[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3659378B2 - Electromagnetic flow meter - Google Patents

Electromagnetic flow meter Download PDF

Info

Publication number
JP3659378B2
JP3659378B2 JP31047597A JP31047597A JP3659378B2 JP 3659378 B2 JP3659378 B2 JP 3659378B2 JP 31047597 A JP31047597 A JP 31047597A JP 31047597 A JP31047597 A JP 31047597A JP 3659378 B2 JP3659378 B2 JP 3659378B2
Authority
JP
Japan
Prior art keywords
excitation
current
circuit
consumption
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31047597A
Other languages
Japanese (ja)
Other versions
JPH11142199A (en
Inventor
晃 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP31047597A priority Critical patent/JP3659378B2/en
Publication of JPH11142199A publication Critical patent/JPH11142199A/en
Application granted granted Critical
Publication of JP3659378B2 publication Critical patent/JP3659378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、導電性流体の流速,流量を検出する電磁流量計、さらに詳しくは工業計測機器の信号線である4−20mA電流信号で動作し、効率よく電力を使用する2線式電磁流量計に関する。
【0002】
【従来の技術】
工業計測機器の信号線である4−20mA電流信号で動作する2線式電磁流量計は良く知られているが、励磁回路および流速演算回路など全ての回路を4mA以下の電流で動作させる必要がある。これは、消費するピーク電流が4mA以下となることであり、消費電流のピーク値を減少させるようにする低消費電力化が必要となる。
この信号線は電流での制限が4mAであり、電圧としての制約はないので、従来は印加電圧を増加させ、電圧変換器を用いて使用し得る消費電流を大きくする方法がとられている。
また、印加電圧を大きくし、励磁回路と流速演算回路等を縦続に接続して、両回路で使用し得る電流を増加させる方法もとられている。
以上は、使用可能な消費電力を増加させる方法であるが、これとは逆に、励磁回路の動作を間欠的に行ない、励磁回路で使用する平均電流を低下させ、その消費電流の変動を抑えるためローパスフィルタを使用する方法もある。
【0003】
【発明が解決しようとする課題】
このように、工業計測機器の信号線である4−20mA電流信号で動作する2線式電磁流量計は、励磁回路および流速演算回路など全ての回路を4mA以下の電流で動作させる必要がある。これは、消費するピーク電流が4mA以下となることであり、消費電流のピーク値を減少させるようにする低消費電力化が必要になるという問題がある。
従来は、印加電圧を増加させ電圧変換器を利用して使用できる消費電流を大きくする方法や、励磁回路と流速演算回路的を縦続に接続して両回路で使用できる電流を増加させる方法で対処しているが、その場合は安全上の問題が発生する。つまり、工業計測機器を爆発雰囲気内で使用する場合、何らかの事故によって引火する可能性を抑制する必要がある。このような場合に、印加電圧が大きいとその対処内容が大がかりとなり、困難になるという問題である。
【0004】
また、励磁回路の動作を間欠的に行ない、励磁回路で使用する平均電流を低下させ、その消費電流の変動を抑えるべく低損失のローパスフィルタを使用する場合には、時定数の大きなローパスフィルタが必要となり、使用する素子値(コンデンサ容量値,インダクタンス値,抵抗値)が大きくなり、実現が困難となる。さらに、一般的に時定数の大きなローパスフィルタ(例えば、CRのパッシブフィルタ)は通過帯域でも減衰が生じるため、電力を損失してしまうという問題もある。
したがって、この発明の課題は、消費電流の均一化を図り消費電流の最大値を低減させることにある。
【0005】
【課題を解決するための手段】
このような課題を解決するため、この発明では、励磁電流を流さない休止区間(無励磁区間)を設け、この休止区間内に流速演算装置を動作させるようにしている。
すなわち、消費電流を時分割に供給して消費電力を均一化するとともに、消費電流の最大値を低減させる。消費電流の変動が均一化されることから、電流の変動を抑制するためのローパスフィルタが不要となるか、または特性がさほど厳しくないフィルタで済ませることができて実現が容易となり、ローパスフィルタの電力損失を軽減できる。また、消費電流の最大値が低減されることから、印加電圧を増加させる必要も無くなる。さらに、低消費電力化された電流分を励磁電流分にまわすようにすれば、測定管に発生する交番磁界を増加させることができ、得られる起電力のS/Nを向上させることが可能となる。
【0006】
【発明の実施の形態】
図1はこの発明の実施の形態を示す構成図である。
センサ部は測定管3に対し励磁コイル1と1対の電極2を設けて構成され、また、回路部は励磁コイル1に励磁電流を流し測定管3内に交番磁界を発生させる励磁回路4、電極2に発生する起電力を増幅する増幅回路5、その増幅した信号を整流する整流回路6、整流した信号をディジタル信号に変換するA/D(アナログ/ディジタル)変換回路7、A/D(ADとも記す)変換結果を交互に保持する保持回路81,82、ディジタル化した信号に基づき流速,流量を演算するマイクロプロセッサ9、演算結果を4−20mAの電流として出力する出力電流制御回路10、励磁およびA/D変換などのためのタイミング生成回路11、4−20mA信号線より回路部が使用する電源を生成する電源回路12などから構成される。なお、整流回路6はA/D変換回路7が正,負の入力をA/D変換できるタイプのものであれば、省略することができる。
【0007】
図2は図1の動作を説明するための波形図、図3はこの発明を適用しない場合の波形図で、図2と対比して説明するためのものである。
さて、測定管3内に交番磁界を発生させる励磁電流タイミングとしては、
▲1▼励磁電流の安定までに時間がかかること(時定数で10ms)
▲2▼商用ノイズを除去するために商用周波数の50Hzまたは60Hzの整数倍の周期でサンプリングすること(図2は同(c)のように50Hzの場合で、20msのサンプリング時間の例を示している)
▲3▼流速が急変しないため、サンプリング周期をある程度遅くできること
▲4▼回路のオフセット除去のため無励磁区間が必要なこと
などの理由から、ここでは図2(b)に示すように200ms周期で励磁するものとする。ここで、励磁状態には3種類あり、正方向の励磁,負方向の励磁,無励磁であり、図2(b)には各状態を50ms毎に繰り返す例を示している。
【0008】
励磁電流は励磁回路4にて正方向,負方向に切り換えられるが、励磁回路4で消費する電流は図2(d)に示すように1方向となる。1例として、2線式電磁流量計での励磁回路の消費電流は励磁区間で2mA程度、無励磁区間では0mA程度である。
一方、マイクロプロセッサの消費電流は、従来は例えば図3(e)に示すようにほぼ一定となるのに対し、この発明によれば図2(e)のように、励磁区間で低消費電力モードを利用して低消費電流とし、無励磁区間で通常消費電流としている。この低消費電力モードは近年のマイクロプロセッサにはほぼ標準的に備わっており、ここで必要な条件としては、(イ)消費電流を低下させ、(ロ)外部からの信号により通常モードへ復帰でき、(ハ)その復帰時間が50msに比べて十分に短いこと、などである。
【0009】
図2(e)に示すように励磁区間で低消費電力モードとすると、その期間は演算が停止または低速となる。しかしながら、必要とするマイクロプロセッサの演算量は一定量なので、無励磁区間での演算速度を向上させる必要がある。図2では、無励磁区間での演算速度を、この発明を適用しない図3の場合の2倍で行なうことを想定してマイクロプロセッサの消費電流を図示している。2倍とする理由は、この発明を適用した場合の演算時間が、この発明を適用しない場合のそれの半分になるからである。また、一般的に、マイクロプロセッサの処理速度を向上させるためには、供給クロックを高速にする方法がとられるが、その場合、消費電流はクロックに比例して増加する。このような事実に基づいて、図2のマイクロプロセッサの消費電流を、図3と対比させて示している(図2の無励磁区間でのマイクロプロセッサの消費電流=図3のマイクロプロセッサの消費電流×2≒2mAとして図示してある)。
【0010】
一方、励磁区間での消費電力については、低消費電力モードから高速に通常モードへ復帰できるように水晶発振を継続させているため、図2に示すように多少の消費電流(Ip* =0.2mA程度)がある。また、励磁回路とマイクロプロセッサ以外の回路の消費電流はほぼ一定であり、図2ではこれを1mA程度として図示している。
以上のように、無励磁区間でマイクロプロセッサが演算を行ない、励磁区間では低消費電力モードとなるように制御すると、全回路の消費電流は図2(g)のようになる。この場合、この発明を適用しない図3の場合に比べて消費電流の変動を抑制できるだけでなく、消費電流の最大値を低減することができる。
【0011】
ここで、図2と図3の各場合の消費電流の最大値について比較,検討する。
いま、図2,図3において、
If :励磁電流
Ip :従来例の場合のマイクロプロセッサ消費電流
Ir :励磁回路,マイクロプロセッサ以外の回路の消費電流
Ip* :低消費電力モード時のマイクロプロセッサ消費電流
D =Ton/(Ton+Toff);励磁のデューティ
の如く定義する。
【0012】
上記のように定義すると、従来例の場合の全回路の最大消費電流は、
If+Ip+Ir …(1)
と表わされるのに対し、この発明の場合の全回路の最大消費電流は、
励磁時 :If+Ip* +Ir …(2)
無励磁時:Ip/(1ーD)+Ir …(3)
と表わされる。なお、(3)式の第1項は、マイクロプロセッサの平均処理電流が、従来例とこの発明の場合とで同じになるようにするための操作を示す。これにより、同じ量の演算処理ができることになる。
【0013】
さて、この発明による最大消費電流が従来例のそれよりも低減される条件は、
(1)式>(2)式より、Ip>Ip*
であるが、この条件は必ず満足される。何故ならば、Ip* はIpに対する低消費電流モードであるからである。
また、(1)式>(3)式より、If>Ip・D/(1−D)
である。図2の実施例の場合は、If=2mA,D=0.5,Ip=1mAを想定していることから、上式の関係を満たすことが分かる。
【0014】
なお、図2のように無励磁区間だけマイクロプロセッサが演算を行なうようにし、励磁区間では必ず低消費電力モードとするためには、図1に示すタイミング生成回路11により、励磁区間の終わりのタイミングでマイクロプロセッサを低消費電力モードから通常モードへ移行させ、必要な流速演算を無励磁区間内に完了させ、演算終了時にソフトウエアによって再び低消費電力モードへ移行させることで実現することができる。
【0015】
次に、図4を参照してA/D変換結果の保持動作について説明する。
電磁流量計は励磁電流と流速によって発生する起電力の大きさから流速を求めるものであるが、交番磁界を使用する場合には励磁電流に相似する起電力のピーク・ツー・ピーク(Peak−to−Peak)を使用するのが一般的である。この起電力のピーク・ツー・ピークを測定するために図1のように整流回路を使用すると、そのオフセット電圧によって交流信号の振幅に誤差が生じる。そこで、整流回路のオフセット電圧を検出してこれを補償する方法が併用される。
これは、プラス整流時の励磁期間の起電力(V+ )とプラス整流時の無励磁期間の起電力電圧(V+ zero)の差、マイナス整流時の励磁期間の起電力(V- )とマイナス整流時の無励磁期間の起電力電圧(V- zero)の差を次式のように加算して、起電力のPeak−to−Peak(Vpp)を求める方法である。
Vpp=(V+ −V+ zero)+(V- −V- zero) …(4)
【0016】
このようなオフセット補償と、無励磁区間のみマイクロプロセッサ動作とを併用する場合の動作を説明するのが、図4である。
すなわち、第1の保持回路81にはV+ とV- を図4(e)のように交互に格納し、第2の保持回路82にはV+ zeroとV- zeroを図4(f)のように交互に格納するようにしている。そして、マイクロプロセッサが流速演算するタイミングでは、2つの保持回路81,82から起電力の値を読み込んで起電力のPeak−to−Peak演算を、図4(g)のように行なっている。
このように、保持回路81,82を設けることで、励磁区間にマイクロプロセッサを低消費電力モードにしても、整流回路のオフセット補償に必要な値を1つのA/D変換回路で取得することができる。
【0017】
【発明の効果】
この発明によれば、励磁電流を流さない休止区間を設け、この区間内に流速演算を完了し、励磁電流と流速演算のための消費電流を時分割に供給するため消費電力を均一化でき、消費電流の最大値を低減することができる。そのため、消費電流の変動が均一化されることから、電流の変動を抑制するためのローパスフィルタが不要となるか、または特性がさほど厳しくないフィルタで済ませることができて実現が容易となり、ローパスフィルタの電力損失を軽減できる。また、消費電流の最大値が低減されることから、印加電圧を増加させる必要も無くなる。そして、以上のように低消費電力化された電流分を励磁電流分にまわすことにより、測定管に発生する交番磁界を増加させることができ、得られる起電力のS/Nを向上させることが可能となる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す構成図である。
【図2】図1の全体動作を説明する動作説明図である。
【図3】この発明を適用しない場合の動作説明図である。
【図4】この発明におけるA/D変換結果保持動作を説明する説明図である。
【符号の説明】
1…励磁コイル、2…電極、3…測定管、4…励磁回路、5…増幅回路、6…整流回路、7…A/D変換回路、81,82…保持回路、9…マイクロプロセッサ、10…出力電流制御回路、11…タイミング生成回路、12…電源回路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic flowmeter that detects the flow velocity and flow rate of a conductive fluid, and more specifically, a 2-wire electromagnetic flowmeter that operates with a 4-20 mA current signal, which is a signal line of an industrial measuring instrument, and uses power efficiently. About.
[0002]
[Prior art]
A two-wire electromagnetic flowmeter that operates with a 4-20 mA current signal, which is a signal line for industrial measurement equipment, is well known, but all circuits such as an excitation circuit and a flow velocity calculation circuit must be operated with a current of 4 mA or less. is there. This means that the consumed peak current is 4 mA or less, and it is necessary to reduce the power consumption so as to reduce the peak value of the consumed current.
Since this signal line has a current limit of 4 mA and is not limited as a voltage, conventionally, a method has been employed in which the applied voltage is increased and the current consumption that can be used with the voltage converter is increased.
Further, there is a method in which an applied voltage is increased and an excitation circuit and a flow velocity calculation circuit are connected in cascade to increase the current that can be used in both circuits.
The above is a method of increasing the power consumption that can be used, but conversely, the excitation circuit is operated intermittently to reduce the average current used in the excitation circuit and suppress fluctuations in the consumption current. Therefore, there is a method using a low-pass filter.
[0003]
[Problems to be solved by the invention]
Thus, a two-wire electromagnetic flow meter that operates with a 4-20 mA current signal, which is a signal line of an industrial measuring instrument, must operate all circuits such as an excitation circuit and a flow velocity calculation circuit with a current of 4 mA or less. This is because the peak current consumed is 4 mA or less, and there is a problem that low power consumption is required to reduce the peak value of the current consumption.
Conventional measures include increasing the applied voltage and increasing the current consumption that can be used by using a voltage converter, or increasing the current that can be used in both circuits by cascading the excitation circuit and flow velocity calculation circuit. However, in that case, a safety problem occurs. That is, when using industrial measurement equipment in an explosion atmosphere, it is necessary to suppress the possibility of ignition by some accident. In such a case, if the applied voltage is large, the countermeasure contents become large and difficult.
[0004]
In addition, when a low-loss low-pass filter is used to intermittently operate the excitation circuit to reduce the average current used in the excitation circuit and suppress fluctuations in the current consumption, a low-pass filter with a large time constant is required. It becomes necessary, and the element values (capacitor capacity value, inductance value, resistance value) to be used become large, and realization becomes difficult. Furthermore, a low-pass filter having a large time constant (for example, a CR passive filter) generally suffers from a problem that power is lost because attenuation occurs in the passband.
Accordingly, an object of the present invention is to make the current consumption uniform and reduce the maximum value of the current consumption.
[0005]
[Means for Solving the Problems]
In order to solve such a problem, in the present invention, a pause interval (no excitation interval) in which no excitation current flows is provided, and the flow velocity calculation device is operated in the pause interval.
That is, the current consumption is supplied in a time-sharing manner to make the power consumption uniform and reduce the maximum value of the current consumption. Since fluctuations in current consumption are made uniform, a low-pass filter to suppress fluctuations in current is not required, or a filter with less strict characteristics can be used, which makes it easy to realize the low-pass filter power. Loss can be reduced. Further, since the maximum value of current consumption is reduced, there is no need to increase the applied voltage. Furthermore, if the reduced current consumption is turned to the excitation current, the alternating magnetic field generated in the measurement tube can be increased, and the S / N of the electromotive force obtained can be improved. Become.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing an embodiment of the present invention.
The sensor unit is configured by providing an excitation coil 1 and a pair of electrodes 2 to the measurement tube 3, and the circuit unit is an excitation circuit 4 that causes an excitation current to flow through the excitation coil 1 to generate an alternating magnetic field in the measurement tube 3. An amplifying circuit 5 for amplifying the electromotive force generated in the electrode 2, a rectifying circuit 6 for rectifying the amplified signal, an A / D (analog / digital) converting circuit 7 for converting the rectified signal into a digital signal, A / D ( (Also referred to as AD) holding circuits 81 and 82 for alternately holding conversion results, a microprocessor 9 for calculating a flow velocity and a flow rate based on digitized signals, an output current control circuit 10 for outputting the calculation results as a 4-20 mA current, A timing generation circuit 11 for excitation, A / D conversion, and the like, a power supply circuit 12 for generating a power supply used by the circuit unit from a 4-20 mA signal line, and the like. The rectifier circuit 6 can be omitted if the A / D converter circuit 7 is of a type that can A / D convert positive and negative inputs.
[0007]
FIG. 2 is a waveform diagram for explaining the operation of FIG. 1, and FIG. 3 is a waveform diagram when the present invention is not applied, for comparison with FIG.
Now, as the excitation current timing for generating an alternating magnetic field in the measuring tube 3,
(1) It takes time to stabilize the excitation current (10ms in time constant)
(2) Sampling at a frequency that is an integral multiple of 50 Hz or 60 Hz of the commercial frequency in order to remove commercial noise (FIG. 2 shows an example of a sampling time of 20 ms in the case of 50 Hz as shown in FIG. 2C). Yes)
(3) Since the flow rate does not change suddenly, the sampling cycle can be delayed to some extent. (4) For the reason that a non-excitation section is necessary for removing the offset of the circuit, here, as shown in FIG. It shall be excited. Here, there are three types of excitation states: positive excitation, negative excitation, and non-excitation, and FIG. 2B shows an example in which each state is repeated every 50 ms.
[0008]
The excitation current is switched between the positive direction and the negative direction by the excitation circuit 4, but the current consumed by the excitation circuit 4 is one direction as shown in FIG. As an example, the current consumption of the excitation circuit in a two-wire electromagnetic flowmeter is about 2 mA in the excitation interval and about 0 mA in the non-excitation interval.
On the other hand, the current consumption of the microprocessor is conventionally almost constant as shown in FIG. 3 (e), for example, but according to the present invention, as shown in FIG. Is used to reduce the current consumption, and the normal current consumption in the non-excitation interval. This low power consumption mode is almost standard in recent microprocessors. The necessary conditions here are: (b) reducing the current consumption, and (b) returning to the normal mode with an external signal. (C) The return time is sufficiently shorter than 50 ms.
[0009]
As shown in FIG. 2E, when the low power consumption mode is set in the excitation interval, the calculation is stopped or slowed down during that period. However, since the required calculation amount of the microprocessor is a constant amount, it is necessary to improve the calculation speed in the non-excitation interval. In FIG. 2, the current consumption of the microprocessor is illustrated on the assumption that the calculation speed in the non-excitation interval is twice that in the case of FIG. 3 where the present invention is not applied. The reason for the double is that the computation time when the present invention is applied is half that when the present invention is not applied. In general, in order to improve the processing speed of the microprocessor, a method of increasing the supply clock is used. In this case, the current consumption increases in proportion to the clock. Based on this fact, the current consumption of the microprocessor of FIG. 2 is shown in contrast to FIG. 3 (the current consumption of the microprocessor in the non-excitation section of FIG. 2 = the current consumption of the microprocessor of FIG. 3). X2≈2 mA).
[0010]
On the other hand, regarding the power consumption in the excitation interval, since the crystal oscillation is continued so that the low power consumption mode can return to the normal mode at high speed, as shown in FIG. 2, some current consumption (Ip * = 0. 2mA). Further, the current consumption of the circuits other than the excitation circuit and the microprocessor is substantially constant, and in FIG. 2, this is shown as about 1 mA.
As described above, when the microprocessor performs an operation in the non-excitation period and controls to enter the low power consumption mode in the excitation period, the current consumption of all the circuits is as shown in FIG. In this case, it is possible not only to suppress the fluctuation of the consumption current, but also to reduce the maximum value of the consumption current compared to the case of FIG. 3 in which the present invention is not applied.
[0011]
Here, the maximum value of the current consumption in each case of FIGS. 2 and 3 will be compared and examined.
Now, in FIG. 2 and FIG.
If: Excitation current Ip: Current consumption of microprocessor in the case of the conventional example Ir: Current consumption of circuits other than the excitation circuit and the microprocessor Ip * : Current consumption of the microprocessor in the low power consumption mode D = Ton / (Ton + Toff); Excitation The duty is defined as follows.
[0012]
When defined as above, the maximum current consumption of all circuits in the conventional example is
If + Ip + Ir (1)
In contrast, the maximum current consumption of all circuits in the present invention is
During excitation: If + Ip * + Ir (2)
No excitation: Ip / (1-D) + Ir (3)
It is expressed as Incidentally, the first term of the expression (3) indicates an operation for making the average processing current of the microprocessor the same between the conventional example and the case of the present invention. As a result, the same amount of arithmetic processing can be performed.
[0013]
Now, the conditions under which the maximum current consumption according to the present invention is reduced from that of the conventional example are as follows:
(1) From the formula> (2), Ip> Ip *
However, this condition is always satisfied. This is because Ip * is a low current consumption mode with respect to Ip.
Further, from the formula (1)> the formula (3), If> Ip · D / (1-D)
It is. In the case of the embodiment of FIG. 2, it is assumed that If = 2 mA, D = 0.5, and Ip = 1 mA, the relationship of the above equation is satisfied.
[0014]
As shown in FIG. 2, in order for the microprocessor to perform calculation only in the non-excitation period and to make sure that the low power consumption mode is set in the excitation period, the timing generation circuit 11 shown in FIG. Thus, the microprocessor can be changed from the low power consumption mode to the normal mode, the necessary flow velocity calculation is completed within the non-excitation period, and the low power consumption mode is again transferred by software when the calculation is completed.
[0015]
Next, the holding operation of the A / D conversion result will be described with reference to FIG.
The electromagnetic flowmeter obtains the flow velocity from the magnitude of the electromotive force generated by the excitation current and the flow velocity. When an alternating magnetic field is used, the peak-to-peak of the electromotive force similar to the excitation current is used. It is common to use -Peak). When a rectifier circuit is used as shown in FIG. 1 to measure the peak-to-peak of the electromotive force, an error occurs in the amplitude of the AC signal due to the offset voltage. Therefore, a method of detecting and compensating for the offset voltage of the rectifier circuit is also used.
This is because the difference between the electromotive force (V + ) during the excitation period during plus rectification and the electromotive force voltage (V + zero) during the non-excitation period during plus rectification, and the electromotive force (V ) during the excitation period during minus rectification. This is a method for obtaining Peak-to-Peak (Vpp) of electromotive force by adding the difference of electromotive force voltage (V - zero) during a non-excitation period during negative rectification as shown in the following equation.
Vpp = (V + −V + zero) + (V −− V zero) (4)
[0016]
FIG. 4 illustrates the operation when such offset compensation is used in combination with the microprocessor operation only in the non-excitation period.
That is, V + and V are alternately stored in the first holding circuit 81 as shown in FIG. 4E, and V + zero and V zero are stored in the second holding circuit 82 as shown in FIG. As shown in FIG. At the timing when the microprocessor calculates the flow velocity, the value of the electromotive force is read from the two holding circuits 81 and 82, and the peak-to-peak calculation of the electromotive force is performed as shown in FIG.
In this way, by providing the holding circuits 81 and 82, even if the microprocessor is set in the low power consumption mode in the excitation interval, a value necessary for offset compensation of the rectifier circuit can be acquired by one A / D conversion circuit. it can.
[0017]
【The invention's effect】
According to the present invention, a pause interval in which no excitation current is allowed to flow is provided, the flow velocity calculation is completed in this interval, and the consumption current can be equalized to supply the consumption current for the excitation current and the flow velocity calculation in a time-sharing manner, The maximum value of current consumption can be reduced. For this reason, since fluctuations in current consumption are made uniform, a low-pass filter for suppressing fluctuations in current is not required, or a filter with less severe characteristics can be used, which makes it easy to realize the low-pass filter. Power loss can be reduced. Further, since the maximum value of current consumption is reduced, there is no need to increase the applied voltage. Then, the alternating magnetic field generated in the measuring tube can be increased by turning the current consumption reduced as described above to the excitation current, and the S / N of the electromotive force obtained can be improved. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of the present invention.
FIG. 2 is an operation explanatory diagram for explaining the overall operation of FIG. 1;
FIG. 3 is an operation explanatory diagram when the present invention is not applied.
FIG. 4 is an explanatory diagram illustrating an A / D conversion result holding operation according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Excitation coil, 2 ... Electrode, 3 ... Measuring tube, 4 ... Excitation circuit, 5 ... Amplification circuit, 6 ... Rectification circuit, 7 ... A / D conversion circuit, 81, 82 ... Holding circuit, 9 ... Microprocessor, 10 ... output current control circuit, 11 ... timing generation circuit, 12 ... power supply circuit.

Claims (2)

導電性流体が流れる測定管の近傍に配置される励磁コイルと、この励磁コイルに励磁電流を流して前記測定管内に交番磁界を発生させる励磁回路と、測定管内に配置される1対の電極と、この1対の電極間に発生する起電力に基づき導電性流体の流量を求める流量検出装置とを有してなる電磁流量計において、
励磁電流を流さない休止区間を設け、この休止区間以外では前記流量検出装置の少なくとも一部分を停止または低消費電力モードにして動作させることを特徴とする電磁流量計。
An excitation coil disposed in the vicinity of the measurement tube through which the conductive fluid flows, an excitation circuit for causing an excitation current to flow through the excitation coil to generate an alternating magnetic field in the measurement tube, and a pair of electrodes disposed in the measurement tube; In the electromagnetic flow meter having a flow rate detection device for obtaining the flow rate of the conductive fluid based on the electromotive force generated between the pair of electrodes,
An electromagnetic flow meter comprising a pause section in which no excitation current flows, and operating in a state where at least a part of the flow rate detection device is stopped or in a low power consumption mode other than the pause section.
前記流量検出装置を、増幅器と、A/D変換器と、A/D変換結果の少なくとも2つ以上を保持し得る保持回路と、演算回路とから構成し、A/D変換結果を前記保持回路へ交互に格納することを特徴とする請求項1に記載の電磁流量計。The flow rate detection device includes an amplifier, an A / D converter, a holding circuit capable of holding at least two of the A / D conversion results, and an arithmetic circuit, and the A / D conversion result is stored in the holding circuit. The electromagnetic flowmeter according to claim 1, wherein the electromagnetic flowmeter is stored alternately.
JP31047597A 1997-11-12 1997-11-12 Electromagnetic flow meter Expired - Fee Related JP3659378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31047597A JP3659378B2 (en) 1997-11-12 1997-11-12 Electromagnetic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31047597A JP3659378B2 (en) 1997-11-12 1997-11-12 Electromagnetic flow meter

Publications (2)

Publication Number Publication Date
JPH11142199A JPH11142199A (en) 1999-05-28
JP3659378B2 true JP3659378B2 (en) 2005-06-15

Family

ID=18005699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31047597A Expired - Fee Related JP3659378B2 (en) 1997-11-12 1997-11-12 Electromagnetic flow meter

Country Status (1)

Country Link
JP (1) JP3659378B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4110442B2 (en) * 2001-05-14 2008-07-02 横河電機株式会社 Electromagnetic flow meter
DE102004044606A1 (en) * 2004-09-13 2006-03-30 Endress + Hauser Flowtec Ag Device and method for measuring a process variable
JP6276679B2 (en) 2014-10-28 2018-02-07 アズビル株式会社 Standard signal generator

Also Published As

Publication number Publication date
JPH11142199A (en) 1999-05-28

Similar Documents

Publication Publication Date Title
EP0336615B1 (en) Electromagnetic flowmeter capable of simultaneous measurement of flow rate and conductivity of fluid
US4651286A (en) Electromagnetic flowmeter
US5621177A (en) Electromagnetic flowmeter
JP3020772B2 (en) Electromagnetic flow meter
JP2008224410A (en) Electromagnetic flowmeter and zero point measurement method thereof
JP3659378B2 (en) Electromagnetic flow meter
JP2009003816A (en) Two-wire field device
JP2001037210A (en) Dc power source unit connecting a plurality of dc power source circuit in parallel
JP3099336B2 (en) Electromagnetic digital current detector
JPH07306069A (en) Electromagnetic flowmeter
JP3161307B2 (en) Electromagnetic flow meter
JPH11230702A (en) Sense signal output circuit
JPH09126849A (en) Two-wire type electromagnetic flowmeter
JPH063381B2 (en) Electromagnetic flow meter
JP3563652B2 (en) Circuit breaker with measurement function
JP3575319B2 (en) Torque sensor
KR19990088474A (en) Device for detecting metallic body
JP3244361B2 (en) Noise removal method and converter in electromagnetic flowmeter
JP2002156393A (en) Battery voltage measuring circuit
KR0182195B1 (en) Inverter output voltage measuring method
JP2698489B2 (en) Watt hour meter
JPH0224515A (en) Electromagnetic flowmeter
JPH0212018A (en) Electromagnetic flow meter
JPH0554608B2 (en)
JP2003066071A (en) Power supply frequency detecting circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees