and the longitudinal acceleration Gx of the vehicle body is corrected by adding a correction amount Gy · tanβ (preferred aspect 1).
[0014]
According to another preferred aspect of the present invention, in the configuration of the preferred aspect 1, the means for estimating the longitudinal acceleration of the vehicle body based on the wheel speed is based on the wheel speed of the driven wheel when the vehicle is not braked. The longitudinal acceleration is estimated, and the longitudinal acceleration of the vehicle body is estimated based on the maximum value of the wheel speeds of the four wheels or the wheel speed of the rear wheels when the vehicle is braked (preferred aspect 2).
[0015]
According to another preferred aspect of the present invention, in the configuration of claim 2, the vehicle is a rear wheel drive vehicle for front wheel steering, and the longitudinal acceleration estimating means is configured to adjust the wheel speeds of the left and right front wheels when the vehicle is not braked. The vehicle body longitudinal acceleration is estimated based on the higher wheel speed of the vehicle, and the vehicle body longitudinal acceleration is estimated based on the highest wheel speed of the four wheel speeds when the vehicle is braked (preferred aspect 3). .
[0016]
According to another preferred aspect of the present invention, in the configuration of claim 2, the vehicle is a front wheel drive vehicle for front wheel steering, and the longitudinal acceleration estimation means relates to whether or not the vehicle is braking. Instead, the longitudinal acceleration of the vehicle body is estimated based on the higher wheel speed of the left and right rear wheel speeds (preferred aspect 4).
[0017]
According to another preferred aspect of the present invention, in the configuration of claim 3, the longitudinal acceleration estimating means estimates the longitudinal speed of the vehicle body at the center of gravity of the vehicle based on the wheel speed of the driven wheel, and The vehicle is configured to estimate the longitudinal acceleration of the vehicle body based on the longitudinal velocity (preferred aspect 5).
[0018]
According to another preferred aspect of the present invention, in the configuration of claim 3, the longitudinal acceleration estimating means is configured to detect four vehicle bodies corresponding to each wheel at the center of gravity of the vehicle based on the wheel speed of the four wheels. Estimates the longitudinal speed, estimates the longitudinal acceleration of the vehicle body based on the lowest longitudinal speed of the four longitudinal speeds when the vehicle is not braking, and estimates the longitudinal speed of the vehicle based on the highest longitudinal speed among the four longitudinal speeds when braking the vehicle. It is configured to estimate acceleration (preferred aspect 6).
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will now be described in detail with reference to a few preferred embodiments with reference to the accompanying drawings.
[0020]
First embodiment
FIG. 1 is a schematic configuration diagram showing a first preferred embodiment of a road surface gradient estimating apparatus according to the present invention applied to a rear wheel drive vehicle.
[0021]
In FIG. 1, 10FL and 10FR respectively indicate the left and right front wheels of the vehicle 12, and 10RL and 10RR respectively indicate the left and right rear wheels which are drive wheels of the vehicle. The left and right front wheels 10FL and 10FR, which are both driven wheels and steering wheels, are driven through tie rods 18L and 18R by a rack and pinion type power steering device 16 driven in response to the steering of the steering wheel 14 by the driver. Steered.
[0022]
The braking force of each wheel is controlled by controlling the braking pressure of the wheel cylinders 24FR, 24FL, 24RR, 24RL by the hydraulic circuit 22 of the braking device 20. Although not shown in the drawing, the hydraulic circuit 22 includes various valve devices such as an oil reservoir, an oil pump, and a pressure increasing / decreasing control valve for increasing / decreasing the pressure in the wheel cylinder. Normally, the control is performed by a master cylinder 28 that is driven in accordance with the depression operation of the brake pedal 26 by the driver, and the pressure increase / decrease control valve is controlled to open / close by an electric control device 30 as will be described in detail later if necessary. Is controlled by
[0023]
Wheel speed sensors 32FR to 32RL that detect wheel speeds Vwi (i = fr, fl, rr, rl) of the corresponding wheels as peripheral speeds are provided on the wheels 10FR to 10RL, respectively. The vehicle 12 is provided with a vehicle speed sensor 34 for detecting the vehicle speed V, a yaw rate sensor 36 for detecting the yaw rate γ of the vehicle, a longitudinal acceleration sensor 38 for detecting the longitudinal acceleration Gx, and a lateral acceleration sensor 40 for detecting the lateral acceleration Gy. ing. The yaw rate sensor 36 and the lateral acceleration sensor 40 detect the yaw rate and the lateral acceleration, respectively, with the vehicle turning right as positive, and the longitudinal acceleration sensor 38 detects the longitudinal acceleration with the vehicle acceleration direction as positive.
[0024]
As shown in the figure, a signal indicating the wheel speed Vwi detected by the wheel speed sensors 32FR to 32RL, a signal indicating the vehicle speed V detected by the vehicle speed sensor 34, a signal indicating the yaw rate γ detected by the yaw rate sensor 36, a longitudinal acceleration sensor The signal indicating the longitudinal acceleration Gx detected by 38 and the signal indicating the lateral acceleration Gy detected by the lateral acceleration sensor 40 are input to the electric control device 30.
[0025]
Although not shown in detail in the figure, the electric control device 30 has, for example, a general configuration in which a CPU, a ROM, a RAM, and an input / output port device are connected to each other by a bidirectional common bus. Includes a microcomputer.
[0026]
The electric control device 30 calculates the slip angle β of the vehicle body based on the vehicle speed V and the like according to the flowchart shown in FIG. 2 as will be described later, and the detected longitudinal acceleration Gx of the vehicle body is determined as the lateral acceleration Gy of the vehicle body and the vehicle body acceleration Gy. The corrected longitudinal acceleration Gx ′ of the vehicle body is calculated by correcting with the correction amount based on the slip angle β, the estimated longitudinal acceleration Vwd of the vehicle body is calculated based on the wheel speed Vwi, and the corrected longitudinal acceleration Gx ′ of the vehicle body is calculated. The road surface gradient θ is estimated and calculated based on the difference between the vehicle body and the estimated longitudinal acceleration Vwd of the vehicle body.
[0027]
Although not shown in the figure, the electric control device 30 calculates a spin state amount indicating the degree of vehicle spin and a drift-out state amount indicating the degree of vehicle drift-out based on the running state of the vehicle, The target slip rate of each wheel for behavior control is calculated based on the spin state amount and the drift-out state amount, and the braking force of each wheel is controlled so that the slip rate of each wheel becomes the target slip rate. Stabilize.
[0028]
The vehicle behavior control itself does not form the gist of the present invention, and the behavior control may be executed in any manner known in the art, and the estimation of the road surface gradient of the present invention is other than the behavior control. It may be applied to any control of the vehicle.
[0029]
Next, the road surface gradient estimation routine in the first embodiment will be described with reference to the flowchart shown in FIG. The control according to the flowchart shown in FIG. 2 is started by closing an ignition switch not shown in the figure, and is repeatedly executed at predetermined time intervals.
[0030]
First, in step 10, a signal indicating the wheel speed Vwi is read, and in step 20, the deviation of the lateral acceleration as a deviation Gy-γV between the lateral acceleration Gy and the product γV of the vehicle speed V and the yaw rate γ, That is, the side slip acceleration Vyd of the vehicle is calculated, the side slip acceleration Vyd is integrated to calculate the side slip speed Vy of the vehicle body, and the ratio Vy / Vx of the vehicle body side slip velocity Vy to the vehicle body longitudinal speed Vx (= vehicle speed V). The slip angle β of the vehicle body is calculated as follows.
[0031]
In step 30, the corrected longitudinal acceleration Gx ′ of the vehicle body is calculated in accordance with the following equation 1 in which the influence of the centripetal acceleration of the vehicle body on the longitudinal acceleration Gx of the vehicle body is eliminated due to the slip angle β of the vehicle body. .
Gx ′ = Gx + Gy · tanβ (1)
[0032]
In step 40, for example, it is determined whether or not the vehicle is in a braking state by determining whether or not a stop lamp switch (not shown) is in an on state, and when a negative determination is made. In step 50, the estimated longitudinal acceleration Vwd of the vehicle body is calculated as a differential value based on the larger value of the wheel speeds Vwfl and Vwfr of the left and right front wheels. The estimated longitudinal acceleration Vwd of the vehicle body is calculated as a differential value based on the largest value of the wheel speeds Vwi.
[0033]
In step 100, the road surface gradient θ is calculated according to the following equation 2 based on the corrected longitudinal acceleration Gx ′ of the vehicle body and the estimated longitudinal acceleration Vwd of the vehicle body.
θ = arcsin (Gx′−Vwd) (2)
[0034]
Thus, according to the first embodiment shown in the figure, the slip angle β of the vehicle body is calculated in step 20, and the centripetal acceleration of the vehicle body is converted to the longitudinal acceleration Gx of the vehicle body due to the slip angle β of the vehicle body in step 30. The longitudinal acceleration Gx ′ of the vehicle body after correction in which the influence on the vehicle is eliminated is calculated. When the vehicle is in the non-braking state, in step 50, the estimated longitudinal acceleration Vwd of the vehicle body is calculated based on the larger value of the wheel speeds Vwfl and Vwfr of the left and right front wheels, which are non-driving wheels, and the vehicle is in the braking state. In step 60, the estimated longitudinal acceleration Vwd of the vehicle body is calculated based on the largest value of the wheel speeds Vwi of the four wheels in step 60. In step 100, the corrected longitudinal acceleration Gx 'of the vehicle body and the estimation of the vehicle body are corrected. A road surface gradient θ is calculated based on the difference from the longitudinal acceleration Vwd.
[0035]
As shown in FIG. 5, when the vehicle turns, the direction of the vehicle body speed Vb is inclined with respect to the longitudinal direction of the vehicle, so that a slip angle β is generated in the vehicle body, and the centripetal acceleration Gc of the vehicle body is from above the vehicle. The detected value Gx of the longitudinal acceleration sensor 38 includes a vehicle longitudinal component (Gy · tanβ) of the centripetal acceleration Gc, so that the longitudinal acceleration of the vehicle body due to acceleration / deceleration of the vehicle can be calculated. Gx is Gbx + Gix−Gy · tan β where Gbx is the longitudinal acceleration of the vehicle body caused by the road surface inclination and Gix. Therefore, in the conventional road surface gradient estimation device, when the vehicle travels on a slope in a turning state, the road surface gradient cannot be accurately estimated due to an error due to the vehicle longitudinal component of the centripetal acceleration Gc.
[0036]
On the other hand, according to the first embodiment shown in the figure, the corrected longitudinal acceleration Gx ′ of the vehicle body from which the vehicle longitudinal component (Gy · tan β) of the centripetal acceleration Gc is removed, that is, acceleration / deceleration of the vehicle and the road surface The corrected longitudinal acceleration of the vehicle body indicating the component (Gbx + Gix) of the road surface direction of gravity due to the inclination is calculated, and the gradient of the road surface is estimated based on the corrected longitudinal acceleration Gx ′ of the vehicle body. Thus, even when the vehicle travels on a slope in a turning state, the road surface gradient can be estimated with high accuracy.
[0037]
In particular, according to the first embodiment shown in the figure, when the vehicle is in an unbraking state, the estimated longitudinal acceleration Vwd of the vehicle body is calculated based on the larger value of the wheel speeds Vwfl and Vwfr of the left and right front wheels that are driven wheels. When the vehicle is in a braking state, the estimated longitudinal acceleration Vwd of the vehicle body is calculated based on the largest value of the wheel speeds Vwi of the four wheels. For example, regardless of whether the vehicle is in a braking state, Compared to the case where the estimated longitudinal acceleration Vwd of the vehicle body is calculated based on the larger value of the wheel speeds Vwfl and Vwfr or the largest value of the wheel speeds Vwi of the four wheels, the estimated acceleration of the vehicle body can be accurately calculated. The road surface gradient can be estimated with high accuracy.
[0038]
In the first embodiment described above, when the vehicle is in an unbraking state, the estimated longitudinal acceleration Vwd of the vehicle body is determined in step 50 based on the larger value of the wheel speeds Vwfl and Vwfr of the left and right front wheels. When the vehicle is in a braking state, the estimated longitudinal acceleration Vwd of the vehicle body is calculated based on the largest value of the wheel speeds Vwi of the four wheels in step 60. The estimated longitudinal acceleration of the vehicle body is calculated on the basis of the wheel speeds Vwfl and Vwfr of the left and right front wheels, respectively, and the estimated longitudinal acceleration Vwd of the vehicle body is calculated as an average value thereof. The estimated longitudinal acceleration of the vehicle body is calculated based on the largest value and the next largest value of the vehicle body, and the estimated longitudinal acceleration Vwd of the vehicle body is calculated as an average value thereof. It may be modified to (modifications 1-1).
[0039]
Second embodiment
FIG. 3 is a flowchart showing a road surface gradient estimation routine in the second embodiment of the road surface gradient estimation device according to the present invention applied to a front wheel drive vehicle.
[0040]
Note that the control according to the flowchart shown in FIG. 3 is also started by closing an ignition switch (not shown), and is repeatedly executed at predetermined time intervals. In FIG. 3, steps corresponding to the steps shown in FIG. 2 are assigned the same step numbers as the step numbers given in FIG. 2. The same applies to a third embodiment (FIG. 4) described later.
[0041]
In this second embodiment, in step 70 executed after step 30, the estimated vehicle speed Vbw is based on the larger value of the wheel speeds Vwrl and Vwrr of the left and right rear wheels that are driven wheels. For other points, the road surface gradient θ is calculated in the same manner as in the first embodiment.
[0042]
As shown in FIG. 6A, when the vehicle turns, the moving direction of the front wheels is significantly different from the moving direction of the center of gravity 102 of the vehicle 12, and therefore the estimated longitudinal acceleration of the vehicle body obtained by the differentiation of the wheel speed of the front wheels is the vehicle. Accordingly, the longitudinal acceleration of the vehicle body at the center of gravity 102 of 12 does not coincide with the vehicle body. Therefore, from this point as well, depending on the conventional road surface gradient estimation device, the road surface gradient is estimated with high accuracy when the vehicle travels on a slope in a turning state. I can't.
[0043]
As shown in FIG. 6B, when focusing on the rear wheels that are non-steering wheels, the rear wheels move to the front of the vehicle at the same speed Vwrx as the longitudinal speed Vx of the vehicle body, and as a result, the moving speeds. It can be considered that the vehicle moves laterally at a speed Vwry by side slip so that the vehicle speed becomes the moving speed of the rear wheel. Since the wheel speed sensor 32RR and the like detect Vwrx, the vehicle body speed calculated based on the wheel speed of the rear wheel is calculated. The estimated longitudinal acceleration Vwd is a value reflecting acceleration due to acceleration / deceleration of the vehicle.
[0044]
According to the second embodiment shown in the figure, as in the case of the first embodiment described above, the corrected longitudinal acceleration Gx ′ of the vehicle body in which the longitudinal component of the centripetal acceleration is removed is calculated, The estimated longitudinal acceleration Vwd of the vehicle body is calculated based on the wheel speeds Vwrl or Vwrr of the left and right rear wheels that are non-steering wheels. In comparison, the slope of the road surface can be estimated more accurately.
[0045]
In general, when the vehicle is braked, a braking slip occurs on the wheel, and the wheel speed of the driven wheel becomes smaller than the vehicle body speed. When the vehicle is not braked, the wheel speed of the driven wheel does not become higher than the vehicle body speed. The larger value of the wheel speeds of the left and right rear wheels, which are moving wheels, is more compatible with the longitudinal speed of the vehicle body. Therefore, the estimated longitudinal acceleration of the vehicle body calculated based on the larger value of the wheel speeds of the left and right rear wheels is greater than the estimated longitudinal acceleration of the vehicle body calculated based on the smaller value of the wheel speeds of the left and right rear wheels. Reflects acceleration and deceleration well.
[0046]
According to the illustrated second embodiment, the estimated longitudinal acceleration Vwd of the vehicle body is calculated based on the larger value of the wheel speeds Vwrl and Vwrr of the left and right rear wheels. It is possible to accurately estimate the gradient of the road surface as compared with the case where the calculation is based on the smaller one of the wheel speeds Vwrl and Vwrr of the vehicle.
[0047]
In the second embodiment described above, in step 70, the estimated longitudinal acceleration Vwd of the vehicle body is calculated based on the larger value of the wheel speeds Vwrl and Vwrr of the left and right rear wheels as driven wheels. However, the estimated longitudinal acceleration may be calculated based on the wheel speeds Vwrl and Vwrr of the left and right rear wheels, respectively, and the estimated longitudinal acceleration Vwd of the vehicle body may be calculated as an average value thereof (Modification Example 2). -1).
[0048]
Third embodiment
FIG. 4 is a flowchart showing a road surface gradient estimation routine in the third embodiment of the road surface gradient estimation device according to the present invention applied to a front wheel drive vehicle.
[0049]
As shown in FIG. 7, assuming that the slip angles of the left and right wheels are equal and the steering angle is δ, the slip angles βfl and βfr of the left and right front wheels (slip angle βf of the front wheel 100f) and the slips of the left and right rear wheels The angles βrl and βrr (the slip angle βr of the rear wheel 100r) can be obtained by the following equations 3 and 4, respectively.
[0050]
[Expression 1]
Figure 0003662187
[0051]
By using the steering angle δ or the like, the longitudinal speed Vbwi (i = fr, fl, rr, rl) at the position of the center of gravity 102 of the vehicle based on the wheel speed Vwi of each wheel can be calculated. For example, the following formulas 5 and 6 are established for the right front wheel as shown in FIG.
[0052]
[Expression 2]
Figure 0003662187
[0053]
From the above formulas 5 and 6, the longitudinal speed Vbwfr based on the wheel speed of the right front wheel is obtained by the following formula 7, and similarly, the longitudinal speed Vbwfl based on the wheel speed of the left front wheel is obtained by the following formula 8.
[0054]
[Equation 3]
Figure 0003662187
[0055]
The longitudinal speeds Vbwfr and Vbwfl based on the wheel speeds of the right rear wheel and the left rear wheel are obtained by the following equations 9 and 10, respectively.
[0056]
[Expression 4]
Figure 0003662187
[0057]
In the third embodiment, the longitudinal speed Vbwi of the vehicle body at the center of gravity 102 of the vehicle is calculated based on the wheel speed Vwi of each wheel in step 35 executed after step 30, and the vehicle At the time of non-braking, the estimated longitudinal acceleration Vbwd of the vehicle body is calculated based on the smallest value of the longitudinal speed Vbwi at step 80, and the vehicle body is estimated based on the largest value of the longitudinal speed Vbwi at step 90 when braking the vehicle. The longitudinal acceleration Vbwd is calculated, and the road surface gradient θ is calculated for the other points in the same manner as in the first embodiment.
[0058]
Thus, according to the third embodiment shown in the figure, the longitudinal speed Vbwi of the vehicle body at the center of gravity 102 of the vehicle is calculated based on the wheel speed Vwi of each wheel, and the smallest value of the longitudinal speed Vbwi when the vehicle is not braked. That is, the estimated longitudinal acceleration Vbwd of the vehicle body is calculated based on the smallest acceleration slip, and the estimated longitudinal acceleration Vbwd of the vehicle body is calculated based on the largest value of the longitudinal speed Vbwi, that is, the smallest braking slip, when braking the vehicle. Therefore, the longitudinal acceleration of the vehicle body due to the acceleration / deceleration of the vehicle can be accurately calculated even when the vehicle is turning, so that the road surface gradient can be estimated more accurately than in the case of the conventional gradient estimation device.
[0059]
In the third embodiment described above, when the vehicle is not braked, the estimated longitudinal acceleration Vbwd of the vehicle body is calculated based on the smallest value of the longitudinal speed Vbwi in step 80 when the vehicle is not braked. The estimated longitudinal acceleration Vbwd of the vehicle body is calculated based on the largest value of the longitudinal speed Vbwi. In step 80, the estimated longitudinal acceleration Vbwd is calculated based on the smallest value and the next smallest value of the longitudinal speed Vbwi. The estimated longitudinal acceleration of the vehicle body is calculated respectively, and the estimated longitudinal acceleration Vbwd of the vehicle body is calculated as an average value thereof. In step 90, the estimated vehicle body acceleration is estimated based on the largest value and the next largest value of the longitudinal velocity Vbwi. The longitudinal acceleration may be calculated so that the estimated longitudinal acceleration Vbwd of the vehicle body is calculated as an average value thereof (Modification Example 3-1).
[0060]
In the third embodiment described above, the vehicle is a front-wheel drive vehicle, but this embodiment may be applied to a rear-wheel drive vehicle or a four-wheel drive vehicle (Modification Example 3-2). The estimated longitudinal acceleration Vbwd of the vehicle body may be calculated as an average value of the estimated longitudinal accelerations of the four vehicle bodies calculated based on the longitudinal speed Vbwi (Modification Example 3-3), and further calculated based on the longitudinal speed Vbwi. It may be calculated as an average value of the second and third largest estimated longitudinal acceleration among the estimated longitudinal accelerations of one vehicle body (Modification 3-4).
[0061]
Although the present invention has been described in detail with respect to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.
[0062]
For example, in each illustrated embodiment, the slip angle β of the vehicle body is calculated based on the vehicle speed V or the like, but the slip angle β of the vehicle body may be obtained by detection.
[0063]
In each of the illustrated embodiments, the vehicle speed V is detected by the vehicle speed sensor 34, and the vehicle speed V is used as the longitudinal speed Vx of the vehicle body when calculating the vehicle slip angle β. The longitudinal speed Vx of the vehicle body used for calculating the slip angle β may be modified so that the longitudinal speed Vx of the vehicle body calculated last time is used in each embodiment.
[0064]
In each of the illustrated embodiments, it is not considered whether the vehicle is in an uphill state or a downhill state. Whether the vehicle is in an uphill state or a downhill state is determined based on the relationship, etc., and the wheel speed used for estimating the estimated longitudinal speed Vx of the vehicle body is modified according to the determination result to be changed. Good.
[0065]
【The invention's effect】
  As is clear from the above description, according to the present invention,The side slip speed of the vehicle body is calculated based on the lateral acceleration of the vehicle body, the yaw rate of the vehicle body, and the vehicle speed, the slip angle of the vehicle body is estimated based on the side slip speed and the vehicle speed of the vehicle body, and the vehicle turns based on the lateral acceleration of the vehicle body and the slip angle of the vehicle body The error component due to the vehicle is calculated, so the error component due to the vehicle turning can be calculated accurately,The error component caused by the turning of the vehicle is calculated from the longitudinal acceleration of the vehicle body to estimate the slope of the road surface.accuratelyThus, the road surface gradient can be accurately estimated even when the vehicle travels on a slope while turning.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a first preferred embodiment of a road surface gradient estimating apparatus according to the present invention applied to a rear wheel drive vehicle.
FIG. 2 is a flowchart showing a road surface gradient estimation routine in the first embodiment.
FIG. 3 is a flowchart showing a road surface gradient estimation routine in a second preferred embodiment of a road surface gradient estimation device according to the present invention applied to a front-wheel drive vehicle.
FIG. 4 is a flowchart showing a road surface gradient estimation routine in a third preferred embodiment of the road surface gradient estimation device according to the present invention applied to a rear wheel drive vehicle.
FIG. 5 is an explanatory diagram showing the influence of the centripetal acceleration of the vehicle on the longitudinal acceleration of the vehicle body when the vehicle is turning.
FIG. 6 is an explanatory view (A) showing the moving direction of the vehicle body and each wheel when the vehicle is turning, and an explanatory view showing the movement of the rear wheel when the vehicle is turning.
FIG. 7 is an explanatory diagram showing a procedure for calculating a slip angle βi of each wheel based on a slip angle β of the vehicle body.
FIG. 8 is an explanatory diagram showing a procedure for calculating a longitudinal speed Vbwi at the center of gravity of the vehicle based on the wheel speed Vwi of each wheel.
[Explanation of symbols]
10FR ~ 10RL ... wheel
20 ... braking device
28 ... Master cylinder
30 ... Electric control device
32FR ~ 32RL ... Wheel speed sensor
34 …… Vehicle speed sensor
36 ... Yaw rate sensor
38. Longitudinal acceleration sensor
40 ... Lateral acceleration sensor

Claims (3)

車体の前後加速度を検出する手段と、車輪速度に基づき車体の前後加速度を推定する前後加速度推定手段と、車体の横加速度を検出する手段と、車体のヨーレートを検出する手段と、車速を検出する手段と、車体の横加速度、車体のヨーレート、車速に基づき車体の横すべり速度を演算し、車体の横すべり速度及び車速に基づき車体のスリップ角を推定する手段と、車体の横加速度及び車体のスリップ角に基づき検出された車体の前後加速度に対する補正量を演算すると共に検出された車体の前後加速度を前記補正量にて補正する手段と、補正された車体の前後加速度と推定された車体の前後加速度との差分に基づき路面の勾配を推定する手段とを有することを特徴とする路面勾配推定装置。Means for detecting the longitudinal acceleration of the vehicle body, longitudinal acceleration estimating means for estimating the longitudinal acceleration of the vehicle body based on the wheel speed, means for detecting the lateral acceleration of the vehicle body, means for detecting the yaw rate of the vehicle body, and detecting the vehicle speed Means for calculating the side slip speed of the vehicle body based on the lateral acceleration of the vehicle body, the yaw rate of the vehicle body, and the vehicle speed, and estimating the slip angle of the vehicle body based on the side slip speed and the vehicle speed of the vehicle body, the lateral acceleration of the vehicle body and the slip angle of the vehicle body Calculating a correction amount for the longitudinal acceleration of the vehicle body detected on the basis of the correction amount, correcting the detected longitudinal acceleration of the vehicle body with the correction amount, and correcting the corrected longitudinal acceleration of the vehicle body and the estimated longitudinal acceleration of the vehicle body And a means for estimating a road gradient based on the difference between the two. 記前後加速度推定手段は非操舵輪の車輪速度に基づき車体の前後加速度を推定することを特徴とする請求項1に記載の路面勾配推定装置。 Before Symbol longitudinal acceleration estimating unit road gradient estimating apparatus according to claim 1, characterized in that to estimate the longitudinal acceleration of the vehicle body based on the wheel speed of the non-steering wheels. 記前後加速度推定手段は車輪速度に基づき車輌の重心に於ける車体の前後速度を推定し、該前後速度に基づき車体の前後加速度を推定することを特徴とする請求項1に記載の路面勾配推定装置。Road gradient of claim 1 before Symbol longitudinal acceleration estimating means for estimating the longitudinal velocity of the in vehicle body centroid of the vehicle based on the wheel speed, and estimates the longitudinal acceleration of the vehicle body based on the front after speed Estimating device.
JP2000359858A 2000-11-27 2000-11-27 Road slope estimation device Expired - Fee Related JP3662187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000359858A JP3662187B2 (en) 2000-11-27 2000-11-27 Road slope estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000359858A JP3662187B2 (en) 2000-11-27 2000-11-27 Road slope estimation device

Publications (2)

Publication Number Publication Date
JP2002162225A JP2002162225A (en) 2002-06-07
JP3662187B2 true JP3662187B2 (en) 2005-06-22

Family

ID=18831559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000359858A Expired - Fee Related JP3662187B2 (en) 2000-11-27 2000-11-27 Road slope estimation device

Country Status (1)

Country Link
JP (1) JP3662187B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10154341A1 (en) * 2001-11-06 2003-05-15 Volkswagen Ag Method and device for determining a geometric inclination of a motor vehicle
JP2009053039A (en) * 2007-08-27 2009-03-12 Honda Motor Co Ltd Vehicle attitude estimating apparatus and method
JP5137897B2 (en) 2009-05-20 2013-02-06 本田技研工業株式会社 Vehicle travel control device
JP5884245B2 (en) 2013-06-19 2016-03-15 オートリブ日信ブレーキシステムジャパン株式会社 Brake hydraulic pressure control device for vehicles
JP6641715B2 (en) * 2015-03-31 2020-02-05 いすゞ自動車株式会社 Road gradient estimation device and road gradient estimation method
DE102015111350A1 (en) * 2015-07-14 2017-01-19 Hella Kgaa Hueck & Co. Method for determining a slope of a vehicle body
JP7077708B2 (en) 2018-03-28 2022-05-31 いすゞ自動車株式会社 Gradient estimation device and vehicle
CN111824165B (en) 2019-10-23 2021-11-19 长城汽车股份有限公司 Gradient calculation method and device
CN112046487A (en) * 2020-09-21 2020-12-08 清华大学苏州汽车研究院(吴江) Road surface gradient estimation method and system based on vehicle running state

Also Published As

Publication number Publication date
JP2002162225A (en) 2002-06-07

Similar Documents

Publication Publication Date Title
JP3707276B2 (en) Vehicle motion control device
JP3008833B2 (en) Estimation device for vehicle body skidding speed
JP4151389B2 (en) Vehicle behavior control device
JP3546830B2 (en) Vehicle roll behavior control device
JP3695164B2 (en) Vehicle behavior control method
JP3317205B2 (en) Vehicle behavior control device
JP3747662B2 (en) Vehicle motion control device
EP0970876A2 (en) Wheel slip angle detecting system for a vehicle
JP3946294B2 (en) Braking force control device
JP2800141B2 (en) A method for controlling braking pressure in relation to the deviation of actual slip from target slip of wheels.
JP2002154418A (en) Road surface maximum friction coefficient estimation device
JPH0976894A (en) Braking force controller
JPH09226559A (en) Reference wheelspeed calculation device for controlling brake force and drive force
JP3607985B2 (en) Vehicle body speed estimation device and control device
JP2019535594A5 (en)
JP3662187B2 (en) Road slope estimation device
JP4603238B2 (en) Control system and method for driving characteristics of automobile
JP3705077B2 (en) Vehicle motion control device
JP3412363B2 (en) Vehicle body speed estimation device and wheel free rotation speed estimation device
JP2002173012A (en) Vehicle behavior control device
JP3959860B2 (en) Vehicle body slip angle estimation method and estimation apparatus
JP2004025996A (en) Vehicle motion control device
JP3948076B2 (en) Estimation method of friction circle radius of wheel
JP3827265B2 (en) Brake control device for vehicle
JP3817922B2 (en) Vehicle motion control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees