[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3656355B2 - Fine particle titanium oxide powder with low chlorine content and process for producing the same - Google Patents

Fine particle titanium oxide powder with low chlorine content and process for producing the same Download PDF

Info

Publication number
JP3656355B2
JP3656355B2 JP05498697A JP5498697A JP3656355B2 JP 3656355 B2 JP3656355 B2 JP 3656355B2 JP 05498697 A JP05498697 A JP 05498697A JP 5498697 A JP5498697 A JP 5498697A JP 3656355 B2 JP3656355 B2 JP 3656355B2
Authority
JP
Japan
Prior art keywords
titanium oxide
oxide powder
chlorine content
powder
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05498697A
Other languages
Japanese (ja)
Other versions
JPH10251021A (en
Inventor
淳 田中
正一 新井
義範 植吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP05498697A priority Critical patent/JP3656355B2/en
Publication of JPH10251021A publication Critical patent/JPH10251021A/en
Application granted granted Critical
Publication of JP3656355B2 publication Critical patent/JP3656355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、微粒子酸化チタン(TiO2 )粉末及びその製造法に関し、さらに詳しくは四塩化チタンを原料とし、気相法により得られた微粒子酸化チタン粉末であって、TiO2 含有のペロブスカイト化合物の製造に好適な塩素含有量の少ない微粒子酸化チタン粉末及びその製造法に関する。
【0002】
【従来の技術】
酸化チタン粉末の製造法は、大別して四塩化チタンを酸素或いは水蒸気と高温で反応させる気相法と、四塩化チタンや硫酸チタンを加水分解する液相法がある。
液相法による酸化チタン粉末は、比較的温和な条件下で製造することができるという点は良いが、純度が悪いこと、粒子が凝集し易いなどの欠点をもっている。一方気相法による酸化チタン粉末はこれらの欠点は少ないが、原料に四塩化チタンを使うため、粉末に塩素が含まれてしまう欠点がある。特に粉末の粒子が細かくなる程塩素含有量が高くなることである。
【0003】
【発明が解決しようとする課題】
酸化チタン粉末は化粧品、顔料、樹脂のフィラー、誘電体の原料などに使用されるが、最近は特に高性能の誘電体原料として注目されている。
誘電体として、例えばBaTiO3 は加熱下で次の反応によって得られる。
BaCO3 + TiO2 → BaTiO3 + CO2
BaTiO3 の誘電体特性を高めるためには、先ずBaTiO3 粒子を細かくすることが必要である。上記の反応は固相反応であり、その際先ず高温でBaCO3 が分解してBaOが生成し、BaOがTiO2 粒子中を拡散固溶してBaTiO3 になると言われている。従ってBaTiO3 粒子の大きさはTiO2 粒子の大きさに支配されることになる。
【0004】
TiO2 粒子に含まれる塩素は粒子のごく表面層に吸着して存在しており、加熱中に生成したBaOと反応してBaCl2 が生成する。このBaCl2 は溶融してフラックスの作用をし、TiO2 粒子やBaTiO3 粒子の凝集を引き起す。また溶融したフラックスは局在化し易く、その局在化した部分では凝集が多くなり、他の部分との間で品質にバラツキが生ずる。また粒子が凝集するとBaTiO3 粒子の結晶が成長して異常粒子となり、BaTiO3 の誘電特性を低下させることになる。
さらにTiO2 中の塩素の存在はBaOとTiO2 の原料組成比をくるわす原因となる。高性能の誘電体においてはBaOとTiO2 比は厳密に1:1に管理する必要があるが、塩素が存在するとBaOの一部がBaCl2 となるため、組成比にずれが生じそれが品質低下につながる。
【0005】
本発明者は気相法による酸化チタン粉末に含有する塩素の存在形態やその量について研究した結果、次のようなことが判明した。
塩素は酸化チタン粒子の表面層に吸着して存在していること、従って粉末の比表面積と塩素含有量との間には強い相関関係を有していることである。
その相関関係図を図1に示す。図1は横軸が粉末の比表面積α(m2 /g)、縦軸が粉末の塩素含有量X(ppm)で縦軸を対数目盛とするとほぼ直線関係となる。
【0006】
この塩素の脱離には一般に加熱法が行なわれているが、あまり高い温度で加熱するとTiO2 粒子が成長するので加熱温度には制限があり、その温度範囲において大気中で単に加熱しただけでは十分に塩素含有量を下げることはできず、そのため気相法TiO2 粉末はある程度以上塩素を含んだまま使用されているのが現状である。
本発明は高純度にして粒子の凝集の少ない気相法による微粒子酸化チタン粉末において、特に塩素の含有量を低減させることを目的とする。さらに他の目的は粒度が細かく、かつシャープな粒度分布の粉末を得ることにある。
【0007】
【課題を解決するための手段】
本発明者は、酸化チタン粒子の塩素含有量の低減について種々研究した結果、粉末の比表面積と塩素含有量の相関関係において、従来のものよりも低い塩素含有量の微粒子の酸化チタン粉末を得ることに成功したものである。
即ち、本発明はBET法で測定した粉末の比表面積をα(m2 /g)、塩素含有量をX(ppm)とした場合、その塩素含有量XがX=35E0.02αなる関係式で示される数値より低いことを特徴とする気相法によって得られた塩素含有量の少ない微粒子酸化チタン粉末である。
【0008】
また、方法の発明は四塩化チタンを酸素又は水蒸気、或いはこれらの混合気体を用いて高温酸化することにより粗酸化チタン粉末を製造する第1工程と、該粉末を円筒形回転式加熱炉中で転動させながら脱塩素を行なう第2工程とからなる塩素含有量の少ない微粒子酸化チタン粉末の製造法である。
またこの製造法における第2工程において、粉末に水蒸気を接触させることにより塩素含有量を前記の関係式で表わされるXの値よりも低くすることを特徴とする微粒子酸化チタン粉末の製造法である。
【0009】
【発明の実施の形態】
四塩化チタンを原料とする気相法によるTiO2 粉末の塩素含有量は図1に示すようにTiO2 粒子の大きさと相関関係があり、粒子が細かい程塩素含有量は多くなる。そして従来のTiO2 粉末の塩素含有量X(ppm)は図1の式X=35E0.02α(図1の直線)で表わされる値より高いものであった(図1の白丸印)。ここでαはTiO2 粉末の比表面積(m2 /g)である。本発明の微粒子酸化チタン粉末は前記式で表わされるXの値より低い塩素含有量である(図1の黒丸印)。さらに好ましくはX=30E0.02αで表わされる量よりも低い塩素含有量である。また比表面積αは好ましくは5(m2 /g)以上である。
【0010】
塩素含有量は上記のようにTiO2 粒子が細かい程多くなるが、誘電体原料として使用する場合、その他一般に粒子は細かい程よく、好ましくはD90が2μm以下、即ち粉末の90%(重量)以上が0.2μm以下である。
また粉末中の粒子はできるだけ粒径がそろっているのが良い。本発明はこれを粉末の粒度分布に関する式として知られているロジン−ラムラー(Rosin−Rammler)式を用い、その粒度の均一性を表わす分布定数(n)で規定することにする。
ロジン−ラムラー式(文献名:セラミック工学ハンドブック(社団法人 日本セラミック協会編 1版、P.596〜598)記載されている。)
R=100exp(−bDn ) (1)
ここでRはD(粒径)より大きな粒子の百分率である。
b=1/Den とおくと(1)式は
R=100exp{(D/De)n } (2)
ここでDeは粒度特性数、nは分布定数と呼ばれる定数である。
(1)式から
log{log(100/R)}=nlogD+C (3)
C=logloge−nlogDe
【0011】
(3)式からx軸にlogD、y軸にlog{log(100/R)}の目盛りをつけたロジン−ラムラー線図にそれらの関係をプロットすると直線となる。その勾配nは粒度の均一性を表わし、nが大きい程均一性が大となる。またD=DeのときR=36.8%であるから、図上でR=36.8%の粒子径を読めばDeが求められる。
本発明の微粒子酸化チタン粉末は、粒径Dを上記の線図上にプロットした場合nの値が好ましくは1.5以上である。
【0012】
次に製造法の発明について説明する。
塩素を低減させる前の粗酸化チタン粉末の製造法(第1工程)は基本的には四塩化チタンを酸素又は水蒸気を用いて300〜1600℃程度の高温で酸化反応させる公知のいわゆる気相法である。通常TiCl4 1モルに対し、O2 (H2 Oの場合はH2 O中のO2 換算)が1.0〜10モル程度用いられる。装置は一般に石英ガラス製等の反応管が用いられる。
この方法で得られた酸化チタン粉末は通常0.1〜2重量%程度の塩素を含んでおり、その量は粒度が細かいもの程多い。この粗酸化チタン粉末は脱塩素処理される。その方法は一般的には粉末を大気中200〜700℃程度で熱処理する方法である。温度の上限に限界があるのは粉末粒子の成長による粒子の粗大化を防ぐためである。
【0013】
しかし、本発明者の研究によると粗粉末を単に加熱するだけでは粉末中の塩素含有量は十分に下がらず、そのため従来の市販品では図1に示すようにX=35E0.02αの線よりも上であった。
本発明の製造法はこの粗酸化チタン粉末を第2工程において円筒形回転式加熱炉中で転動させながら脱塩素化することを特徴とする。
転動させながら脱塩素化することにより静止状態で脱塩素化するよりも脱塩素化率がかなり高まる。脱塩素化装置は、例えばチタン製円筒回転炉が用いられる。脱塩素の温度は高すぎると結晶成長を起こし、低いと脱塩素の効率が下がるので150〜650℃の範囲が好ましい。加熱時間は回転炉内の滞留時間で0.1〜3時間が適当である。
【0014】
回転式加熱炉の雰囲気は大気中でもよく、これによっても塩素含有量はかなり下がるが、塩素低減の効果を高めるには水蒸気を吹込むのがよく、特に前記の式X=35E0.02αよりも低い塩素含有量とする場合は加熱炉内に水蒸気を吹込み、TiO2 とH2 Oを接触させる必要がある。空気と水蒸気の混合の場合は水蒸気を0.1容量%以上含むことが好ましい。表面吸着の塩素との反応性は、酸素により水の方が高い。このため、水蒸気を酸化チタン粉末粒子に接触させることにより、効率的な脱塩素化が進むと考えられる。
【0015】
【実施例】
以下実施例により具体的に説明するが、本発明は実施例に限られるものではない。
先ず粗酸化チタンを次の方法で製造した。
(1)粗酸化チタンI
ガス状四塩化チタン8.9Nm3 /hrと、酸素11.3Nm3 /hrをそれぞれ1000℃まで予熱し、連続的に石英ガラス製反応器に導入した。得られた反応混合物を急速冷却後、テフロン製バグフィルターにて粉を補集して、微粒子酸化チタンを30kg/hrで得た。
この酸化チタンは、比表面積3.2m2 /g、ルチル化率97%、残留塩素0.1%(重量%、以下同じ)であった。
【0016】
(2)粗酸化チタンII ガス状四塩化チタン5.9Nm3 /hrと、酸素5.2Nm3 /hrおよび水蒸気7.9Nm3 /hrの混合気体をそれぞれ900℃まで予熱し、連続的に石英ガラス製反応器に導入した。得られた反応混合物を急速冷却後、テフロン製バグフィルターにて粉を補集して、微粒子酸化チタンを20kg/hrで得た。
この酸化チタンは、比表面積28m2 /g、ルチル化率32%、残留塩素1.2%であった。
【0017】
(3)粗酸化チタンIII
ガス状四塩化チタン5.9Nm3 /hrと、酸素2.2Nm3 /hrおよび水蒸気10.3Nm3 /hrの混合気体をそれぞれ900℃まで予熱し、連続的に石英ガラス製反応器に導入した。得られた反応混合物を急速冷却後、テフロン製バグフィルターにて粉を補集して、微粒子酸化チタンを20kg/hrで得た。この酸化チタンは、比表面積101m2 /g、ルチル化率15%、残留塩素2.1%であった。
【0018】
実施例1
粗酸化チタンIを、チタン製外熱式回転炉(径200mm、長さ1500mm、回転速度3rpm)に、30kg/hrでフィードした。炉内には水蒸気を1.0Nm3 /hr導入した。炉内の最高温度帯域を600℃にして粉末を炉内に1時間滞留させ脱塩素処理した。その結果、比表面積は3.1m2 /gでほぼ変りないが、残留塩素は30ppmに低減していた。
上記の比表面積αの値3.1(m2 /g)をX=35E0.02αに代入してXを求めると40(ppm)となり、実施例1の酸化チタンの塩素含有量は上記式で表わされる量よりも低くなっている。
この粉末のレーザー回折式粒度分布測定法(測定手順は、下記)による粒度分布D90(以下、単にD90と略す)は1.5μmであり、RR−線図(ロジン−ラムラー線図)におけるn値(以下、単に「n値」と略す)は2.5であった。
粒度分布測定手順は、酸化チタン0.05gに純水5.0ccおよび10%ヘキサメタリン酸ソーダ水溶液100μlを加え、3分間超音波照射(46KHz、65W)する。このスラリーをレーザー回折式粒度分布測定装置((株)島津製作所製SALD−2000J)にかけた。
レーザー回折において得られた3点データ、D10、D50、D90をそれぞれロジン−ラムラー線図においてR=90%、R=50%、R=10%としてプロットする。これらの点を通る直線を引き、これからn値を求める。
【0019】
実施例2
粗酸化チタンIIを実施例1と同じ回転炉に20kg/hrでフィードした。炉内の最高温度帯域を550℃とした以外は実施例1と同様にして脱塩素処理した。その結果、比表面積は27m2 /gでほぼ変りないが、残留塩素は100ppmに低減していた。X=35E0.02αのαを27とするとXは121となり、粉末の実測の塩素含有量は前記の式の値より低くなっている。
またD90は0.7μmであり、n値は3.5であった。
【0020】
実施例3
粗酸化チタンIII を実施例1と同じ回転炉に20kg/hrでフィードした。炉内の最高温度帯域を350℃とした以外は実施例1と同様にして脱塩素処理した。その結果、比表面積は99m2 /gでほぼ変りないが、残留塩素は2800ppmに低減していた。X=35E0.02αのαを99とするとXは3300となり、粉末の実測の塩素含有量は前記の式の値より低くなっている。
またD90は1.3μmであり、n値は2.4であった。
【0021】
実施例4
粗酸化チタンIIを回転炉に水蒸気を導入せず、大気中とした以外は実施例2と同様にして脱塩素処理した。その結果、比表面積は27m2 /gでほぼ変りないが、残留塩素は150ppmで、水蒸気を導入した実施例2に比べやや高かった。これからX=35E0.02αに従ってXを求めると121となり、実測値の方がわずか高い。
なお、D90は0.9μmであり、n値は3.1であった。
【0022】
比較例1
粗酸化チタンIIの2kgを、チタン製バットに粉厚み30mmにて敷き詰めた。これを電熱炉に入れ550℃、3hrで脱塩素したところ、比表面積は26m2 /gで、残留塩素は380ppmに低減していた。X=35E0.02αのαを26としてXを求めると115となる。従って残留塩素は前記式の値よりもかなり高い。
また、D90は1.3μmであり、n値は2.8であった。
【0023】
比較例2
日本アエロジル社の超微粉酸化チタンP−25を分析したところ、比表面積48m2 /gで塩素を820ppm含有していた。X=35E0.02αからXを求めると319となり、残留塩素は前記式の値よりも相当高い。
また、D90は3.1μmであり、n値は1.4であった。
【0024】
比較例3
東邦チタニウム社製の高純度酸化チタンを分析したところ、比表面積は2.2m2 /gで塩素を60ppm含有していた。X=35E0.02αからXを求めると39となり、残留塩素は前記式の値よりも高い。
また、D90は3.2μmであり、n値は1.7であった。
【0025】
【発明の効果】
本発明により気相法の酸化チタンであって従来にない低塩素含有量の微粒子粉末が得られた。この粉末は特にTiO2 を成分とした高性能のペロブスカイ化合物の原料として有用である。
また粒度の揃った、即ち粒度分布がシャープであり、かつ微細な粒子とすることが可能なので、上記化合物以外の種々用途にも好適である。
【図面の簡単な説明】
【図1】酸化チタン粉末の粒径と塩素含有量の関係を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fine particle titanium oxide (TiO 2 ) powder and a method for producing the same, and more specifically, is a fine particle titanium oxide powder obtained by a vapor phase method using titanium tetrachloride as a raw material, and a perovskite compound containing TiO 2 . The present invention relates to a fine titanium oxide powder having a low chlorine content suitable for production and a production method thereof.
[0002]
[Prior art]
The production methods of titanium oxide powder are roughly classified into a gas phase method in which titanium tetrachloride is reacted with oxygen or water vapor at a high temperature, and a liquid phase method in which titanium tetrachloride or titanium sulfate is hydrolyzed.
The titanium oxide powder produced by the liquid phase method is good in that it can be produced under relatively mild conditions, but has disadvantages such as poor purity and easy aggregation of particles. On the other hand, titanium oxide powder produced by the vapor phase method has few of these drawbacks, but has the disadvantage that chlorine is contained in the powder because titanium tetrachloride is used as a raw material. In particular, the finer the powder particles, the higher the chlorine content.
[0003]
[Problems to be solved by the invention]
Titanium oxide powder is used in cosmetics, pigments, resin fillers, dielectric materials, and the like, and recently has attracted attention as a high-performance dielectric material.
As a dielectric, for example, BaTiO 3 is obtained by the following reaction under heating.
BaCO 3 + TiO 2 → BaTiO 3 + CO 2
In order to improve the dielectric properties of BaTiO 3 , it is first necessary to make BaTiO 3 particles fine. The above reaction is a solid-phase reaction, and at that time, BaCO 3 is first decomposed at a high temperature to produce BaO, and BaO is said to diffuse and dissolve in TiO 2 particles to become BaTiO 3 . Accordingly, the size of the BaTiO 3 particles is governed by the size of the TiO 2 particles.
[0004]
Chlorine contained in the TiO 2 particles is adsorbed on the very surface layer of the particles and reacts with BaO generated during heating to produce BaCl 2 . The BaCl 2 melts and acts as a flux, causing aggregation of TiO 2 particles and BaTiO 3 particles. Also, the melted flux is likely to be localized, and the localized portion is more agglomerated, resulting in variations in quality with other portions. Further, when the particles are aggregated, crystals of BaTiO 3 particles grow to become abnormal particles, and the dielectric properties of BaTiO 3 are lowered.
Furthermore the presence of chlorine in the TiO 2 causes that Kuruwasu the BaO and TiO 2 in the raw material composition ratio. In high-performance dielectrics, the BaO to TiO 2 ratio must be strictly controlled to 1: 1. However, when chlorine is present, a portion of BaO becomes BaCl 2 , resulting in a deviation in the composition ratio. Leading to a decline.
[0005]
As a result of studying the existence form and amount of chlorine contained in the titanium oxide powder by the vapor phase method, the present inventor has found the following.
Chlorine is adsorbed on the surface layer of the titanium oxide particles, and therefore there is a strong correlation between the specific surface area of the powder and the chlorine content.
The correlation diagram is shown in FIG. In FIG. 1, the abscissa indicates the specific surface area α (m 2 / g) of the powder, the ordinate indicates the chlorine content X (ppm) of the powder, and the ordinate indicates a logarithmic scale.
[0006]
In general, a heating method is used for the desorption of chlorine. However, when heated at a very high temperature, TiO 2 particles grow, so the heating temperature is limited, and simply heating in the atmosphere within that temperature range. The chlorine content cannot be lowered sufficiently, and therefore, the vapor phase TiO 2 powder is used while containing chlorine to some extent.
An object of the present invention is to reduce the chlorine content particularly in fine titanium oxide powders produced by a gas phase method with high purity and less particle aggregation. Yet another object is to obtain a powder having a fine particle size and a sharp particle size distribution.
[0007]
[Means for Solving the Problems]
As a result of various studies on the reduction of the chlorine content of the titanium oxide particles, the present inventor obtained fine titanium oxide powder having a lower chlorine content than the conventional one in the correlation between the specific surface area of the powder and the chlorine content. It has been successful.
That is, according to the present invention, when the specific surface area of the powder measured by the BET method is α (m 2 / g) and the chlorine content is X (ppm), the chlorine content X is X = 35E0.02α. It is a fine particle titanium oxide powder with a low chlorine content obtained by a vapor phase method characterized by being lower than the indicated numerical value.
[0008]
Further, the invention of the method includes a first step of producing a crude titanium oxide powder by high-temperature oxidation of titanium tetrachloride using oxygen, water vapor, or a mixed gas thereof, and the powder in a cylindrical rotary heating furnace. This is a method for producing fine titanium oxide powder having a low chlorine content, comprising the second step of dechlorination while rolling.
Further, in the second step of the production method, the chlorine content is made lower than the value of X represented by the above relational formula by bringing the powder into contact with water vapor. .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, the chlorine content of the TiO 2 powder by the vapor phase method using titanium tetrachloride as a raw material has a correlation with the size of the TiO 2 particles, and the finer the particles, the higher the chlorine content. The chlorine content X (ppm) of the conventional TiO 2 powder was higher than the value represented by the formula X = 35E0.02α (straight line in FIG. 1) in FIG. 1 (white circles in FIG. 1). Here, α is the specific surface area (m 2 / g) of the TiO 2 powder. The fine titanium oxide powder of the present invention has a chlorine content lower than the value of X represented by the above formula (black circles in FIG. 1). More preferably, the chlorine content is lower than the amount represented by X = 30E0.02α. The specific surface area α is preferably 5 (m 2 / g) or more.
[0010]
As described above, the chlorine content increases as the TiO 2 particles become finer. However, when used as a dielectric material, the finer the particles, the better the particles are generally fine. Preferably, D 90 is 2 μm or less, ie, 90% (weight) or more of the powder. Is 0.2 μm or less.
The particles in the powder should have the same size as possible. In the present invention, this is defined by the distribution constant (n) representing the uniformity of the particle size using the Rosin-Ramler equation known as the equation for the particle size distribution of the powder.
Rosin-Rammler type (literature name: ceramic engineering handbook (edited by the Ceramic Society of Japan, 1st edition, pages 596 to 598) is described.)
R = 100exp (−bD n ) (1)
Here, R is the percentage of particles larger than D (particle size).
If b = 1 / De n , the equation (1) is R = 100exp {(D / De) n } (2)
Here, De is a particle size characteristic number, and n is a constant called a distribution constant.
From the equation (1), log {log (100 / R)} = nlogD + C (3)
C = loglog-nlogDe
[0011]
From the equation (3), when the relationship is plotted on a Rosin-Rammler diagram with log D on the x-axis and log {log (100 / R)} on the y-axis, a straight line is obtained. The gradient n represents the uniformity of the particle size, and the uniformity increases as n increases. Since R = 36.8% when D = De, De can be obtained by reading the particle size of R = 36.8% in the figure.
In the fine particle titanium oxide powder of the present invention, when the particle diameter D is plotted on the above diagram, the value of n is preferably 1.5 or more.
[0012]
Next, the invention of the manufacturing method will be described.
The production method of crude titanium oxide powder before reducing chlorine (first step) is basically a known so-called gas phase method in which titanium tetrachloride is oxidized at a high temperature of about 300 to 1600 ° C. using oxygen or water vapor. It is. To Normal TiCl 4 1 mole (in the case of H 2 O O 2 conversion in H 2 O) O 2 is used about 1.0 to 10 mol. The apparatus is generally a reaction tube made of quartz glass or the like.
The titanium oxide powder obtained by this method usually contains about 0.1 to 2% by weight of chlorine, and the amount is finer as the particle size is finer. This crude titanium oxide powder is dechlorinated. The method is generally a method of heat-treating the powder at about 200 to 700 ° C. in the atmosphere. The upper limit of the temperature is limited in order to prevent particle coarsening due to the growth of powder particles.
[0013]
However, according to the study of the present inventor, simply heating the coarse powder does not sufficiently reduce the chlorine content in the powder. Therefore, in the conventional commercial product, the X = 35E0.02α line as shown in FIG. It was on.
The production method of the present invention is characterized in that the crude titanium oxide powder is dechlorinated while being rolled in a cylindrical rotary furnace in the second step.
By dechlorinating while rolling, the dechlorination rate is considerably higher than dechlorination in a stationary state. For example, a titanium cylindrical rotary furnace is used as the dechlorination apparatus. If the temperature of dechlorination is too high, crystal growth occurs, and if it is low, the efficiency of dechlorination decreases, so the range of 150 to 650 ° C. is preferable. A suitable heating time is a residence time in the rotary furnace of 0.1 to 3 hours.
[0014]
The atmosphere of the rotary heating furnace may be in the air, which also reduces the chlorine content, but in order to increase the effect of reducing chlorine, it is better to inject water vapor, especially lower than the above formula X = 35E0.02α In order to obtain a chlorine content, it is necessary to blow water vapor into the heating furnace to bring TiO 2 and H 2 O into contact with each other. In the case of mixing air and water vapor, it is preferable to contain 0.1% by volume or more of water vapor. The reactivity of surface adsorbed chlorine with oxygen is higher with oxygen. For this reason, it is thought that efficient dechlorination advances by making water vapor contact titanium oxide powder particles.
[0015]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the examples.
First, crude titanium oxide was produced by the following method.
(1) Crude titanium oxide I
Gaseous titanium tetrachloride 8.9 Nm 3 / hr and oxygen 11.3 Nm 3 / hr were each preheated to 1000 ° C. and continuously introduced into a quartz glass reactor. After the obtained reaction mixture was rapidly cooled, the powder was collected with a Teflon bag filter to obtain fine particle titanium oxide at 30 kg / hr.
This titanium oxide had a specific surface area of 3.2 m 2 / g, a rutile ratio of 97%, and a residual chlorine of 0.1% (% by weight, the same applies hereinafter).
[0016]
(2) Crude titanium oxide II A mixture of gaseous titanium tetrachloride 5.9 Nm 3 / hr, oxygen 5.2 Nm 3 / hr and water vapor 7.9 Nm 3 / hr was preheated to 900 ° C., respectively, and continuously quartz It was introduced into a glass reactor. The obtained reaction mixture was rapidly cooled, and then the powder was collected with a Teflon bag filter to obtain finely divided titanium oxide at 20 kg / hr.
This titanium oxide had a specific surface area of 28 m 2 / g, a rutile ratio of 32%, and a residual chlorine of 1.2%.
[0017]
(3) Crude titanium oxide III
A gaseous mixture of gaseous titanium tetrachloride 5.9 Nm 3 / hr, oxygen 2.2 Nm 3 / hr and water vapor 10.3 Nm 3 / hr was preheated to 900 ° C. and continuously introduced into a quartz glass reactor. . The obtained reaction mixture was rapidly cooled, and then the powder was collected with a Teflon bag filter to obtain finely divided titanium oxide at 20 kg / hr. This titanium oxide had a specific surface area of 101 m 2 / g, a rutile ratio of 15%, and a residual chlorine of 2.1%.
[0018]
Example 1
Crude titanium oxide I was fed at 30 kg / hr to an externally heated titanium rotary furnace (diameter 200 mm, length 1500 mm, rotation speed 3 rpm). Steam was introduced into the furnace at 1.0 Nm 3 / hr. The maximum temperature zone in the furnace was set to 600 ° C., and the powder was retained in the furnace for 1 hour for dechlorination treatment. As a result, the specific surface area was almost unchanged at 3.1 m 2 / g, but the residual chlorine was reduced to 30 ppm.
Substituting the value 3.1 (m 2 / g) of the specific surface area α into X = 35E0.02α to obtain X (40 ppm), and the chlorine content of the titanium oxide of Example 1 is given by the above formula. It is lower than the amount expressed.
The particle size distribution D 90 (hereinafter simply referred to as “D 90” ) of the powder by the laser diffraction particle size distribution measurement method (measurement procedure is as follows) is 1.5 μm, and in the RR-diagram (Rosin-Rammler diagram) The n value (hereinafter simply referred to as “n value”) was 2.5.
In the particle size distribution measurement procedure, 0.05 g of pure water and 100 μl of 10% sodium hexametaphosphate aqueous solution are added to 0.05 g of titanium oxide, and ultrasonic irradiation (46 KHz, 65 W) is performed for 3 minutes. This slurry was applied to a laser diffraction particle size distribution measuring device (SALD-2000J, manufactured by Shimadzu Corporation).
The three-point data D 10 , D 50 , and D 90 obtained by laser diffraction are plotted as R = 90%, R = 50%, and R = 10% in the Rosin-Rammler diagram, respectively. A straight line passing through these points is drawn, and the n value is obtained therefrom.
[0019]
Example 2
Crude titanium oxide II was fed to the same rotary furnace as in Example 1 at 20 kg / hr. Dechlorination treatment was performed in the same manner as in Example 1 except that the maximum temperature zone in the furnace was 550 ° C. As a result, the specific surface area was almost unchanged at 27 m 2 / g, but the residual chlorine was reduced to 100 ppm. Assuming that α of X = 35E0.02α is 27, X is 121, and the measured chlorine content of the powder is lower than the value of the above formula.
The D 90 is 0.7 [mu] m, n value was 3.5.
[0020]
Example 3
Crude titanium oxide III was fed to the same rotary furnace as in Example 1 at 20 kg / hr. Dechlorination was performed in the same manner as in Example 1 except that the maximum temperature zone in the furnace was 350 ° C. As a result, the specific surface area was almost unchanged at 99 m 2 / g, but the residual chlorine was reduced to 2800 ppm. When α of X = 35E0.02α is 99, X is 3300, and the measured chlorine content of the powder is lower than the value of the above formula.
The D 90 is 1.3 .mu.m, n value was 2.4.
[0021]
Example 4
The crude titanium oxide II was dechlorinated in the same manner as in Example 2 except that steam was not introduced into the rotary furnace and the atmosphere was in the atmosphere. As a result, the specific surface area was almost unchanged at 27 m 2 / g, but the residual chlorine was 150 ppm, which was slightly higher than that of Example 2 in which water vapor was introduced. From this, X is found to be 121 according to X = 35E0.02α, and the actually measured value is slightly higher.
Incidentally, D 90 is 0.9 .mu.m, n value was 3.1.
[0022]
Comparative Example 1
2 kg of crude titanium oxide II was spread on a titanium vat with a powder thickness of 30 mm. When this was put into an electric furnace and dechlorinated at 550 ° C. for 3 hours, the specific surface area was 26 m 2 / g and the residual chlorine was reduced to 380 ppm. When X is 35 with α of X = 35E0.02α being 26, 115 is obtained. Therefore, the residual chlorine is much higher than the value of the above formula.
Further, D 90 is 1.3 .mu.m, n value was 2.8.
[0023]
Comparative Example 2
Analysis of Nippon Aerosil Co., Ltd. ultrafine titanium oxide P-25 revealed that it had a specific surface area of 48 m 2 / g and contained 820 ppm of chlorine. When X is calculated from X = 35E0.02α, it is 319, and the residual chlorine is considerably higher than the value of the above formula.
Further, D 90 is 3.1 .mu.m, n value was 1.4.
[0024]
Comparative Example 3
When high-purity titanium oxide manufactured by Toho Titanium Co., Ltd. was analyzed, the specific surface area was 2.2 m 2 / g and chlorine was contained at 60 ppm. When X is calculated from X = 35E0.02α, it becomes 39, and the residual chlorine is higher than the value of the above formula.
Further, D 90 is 3.2 .mu.m, n value was 1.7.
[0025]
【The invention's effect】
According to the present invention, an unprecedented fine powder of a low chlorine content, which is a titanium oxide of a vapor phase method, is obtained. This powder is particularly useful as a raw material for high-performance perovskite compounds containing TiO 2 as a component.
Moreover, since the particle size is uniform, that is, the particle size distribution is sharp and fine particles can be obtained, it is also suitable for various uses other than the above compounds.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the particle size of titanium oxide powder and the chlorine content.

Claims (15)

BET法で測定した粉末の比表面積をα(m2 /g)、塩素含有量をX(ppm)とした場合、その塩素含有量XがX=35E0.02αなる関係式で示される数値より低いことを特徴とする気相法によって得られた塩素含有量の少ない微粒子酸化チタン粉末。When the specific surface area of the powder measured by the BET method is α (m 2 / g) and the chlorine content is X (ppm), the chlorine content X is lower than the numerical value represented by the relational expression X = 35E0.02α. A fine titanium oxide powder having a low chlorine content obtained by a vapor phase method. αが3.1以上である請求項1に記載の塩素含有量の少ない微粒子酸化チタン粉末。The fine particle titanium oxide powder having a low chlorine content according to claim 1, wherein α is 3.1 or more. αが27以上である請求項1に記載の塩素含有量の少ない微粒子酸化チタン粉末。The fine particle titanium oxide powder having a low chlorine content according to claim 1, wherein α is 27 or more. αが99以上である請求項1に記載の塩素含有量の少ない微粒子酸化チタン粉末。The fine titanium oxide powder having a low chlorine content according to claim 1, wherein α is 99 or more. レーザー回折式粒度分布測定法で測定した粒度分布曲線において、D90が2μm以下である請求項1乃至4のいずれか1項に記載の微粒子酸化チタン粉末。The fine particle titanium oxide powder according to any one of claims 1 to 4 , wherein D 90 is 2 µm or less in a particle size distribution curve measured by a laser diffraction particle size distribution measurement method. 粒度分布を表わすロジン−ラムラー式におけるn値が1.5以上である請求項1乃至5のいずれか1項に記載の微粒子酸化チタン粉末。The fine particle titanium oxide powder according to any one of claims 1 to 5 , wherein an n value in a rosin-Rammler formula representing a particle size distribution is 1.5 or more. ペロブスカイト化合物製造用の請求項1乃至6のいずれか1項に記載の微粒子酸化チタン粉末。The fine particle titanium oxide powder according to any one of claims 1 to 6, which is used for producing a perovskite compound. 四塩化チタンを酸素又は水蒸気、或いはこれらの混合気体を用いて高温酸化することにより粗酸化チタン粉末を製造する第1工程と、該粉末を円筒形回転式加熱炉中で転動させながら脱塩素を行なう第2工程とを含む塩素含有量の少ない微粒子酸化チタン粉末の製造法。A first step of producing crude titanium oxide powder by high-temperature oxidation of titanium tetrachloride using oxygen, water vapor, or a mixed gas thereof, and dechlorination while rolling the powder in a cylindrical rotary furnace preparation of small microparticles of titanium oxide powder chlorine content and a second step of performing. 脱塩素を行なう第2工程において、粉末に水蒸気を接触させることにより塩素含有量を請求項1に記載の量とする請求項記載の微粒子酸化チタン粉末の製造法。The method for producing fine particle titanium oxide powder according to claim 8 , wherein in the second step of dechlorination, the chlorine content is adjusted to the amount described in claim 1 by bringing water vapor into contact with the powder. 第2工程における粉末の最高加熱帯の温度が150℃以上650℃以下である請求項又は記載の微粒子酸化チタン粉末の製造法。The method for producing a fine particle titanium oxide powder according to claim 8 or 9, wherein the temperature of the highest heating zone of the powder in the second step is 150 ° C or higher and 650 ° C or lower. 第1工程が、300〜1600℃の酸化反応である請求項8乃至10のいずれか1項に記載の塩素含有量の少ない微粒子酸化チタン粉末の製造法。The method for producing a fine particle titanium oxide powder having a low chlorine content according to any one of claims 8 to 10, wherein the first step is an oxidation reaction at 300 to 1600 ° C. 第1工程が、TiClThe first step is TiCl 4Four 1モルに対し、OFor 1 mole, O 22 (H(H 22 Oの場合はHH for O 22
O中のOO in O 2 2 換算)が1.0〜10モルを用いる反応である請求項8乃至11のいずれか1項に記載の塩素含有量の少ない微粒子酸化チタン粉末の製造法。The method for producing finely divided titanium oxide powder having a low chlorine content according to any one of claims 8 to 11, wherein the conversion is a reaction using 1.0 to 10 mol.
円筒形回転式加熱炉が、チタン製である請求項8乃至12のいずれか1項に記載の塩素含有量の少ない微粒子酸化チタン粉末の製造法。The method for producing a fine titanium oxide powder having a low chlorine content according to any one of claims 8 to 12, wherein the cylindrical rotary heating furnace is made of titanium. 第2工程における粉末の滞留時間が、0.1〜3時間である請求項8乃至13のいずれか1項に記載の微粒子酸化チタン粉末の製造法。The method for producing a fine particle titanium oxide powder according to any one of claims 8 to 13, wherein the residence time of the powder in the second step is 0.1 to 3 hours. 水蒸気の割合が、0.1容量%以上である請求項9乃至14のいずれか1項に記載の微粒子酸化チタン粉末の製造法。The method for producing fine-particle titanium oxide powder according to any one of claims 9 to 14, wherein a ratio of water vapor is 0.1% by volume or more.
JP05498697A 1997-03-10 1997-03-10 Fine particle titanium oxide powder with low chlorine content and process for producing the same Expired - Lifetime JP3656355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05498697A JP3656355B2 (en) 1997-03-10 1997-03-10 Fine particle titanium oxide powder with low chlorine content and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05498697A JP3656355B2 (en) 1997-03-10 1997-03-10 Fine particle titanium oxide powder with low chlorine content and process for producing the same

Publications (2)

Publication Number Publication Date
JPH10251021A JPH10251021A (en) 1998-09-22
JP3656355B2 true JP3656355B2 (en) 2005-06-08

Family

ID=12985981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05498697A Expired - Lifetime JP3656355B2 (en) 1997-03-10 1997-03-10 Fine particle titanium oxide powder with low chlorine content and process for producing the same

Country Status (1)

Country Link
JP (1) JP3656355B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303126A (en) * 2007-06-11 2008-12-18 Showa Denko Kk Method for production of titanium oxide particles
WO2010023757A1 (en) 2008-08-29 2010-03-04 昭和電工株式会社 Process for producing titanium oxide particle

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016027A1 (en) * 1999-08-30 2001-03-08 Showa Denko K.K. Titanium oxide particles and method for production thereof
KR100491344B1 (en) * 1999-08-30 2005-05-24 쇼와 덴코 가부시키가이샤 Titanium oxide particles and composition containing the same
US6544493B1 (en) 1999-08-30 2003-04-08 Showa Denko Kabushiki Kaisha Ultrafine particulate titanium oxide and production process therof
AU775479B2 (en) * 1999-09-27 2004-08-05 Showa Denko Kabushiki Kaisha Fine particulate titanium oxide and method for producing the same
US6824758B2 (en) 2000-09-15 2004-11-30 Showa Denko K.K. Particulate titanium oxide and production process therefor
US7449166B2 (en) 1999-09-27 2008-11-11 Showa Denko K.K. Particulate titanium oxide and production process therefor
JP4812213B2 (en) * 1999-09-27 2011-11-09 昭和電工株式会社 Fine particulate titanium oxide and method for producing the same
US6387347B1 (en) * 2000-02-14 2002-05-14 Millennium Inorganic Chemicals, Inc. Controlled vapor phase oxidation of titanium tetrachloride to manufacture titanium dioxide
JP4979174B2 (en) * 2000-04-25 2012-07-18 昭和電工株式会社 Method for producing titanium oxide-containing particulate oxide composite
US6548169B2 (en) 2000-04-25 2003-04-15 Showa Denko Kabushiki Kaisha Production process for ultrafine particulate complex oxide containing titanium oxide
JP5099465B2 (en) * 2001-04-12 2012-12-19 日本アエロジル株式会社 A method for producing low chlorine titanium dioxide.
AU2003210015B2 (en) 2002-03-06 2006-04-06 Showa Denko K.K. Ultrafine particulate titanium oxide with low chlorine and low rutile content, and production process thereof
JP4743481B2 (en) * 2004-03-25 2011-08-10 昭和電工株式会社 Titanium-containing perovskite type compound and method for producing the same
JP5311707B2 (en) * 2004-08-11 2013-10-09 昭和電工株式会社 Method for producing fine particle titanium dioxide
WO2006016718A2 (en) 2004-08-11 2006-02-16 Showa Denko K.K. Fine particulate titanium dioxide, and production process and use thereof
TWI307679B (en) * 2004-08-11 2009-03-21 Showa Denko Kk Fine pariculate titanium dioxide, and production process and use thereof
TWI314919B (en) * 2005-02-28 2009-09-21 Showa Denko Kk Fine particulate titanium dioxide, and production process and uses thereof
US8114377B2 (en) * 2006-11-02 2012-02-14 E.I. Du Pont De Nemours And Company Process for producing titanium dioxide particles having reduced chlorides
EP1997781B1 (en) * 2007-05-22 2014-07-16 Evonik Degussa GmbH Method for making titanium dioxide with variable sinter activity
EP1995217B1 (en) 2007-05-22 2010-04-28 Evonik Degussa GmbH Titanium dioxide with increased sinter activity
WO2009017212A1 (en) * 2007-07-27 2009-02-05 Toho Titanium Co., Ltd. Method for producing titanium oxide powder with low halogen content, and titanium oxide powder with low halogen content
JP5231195B2 (en) * 2008-12-18 2013-07-10 東邦チタニウム株式会社 Method for producing low halogen titanium oxide powder
JP7116857B1 (en) * 2022-05-23 2022-08-10 東邦チタニウム株式会社 Titanium oxide powder, method for producing titanium oxide powder, and method for distinguishing titanium oxide powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303126A (en) * 2007-06-11 2008-12-18 Showa Denko Kk Method for production of titanium oxide particles
WO2010023757A1 (en) 2008-08-29 2010-03-04 昭和電工株式会社 Process for producing titanium oxide particle
US8178074B2 (en) 2008-08-29 2012-05-15 Showa Denko K.K. Method for producing titanium oxide particles

Also Published As

Publication number Publication date
JPH10251021A (en) 1998-09-22

Similar Documents

Publication Publication Date Title
JP3656355B2 (en) Fine particle titanium oxide powder with low chlorine content and process for producing the same
RU2127221C1 (en) Powder of metal oxide, powder of titanium oxide, method of producing metal oxide powder
JP5021106B2 (en) Titanium oxide sol, its production method, ultrafine titanium oxide, its production method and use
TWI314919B (en) Fine particulate titanium dioxide, and production process and uses thereof
JP4342320B2 (en) Nanoscale zinc oxide, process for its production and use thereof
JP2005289798A (en) Manufacturing process for titanium dioxide nanopowder
JP2003327432A (en) Low halogen-low rutile type hyperfine-grained titanium oxide and production method thereof
CA2385695C (en) Particulate titanium oxide and production process therefor
WO2003074426A1 (en) Ultrafine particulate titanium oxide with low chlorine and low rutile content, and production process thereof
JPS6328845B2 (en)
JP2001220126A (en) Crystalline synthetic silica powder and glass compact using the same
KR101601752B1 (en) Titanium oxide and method for producing the same
JP4979174B2 (en) Method for producing titanium oxide-containing particulate oxide composite
JP2001151509A (en) Spherical titanium oxide fine particle
JP3198238B2 (en) Fine powder of titanium oxide and method for producing the same
JP4177920B2 (en) Method for producing high-purity titanium oxide powder
US7449166B2 (en) Particulate titanium oxide and production process therefor
US20020131929A1 (en) Particulate titanium oxide and production process therefor
JP2747916B2 (en) Potassium titanate long fiber and method for producing titania fiber using the same
JP4812213B2 (en) Fine particulate titanium oxide and method for producing the same
JPH06340421A (en) Acicular, porous and fine-particle titanium oxide and its production
JP5013643B2 (en) Titanium oxide fine particles and method for producing the same
JP6423501B2 (en) Titanium oxide particles and method for producing the same
JP5311707B2 (en) Method for producing fine particle titanium dioxide
JPH07187668A (en) Production of monodisperse fine oxide powder, monodisperse fine oxide powder and ceramic composition containing this powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

EXPY Cancellation because of completion of term