[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3653766B2 - Production method of ε-poly-L-lysine - Google Patents

Production method of ε-poly-L-lysine Download PDF

Info

Publication number
JP3653766B2
JP3653766B2 JP33326094A JP33326094A JP3653766B2 JP 3653766 B2 JP3653766 B2 JP 3653766B2 JP 33326094 A JP33326094 A JP 33326094A JP 33326094 A JP33326094 A JP 33326094A JP 3653766 B2 JP3653766 B2 JP 3653766B2
Authority
JP
Japan
Prior art keywords
lysine
εpl
poly
medium
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33326094A
Other languages
Japanese (ja)
Other versions
JPH08163992A (en
Inventor
敏治 岩田
英明 福士
慎治 白石
由美子 岩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP33326094A priority Critical patent/JP3653766B2/en
Publication of JPH08163992A publication Critical patent/JPH08163992A/en
Application granted granted Critical
Publication of JP3653766B2 publication Critical patent/JP3653766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、対炭素源収率を向上させたε−ポリ−L−リジン(以下εPLと略記する)の製造法に関する。
εPLは、必須アミノ酸であるL−リジンのポリマ−であるため安全性が高くかつカチオン含量が高いので、特異な物性を有する。したがって食品添加物として広く用いられているだけでなく、トイレタリ−用品、化粧品、飼料添加物、医薬、農薬、電子材料等への利用も期待できる。
【0002】
【従来の技術】
ストレプトマイセス・アルブラス(Streptomyces albulus)種微生物を用いたεPLの製造法が、特公昭59−20359 号公報に、ストレプトマイセス・アルブラス・サブスピーシーズ・リジノポリメラス菌株をL−リシンのアナログ物質に耐性を有する変異株に変異処理して得られた該変異株を培地に培養し、培養液中にεPLを生成蓄積せしめ、これを採取することを特徴とするεPLの製造方法が特公平3-78998 号公報に、ストレプトマイセス・アルブラス・サブスピーシーズ・リジノポリメラス菌株をクロラムフェニコールを用いて、εPLの生産に関与する遺伝子を含むプラスミドを増幅させたεPLを生産する菌株をL−リシンを添加した培地にて培養し、培養液中にεPLを生成蓄積せしめ、これを採取することを特徴とするεPLの製造方法が特公平3-42075 号公報に記載されている。しかし上記のεPLの製造方法に用いる培地には、L−リシン、硫酸アンモニウムおよびリン酸分が含まれてはいるが、リン酸分濃度が高く、また、培養液中のL−リシン濃度を制御した製造方法はなかった。そこで、εPL以外の副生成物の生産に培地中の炭素源が多量に消費されるため、εPL生産における対炭素源収率が悪く、工業的生産を考えた場合、生産コストが高くなるという問題点があった。
【0003】
【発明が解決しようとしている課題】
本発明者らは、対炭素源収率のよいεPLの製造法について鋭意検討を重ねた結果、ストレプトマイセス・アルブラス種微生物を培養してεPLを発酵生産する際に、培地中のリン酸分濃度を制限し、かつ培地中にL−リジン及び硫酸アンモニウムを一定量含有させた培地を用いるか、または培養液中のL−リジン濃度を制御して培養することによって、副生成物の生産を抑え、εPLの対炭素源収率が向上することを見いだし、この知見に基づいて本発明をなすに至った。
本発明は、εPL以外の副生成物に消費される炭素源量を抑制し、εPLの対炭素源収率を向上させることにより、安価で有利なεPLの製造法を提供することを目的としている。
【0004】
【課題を解決するための手段】
本発明は下記の構成を有する。
(1)ストレプトマイセス・アルブラス(Streptomyces albulus)種微生物を好気的に培地に培養し、得られた培養液からε−ポリ−L−リジンを採取する方法において、培地中のリン酸分濃度が50〜300mg/l、L−リジンの含有量が2 〜 20g/l、硫酸アンモニウムの含有量が10〜20g/lであることを特徴とするε−ポリ−L−リジンの製造法。
(2)ストレプトマイセス・アルブラス(Streptomyces albulus)種微生物を好気的に前記第(1)項記載の培地にて培養し、得られた培養液からε−ポリ−L−リジンを採取する方法において、培養液中のL−リジンの含有量が1〜10g/lとなるようL−リジンを培養液中に逐次添加あるいは連続添加することを特徴とするε−ポリ−L−リジンの製造法。
【0005】
(3)ε−ポリ−L−リジンを生産する菌株がストレプトマイセス・アルブラス・サブスピ−シズ・リジノポリメラス(Streptomyces albulus subsp.lysinopolymerus )である前記第(1)項もしくは第(2)項のいずれか1項記載のε−ポリ−L−リジンの製造法。
(4)ε−ポリ−L−リジンを生産する菌株がストレプトマイセス・アルブラス・サブスピ−シズ・リジノポリメラス(Streptomyces albulus subsp.lysinopolymerus )No346-D 株のS−アミノエチル−Lシステインにグリシンを添加したものに耐性を持つ変異株11011A-1株(微工研条寄第1109号)である前記第(1)項もしくは第2項のいずれか1項記載のε−ポリ−L−リジンの製造法。
【0006】
本発明に使用できる微生物は、εPLを発酵液中に蓄積するストレプトマイセス・アルブラス種の菌株であればいずれも使用可能であり、特に、ストレプトマイセス・アルブラス・サブスピ−シズ・リジノポリメラス(Streptomyces albulus subsp. lysinopolymerus)11011A-1株(微工研条寄第1109号)およびストレプトマイセス・アルブラス・サブスピ−シズ・リジノポリメラス(Streptomyces albulus subsp. lysinopolymerus) No346-D株が好ましい。
【0007】
本発明に使用する培地のL−リジンの含有量は、2〜20g/l、好ましくは5〜10g/lである。L−リジンの含有量が少ないとεPLの生産量が少なくなる。また、L−リジンの含有量が多過ぎると、菌の増殖が抑制される。また、培地に用いられるL−リジンは、塩酸塩あるいは他の塩の形でも差し支えない。本発明に使用する培地の硫酸アンモニウムの含有量は10〜20g/lである。硫酸アンモニウムを含まない培地では、εPLの生産量が著しく低下する。培養中に培養液中の硫酸アンモニウム含有量が低下した場合は、硫酸アンモニウム含有量が2〜20g/lになるように追加するのが好ましい。
【0008】
培地に添加されるリン酸分は、リン酸カリウム、リン酸ナトリウム、酵母中に含まれるリン酸塩等どの形でも構わない。
培地に含まれるリン酸分の含有量は、50〜300mg/l、好ましくは、50〜150 mg/l と通常の培地に比べ1/5 〜1/30程度に制限する。リン酸分の含有量が多いと副生成物の生産が多くなり、含有量が少ないと微生物の増殖に影響を及ぼす。
【0009】
本発明に使用する培地には上記のL−リジン、硫酸アンモニウム、リン酸塩の他に、炭素源及びミネラルが用いられる。炭素源としては、好ましくはグルコ−スであるが、その他フラクト−ス、グリセリン、スタ−チ等の、εPL生産菌が資化可能なものなら制限されず、また該炭素源の培地中の含有量としては10〜50g/lが好ましい。培養中に培養液の炭素源含有量が低下した場合は、炭素源含有量が10〜50g/lになるように追加する。ミネラルとしては、カリウムイオン、マグネシウムイオン、亜鉛イオン、鉄イオン等が挙げられ、これらは0.01 〜1 g/lの範囲で培地中に含有することが好ましい。また、培地中に酵母エキスを1 〜5g/l含有させると、菌の生育を良くし、εPLの生産においても好ましい結果を与える。
【0010】
L−リジンを逐次添加する場合は、培養液中のL−リジンの含有量が、例えば1g/l以下になった時に1〜10g/lになるように添加する。また、連続添加する場合は、培養液中のL−リジンが常に1〜10g/lになるように添加する。
【0011】
培養は、好気的条件下で振とう培養、撹拌培養等を行う。培養温度は25〜30℃が好ましい。培地のpHは中性付近(pH6〜8)が好ましいが、培養開始後菌の生育とともにpHは低下する。εPLの生産には培地のpHが4付近が好ましいので、培養液のpHが4以下に低下した時点で、アルカリを添加してpHを4に維持させる。添加するアルカリはアンモニア水が好ましいが、水酸化ナトリウム、水酸化カリウムの水溶液等でも差し支えない。通常1〜5日間でεPLが培養液中に蓄積される。
【0012】
遠心分離あるいはフィルタ−で上記培養液から菌体を除いた後、菌体除去液を精製、脱色し、これを濃縮する。濃縮液からアセトン、エタノ−ル等の有機溶媒で晶析することにより、εPLが得られる。
【0013】
実施例
本発明を実施例より更に詳細に説明する。
εPL濃度、残存グルコ−ス濃度、残存L−リジン濃度を以下の方法により測定した。
(1)εPL濃度をイツアキ(Itzhaki)(アナリティカルバイオケミストリー (Analytical Biochemistry),50,569) の方法により測定した。すなわち、0〜200μgのεPLを含む溶液2mlと1mMメチルオレンジ水溶液2mlとを混合し、室温で30分間放置後、生じたεPL−メチルオレンジコンプレックスを遠心分離により除き、その上澄水の465nmにおける吸光度を測定し、εPL量を求めた。
【0014】
(2)残存グルコ−ス濃度を、ムタロタ−ゼ・グルコ−スオキシダ−ゼ法、すなわち、試料(グルコースを0〜100μg含む)20μlに発色試薬(ムタローゼ0.13ユニット/ml、グルコースオキシダーゼ9.0ユニット/ml、ペルオキシダーゼ0.65ユニット/ml、4−アミノアンチピリン0.50mM、アスコルビン酸オキシダーゼ2.7ユニット/mlを添加したフェノール5.3mMを含む60mmリン酸緩衝液(pH7.1))3mlを混合し、37℃で5分間加温後、505nmにおける吸光度を測定し、求めた。
(3)残存L−リジン濃度を、L−リジン−α−オキシダ−ゼ法で測定した。すなわち、1Mリン酸緩衝液(pH7.4)200μlに70mMフェノール100μl、30mM4ーアミノアンチピリン100μlを加え、さらに0〜300μgのL−リジンを含む溶液450μlを加え混合した後、120ユニット/mlのパーオキシダーゼ50μlを加え、30℃で20分間加温した後に、500nmにおける吸光度を測定して求めた。
【0015】
実施例1
グルコ−ス50g/l、酵母エキス 5g/l(リン酸濃度として約100mg/l 含有) 、硫酸アンモニウム10g/l、L−リジン10g/l、MgSO4・7H2O 0.5g/l、ZnSO4・7H2O 0.04g/l、FeSO4・7H2O 0.03g/l pH6.8 の培地2Lを調整し、3L容ジャ−に入れ、ストレプトマイセス・アルブラス・サブスピ−シズ・リジノポリメラス(Streptomyces albulus subsp. lysinopolymerus)11011A-1株(微工研条寄第1109号)を接種し、30℃、700rpm で96時間好気培養を行った。
発酵液を遠心分離によって除菌した後、上澄水のεPL濃度、残存グルコ−ス濃度、残存L−リジン濃度を測定した。
その結果、εPLの対炭素源収率は22%であった。また、菌体1g当たりのεPL生産活性は、0.51g/g・dry cell/dayであった。
【0016】
実施例2
L−リジン含有量を 5g/lとした以外は実施例1に準拠して培養を行った。その結果、εPLの対炭素源収率は22%であった。また、菌体1g当たりのεPL生産活性は、0.50g/g・dry cell/dayであった。
【0017】
実施例3
L−リジン含有量を 2g/lとした以外は実施例1に準拠して培養を行った。その結果、εPLの対炭素源収率は18%であった。また、菌体1g当たりのεPL生産活性は、0.44g/g・dry cell/dayであった。
【0018】
実施例4
KH2PO4 0.2g/lを添加する(全リン酸濃度として240mg/l 含有)こと以外は実施例1に準拠して培養を行った。その結果、εPLの対炭素源収率は14%であった。また菌体1g当たりのεPL生産活性は、0.40g/g・dry cell/dayであった。
【0019】
実施例5
ストレプトマイセス・アルブラス・サブスピ−シズ・リジノポリメラス(Streptomyces albulus subsp. lysinopolymerus)11011A-1株の代わりに、ストレプトマイセス・アルブラス・サブスピ−シズ・リジノポリメラス(Streptomyces albulus subsp. lysinopolymerus) No346-D株を用いた以外は実施例1に準拠して培養を行った。その結果、εPLの対炭素源収率は15%であった。また、菌体1g当たりのεPL生産活性は、0.35g/g・dry cell/dayであった。
【0020】
実施例6
培養時間を288時間とし、培養液中のグルコース含有量が10g/l以下に、硫酸アンモニウム含有量が5g/l以下に、またL−リジンの含有量が1g/l以下にならないように、それぞれを逐次添加した。それ以外の条件については実施例1に準拠して培養を行った。その結果、εPLの対炭素源収率は26%となった。
【0021】
比較例1
グルコ−ス50g/l、酵母エキス 5g/l(リン酸濃度として約100mg/l 含有) 、硫酸アンモニウム10g/l、K2HPO4 0.8 g/l、KH2PO4 1.36g/l、MgSO4・7H2O 0.5g/l、ZnSO4・7H2O 0.04g/l、FeSO4・7H2O 0.03g/l pH 6.8 の培地2Lを調整し、実施例1に準拠して培養を行った。その結果、εPLの対炭素源収率は8%であった。また、菌体1g当たりのεPL生産活性は、0.28g/g・dry cell/dayであった。
【0022】
比較例2
L−リジン10g/lを添加すること以外は比較例1に準拠して培養を行った。その結果、εPLの対炭素源収率は9%であった。また、菌体1g当たりのεPL生産活性は、0.31g/g・dry cell/dayであった。
【0023】
比較例3
K2HPO4 及び KH2PO4 を添加しないこと以外は比較例1に準拠して培養を行った。その結果、εPLの対炭素源収率は10%であった。また、菌体1g当たりのεPL生産活性は、0.32g/g・dry cell/dayであった。
【0024】
比較例4
L−リジン10g/lを添加し、硫酸アンモニウムを添加しないこと以外は実施例1に準拠して培養を行った。その結果、εPLの対炭素源収率は3%であった。また、菌体1g当たりのεPL生産活性は、0.04g/g・dry cell/dayであった。
【0025】
比較例5
ストレプトマイセス・アルブラス・サブスピ−シズ・リジノポリメラス(Streptomyces albulus subsp. lysinopolymerus) 11011A-1 株の代わりに、ストレプトマイセス・アルブラス・サブスピ−シズ・リジノポリメラス(Streptomyces albulus subsp. lysinopolymerus) No346-D株を用いた以外は、比較例1に準拠して培養を行った。その結果、εPLの対炭素源収率は5%であった。また、菌体1g当たりのεPL生産活性は、0.22g/g・dry cell/dayであった。
【0026】
比較例6
L−リジンを追加しないこと以外は、実施例6に準拠して培養を行った結果、εPLの対炭素源収率は19%であった。
【0027】
【発明の効果】
本発明の製造法により、副生成物の生産を抑制し、εPLの対炭素源収率を従来の2〜3倍に高めることが可能となり、収率よくεPLを製造することができる。
[0001]
[Industrial application fields]
The present invention relates to a method for producing ε-poly-L-lysine (hereinafter abbreviated as εPL) with improved yield to carbon source.
Since εPL is a polymer of L-lysine, which is an essential amino acid, it is highly safe and has a high cation content, so it has unique physical properties. Therefore, it is not only widely used as a food additive, but also can be expected to be used for toiletries, cosmetics, feed additives, medicines, agricultural chemicals, electronic materials and the like.
[0002]
[Prior art]
A method for producing εPL using Streptomyces albulus species microorganisms is disclosed in Japanese Patent Publication No. 59-20359. Streptomyces albulus subsp. Lysinopolymerus strains are resistant to L-lysine analogs. A method for producing εPL is characterized in that the mutant strain obtained by mutating the mutant strain is cultured in a medium, εPL is produced and accumulated in the culture solution, and this is collected. A medium in which L-lysine is added to a strain that produces εPL obtained by amplifying a plasmid containing a gene involved in εPL production using Chloramphenicol from a Streptomyces alblus subspecies lysinopolymelas strain A method for producing εPL, characterized in that εPL is produced and accumulated in the culture medium and collected. It is described in Rights 3-42075 JP. However, although the medium used for the above-described production method of εPL contains L-lysine, ammonium sulfate and phosphate, the concentration of phosphate is high and the concentration of L-lysine in the culture solution is controlled. There was no manufacturing method. Therefore, since a large amount of carbon source in the medium is consumed for the production of by-products other than εPL, the yield of carbon source in εPL production is poor, and when considering industrial production, the production cost is high. There was a point.
[0003]
[Problems to be solved by the invention]
As a result of intensive studies on a method for producing εPL with a good yield relative to the carbon source, the present inventors have cultivated Streptomyces albula spp. By limiting the concentration and using a medium containing a certain amount of L-lysine and ammonium sulfate in the medium, or controlling the concentration of L-lysine in the culture medium, the production of by-products can be suppressed. , ΕPL was found to improve the carbon source yield, and the present invention was made based on this finding.
An object of the present invention is to provide an inexpensive and advantageous production method of εPL by suppressing the amount of carbon source consumed by by-products other than εPL and improving the yield of εPL with respect to the carbon source. .
[0004]
[Means for Solving the Problems]
The present invention has the following configuration.
(1) In a method in which Streptomyces albulus species microorganisms are aerobically cultured in a medium and ε-poly-L-lysine is collected from the obtained culture solution, the concentration of phosphate in the medium Is 50 to 300 mg / l, the content of L-lysine is 2 to 20 g / l, and the content of ammonium sulfate is 10 to 20 g / l.
(2) A method of aerobically culturing Streptomyces albulus species microorganisms in the medium described in (1) above and collecting ε-poly-L-lysine from the obtained culture solution , Wherein L-lysine is added to the culture solution sequentially or continuously so that the L-lysine content in the culture solution is 1 to 10 g / l. .
[0005]
(3) Either of the above paragraph (1) or (2), wherein the strain producing ε-poly-L-lysine is Streptomyces albulus subsp. Lysinopolymerus (Streptomyces albulus subsp. Lysinopolymerus) A method for producing ε-poly-L-lysine according to item 1.
(4) A strain producing ε-poly-L-lysine added glycine to S-aminoethyl-L cysteine of Streptomyces albulus subsp. Lysinopolymerus No346-D strain The method for producing ε-poly-L-lysine according to any one of (1) or (2) above, which is a mutant strain 11011A-1 having a resistance to the above (Microtechnical Laboratories No. 1109) .
[0006]
Any microorganism can be used in the present invention as long as it is a Streptomyces albulus strain that accumulates εPL in the fermentation broth, and in particular, Streptomyces albulus subspices lysinopolymelas (Streptomyces albulus). subsp. lysinopolymerus) 11011A-1 strain (Mikken Kenjo No. 1109) and Streptomyces albulus subsp. lysinopolymerus No346-D strain are preferred.
[0007]
The content of L-lysine in the medium used in the present invention is 2 to 20 g / l, preferably 5 to 10 g / l. When the content of L-lysine is small, the production amount of εPL decreases. Moreover, when there is too much content of L-lysine, the proliferation of a microbe will be suppressed. Further, L-lysine used in the medium may be in the form of hydrochloride or other salt. The content of ammonium sulfate in the medium used in the present invention is 10 to 20 g / l . In a medium not containing ammonium sulfate, the production amount of εPL is significantly reduced. When the ammonium sulfate content in the culture medium is lowered during the culture, it is preferable to add so that the ammonium sulfate content is 2 to 20 g / l.
[0008]
The phosphoric acid component added to the medium may be in any form such as potassium phosphate, sodium phosphate, phosphate contained in yeast.
The content of the phosphoric acid contained in the medium is 50 to 300 mg / l, preferably 50 to 150 mg / l, and is limited to about 1/5 to 1/30 compared with a normal medium. If the phosphoric acid content is high, the production of by-products increases, and if the content is low, the growth of microorganisms is affected.
[0009]
In addition to the above-mentioned L-lysine, ammonium sulfate, and phosphate, a carbon source and a mineral are used for the medium used in the present invention. The carbon source is preferably glucose, but is not limited as long as it can assimilate εPL-producing bacteria such as fructose, glycerin, and starch, and the carbon source is contained in the medium. The amount is preferably 10 to 50 g / l. When the carbon source content of the culture solution decreases during the culture, the carbon source content is added so as to be 10 to 50 g / l. Examples of the mineral include potassium ion, magnesium ion, zinc ion, iron ion and the like, and these are preferably contained in the medium in the range of 0.01 to 1 g / l. Further, when yeast extract is contained in the medium in an amount of 1 to 5 g / l, the growth of the bacteria is improved, and preferable results are obtained in the production of εPL.
[0010]
When L-lysine is added sequentially, it is added so that the content of L-lysine in the culture solution becomes 1 to 10 g / l when it becomes 1 g / l or less, for example. Moreover, when adding continuously, it adds so that L-lysine in a culture solution may always become 1-10 g / l .
[0011]
The culture is performed under aerobic conditions such as shaking culture and stirring culture. The culture temperature is preferably 25 to 30 ° C. The pH of the medium is preferably near neutral (pH 6-8), but the pH decreases with the growth of bacteria after the start of culture. Since the pH of the medium is preferably around 4 for the production of εPL, alkali is added to maintain the pH at 4 when the pH of the culture solution falls to 4 or less. The alkali to be added is preferably ammonia water, but it may be an aqueous solution of sodium hydroxide or potassium hydroxide. Usually, εPL accumulates in the culture solution in 1 to 5 days.
[0012]
After removing the cells from the culture solution by centrifugation or filter, the cell-removed solution is purified, decolorized, and concentrated. ΕPL is obtained by crystallization from an organic solvent such as acetone or ethanol from the concentrated solution.
[0013]
Examples The present invention will be described in more detail than examples.
εPL concentration, residual glucose concentration, and residual L-lysine concentration were measured by the following methods.
(1) The εPL concentration was measured by the method of Itzhaki (Analytical Biochemistry, 50, 569). That is, 2 ml of a solution containing 0 to 200 μg of εPL and 2 ml of 1 mM methyl orange aqueous solution were mixed and allowed to stand at room temperature for 30 minutes. The resulting εPL-methyl orange complex was removed by centrifugation, and the absorbance of the supernatant water at 465 nm was determined. Measurement was made to determine the amount of εPL.
[0014]
(2) Residual glucose concentration was determined by mutarotase / glucose oxidase method, that is, 20 μl of sample (containing 0-100 μg of glucose) and a coloring reagent (mutarose 0.13 unit / ml, glucose oxidase 9.0 unit / ml, Peroxidase 0.65 unit / ml, 4-aminoantipyrine 0.50 mM, 3 ml of 60 mm phosphate buffer (pH 7.1) containing 5.3 mM phenol to which ascorbate oxidase 2.7 unit / ml was added, and mixed at 37 ° C. for 5 minutes After heating, the absorbance at 505 nm was measured and determined.
(3) The residual L-lysine concentration was measured by the L-lysine-α-oxidase method. That is, 100 μl of 70 mM phenol and 100 μl of 30 mM 4-aminoantipyrine are added to 200 μl of 1M phosphate buffer (pH 7.4), and 450 μl of a solution containing 0 to 300 μg of L-lysine is added and mixed. After adding 50 μl of oxidase and heating at 30 ° C. for 20 minutes, the absorbance at 500 nm was measured and determined.
[0015]
Example 1
Glucose 50 g / l, yeast extract 5 g / l (containing about 100 mg / l phosphoric acid concentration), ammonium sulfate 10 g / l, L-lysine 10 g / l, MgSO4 · 7H2O 0.5 g / l, ZnSO4 · 7H2O 0.04 g / l, 2L of FeSO4 · 7H2O 0.03g / l pH6.8 medium was prepared and placed in a 3L jar. Streptomyces albulus subsp. lysinopolymerus 11011A-1 strain (fine Kokenjoyo 1109) was inoculated and aerobic culture was performed at 30 ° C. and 700 rpm for 96 hours.
After sterilizing the fermentation broth by centrifugation, the εPL concentration, residual glucose concentration, and residual L-lysine concentration of the supernatant water were measured.
As a result, the yield of carbon source for εPL was 22%. Moreover, the εPL production activity per 1 g of the bacterial cells was 0.51 g / g · dry cell / day.
[0016]
Example 2
Culturing was performed according to Example 1 except that the L-lysine content was 5 g / l. As a result, the yield of carbon source for εPL was 22%. Moreover, the εPL production activity per 1 g of bacterial cells was 0.50 g / g · dry cell / day.
[0017]
Example 3
Culturing was performed according to Example 1 except that the L-lysine content was 2 g / l. As a result, the carbon source yield of εPL was 18%. Moreover, the εPL production activity per 1 g of the bacterial cells was 0.44 g / g · dry cell / day.
[0018]
Example 4
Culture was performed according to Example 1 except that 0.2 g / l of KH2PO4 was added (containing 240 mg / l as the total phosphate concentration). As a result, the carbon source yield of εPL was 14%. Moreover, the εPL production activity per 1 g of cells was 0.40 g / g · dry cell / day.
[0019]
Example 5
Streptomyces albulus subsp. Lysinopolymerus (Streptomyces albulus subsp. Lysinopolymerus) No346-D strain is used instead of Streptomyces albulus subsp. Lysinopolymerus 11011A-1 The culture was performed according to Example 1 except that. As a result, the carbon source yield of εPL was 15%. Moreover, the εPL production activity per gram of the bacterial cells was 0.35 g / g · dry cell / day.
[0020]
Example 6
The culture time is 288 hours, the glucose content in the culture solution is 10 g / l or less, the ammonium sulfate content is 5 g / l or less, and the L-lysine content is 1 g / l or less. Sequentially added. Other conditions were cultured according to Example 1. As a result, the carbon source yield of εPL was 26%.
[0021]
Comparative Example 1
Glucose 50g / l, yeast extract 5g / l (containing about 100mg / l phosphate concentration), ammonium sulfate 10g / l, K2HPO4 0.8g / l, KH2PO4 1.36g / l, MgSO4 ・ 7H2O 0.5g / l, ZnSO4 -2 L of a medium of 7H2O 0.04 g / l and FeSO4.7H2O 0.03 g / l pH 6.8 was prepared and cultured according to Example 1. As a result, the carbon source yield of εPL was 8%. Moreover, the εPL production activity per 1 g of the bacterial cells was 0.28 g / g · dry cell / day.
[0022]
Comparative Example 2
Culture was performed according to Comparative Example 1 except that 10 g / l of L-lysine was added. As a result, the yield of carbon source for εPL was 9%. In addition, the εPL production activity per 1 g of bacterial cells was 0.31 g / g · dry cell / day.
[0023]
Comparative Example 3
Culture was performed according to Comparative Example 1 except that K2HPO4 and KH2PO4 were not added. As a result, the carbon source yield of εPL was 10%. Moreover, the εPL production activity per 1 g of the bacterial cells was 0.32 g / g · dry cell / day.
[0024]
Comparative Example 4
Culturing was performed according to Example 1 except that 10 g / l of L-lysine was added and ammonium sulfate was not added. As a result, the carbon source yield of εPL was 3%. In addition, the εPL production activity per 1 g of bacterial cells was 0.04 g / g · dry cell / day.
[0025]
Comparative Example 5
Streptomyces albulus subsp. Lysinopolymerus (Streptomyces albulus subsp. Lysinopolymerus) No346-D for Streptomyces albulus subsp. Lysinopolymerus No. 11011A-1 The culture was carried out according to Comparative Example 1 except that. As a result, the carbon source yield of εPL was 5%. Moreover, the εPL production activity per gram of the bacterial cells was 0.22 g / g · dry cell / day.
[0026]
Comparative Example 6
As a result of culturing according to Example 6 except that L-lysine was not added, the yield of carbon source of εPL was 19%.
[0027]
【The invention's effect】
By the production method of the present invention, production of by-products can be suppressed, and the yield of εPL with respect to the carbon source can be increased to 2 to 3 times that of the conventional method, so that εPL can be produced with high yield.

Claims (4)

ストレプトマイセス・アルブラス(Streptomyces albulus)種微生物を好気的に培地に培養し、得られた培養液からε−ポリ−L−リジンを採取する方法において、リン酸分濃度が50〜300mg/l、L−リジンの含有量が2〜20g/l、硫酸アンモニウムの含有量が10〜20g/lである培地を用いることを特徴とするε−ポリ−L−リジンの製造法。In a method in which Streptomyces albulus species microorganisms are aerobically cultured in a medium, and ε-poly-L-lysine is collected from the obtained culture solution, the phosphate concentration is 50 to 300 mg / l. A method for producing ε-poly-L-lysine, comprising using a medium having an L-lysine content of 2 to 20 g / l and an ammonium sulfate content of 10 to 20 g / l. ストレプトマイセス・アルブラス(Streptomyces albulus)種微生物を好気的に請求項1記載の培地にて培養し、得られた培養液からε−ポリ−L−リジンを採取する方法において、培養液中のL−リジンの含有量が1〜10g/lとなるようにL−リジンを培養液中に逐次添加もしくは連続添加することを特徴とするε−ポリ−L−リジンの製造法。In a method of aerobically culturing Streptomyces albulus species microorganisms in the medium according to claim 1 and collecting ε-poly-L-lysine from the obtained culture solution, A method for producing ε-poly-L-lysine, comprising adding L-lysine sequentially or continuously to a culture solution so that the content of L-lysine is 1 to 10 g / l. ε−ポリ−L−リジンを生産する菌株がストレプトマイセス・アルブラス・サブスピ−シズ・リジノポリメラス(Streptomyces albulus subsp.lysinopolymerus )である請求項1または請求項2のいずれか1項記載のε−ポリ−L−リジンの製造法。The ε-poly- of any one of claims 1 or 2, wherein the strain producing ε-poly-L-lysine is Streptomyces albulus subsp. lysinopolymerus. A method for producing L-lysine. ε−ポリ−L−リジンを生産する菌株がストレプトマイセス・アルブラス・サブスピ−シズ・リジノポリメラス(Streptomyces albulus subsp.lysinopolymerus )No346-D 株のS−アミノエチル−Lシステインにグリシンを添加したものに耐性を持つ変異株11011A-1株(微工研条寄第1109号)である請求項1または請求項2のいずれか1項記載のε−ポリ−L−リジンの製造法。A strain producing ε-poly-L-lysine is resistant to Streptomyces albulus subsp. lysinopolymerus No346-D strain added with glycine to S-aminoethyl-L cysteine The method for producing ε-poly-L-lysine according to any one of claims 1 and 2, which is a mutant strain 11011A-1 strain having a phenotype (Microtechnical Research Institute, No. 1109).
JP33326094A 1994-12-15 1994-12-15 Production method of ε-poly-L-lysine Expired - Fee Related JP3653766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33326094A JP3653766B2 (en) 1994-12-15 1994-12-15 Production method of ε-poly-L-lysine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33326094A JP3653766B2 (en) 1994-12-15 1994-12-15 Production method of ε-poly-L-lysine

Publications (2)

Publication Number Publication Date
JPH08163992A JPH08163992A (en) 1996-06-25
JP3653766B2 true JP3653766B2 (en) 2005-06-02

Family

ID=18264126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33326094A Expired - Fee Related JP3653766B2 (en) 1994-12-15 1994-12-15 Production method of ε-poly-L-lysine

Country Status (1)

Country Link
JP (1) JP3653766B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008066182A1 (en) 2006-11-30 2008-06-05 Bmg Incorporated Self-degradable adhesive for medical use of two-component reactant system comprising powder-liquid or powder-powder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3525190B2 (en) * 1995-10-24 2004-05-10 チッソ株式会社 Strain producing ε-poly-L-lysine in remarkable quantity and method for producing ε-poly-L-lysine using the same
JP2002330797A (en) * 2001-05-08 2002-11-19 Chisso Corp METHOD FOR PRODUCING epsi-POLY-L-LYSINE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008066182A1 (en) 2006-11-30 2008-06-05 Bmg Incorporated Self-degradable adhesive for medical use of two-component reactant system comprising powder-liquid or powder-powder

Also Published As

Publication number Publication date
JPH08163992A (en) 1996-06-25

Similar Documents

Publication Publication Date Title
US5900370A (en) Process for the production of ascorbic acid with prototheca
KR950009199B1 (en) A method for producing 2-keto-l-gulonis acid
US4529697A (en) Process for producing L-glutamic acid by fermentation
JPH02470A (en) Biological production of amide
Lee et al. Effect of nitrogen source on biosynthesis of rapamycin by Streptomyces hygroscopicus
CZ280901B6 (en) Rhodococcus rhodochrous bacteria cultivation method
JPH0671425B2 (en) Uricase and method for producing the same
KR100198039B1 (en) Process for producing l-glutamic acid by fermentation
KR960014702B1 (en) Acid urease and production thereof
KR100339723B1 (en) Process for production of amide compounds using microorganism
JP3653766B2 (en) Production method of ε-poly-L-lysine
JP5022044B2 (en) Method for producing new uricase
EP0032987B1 (en) Thermophilic aspartase, processes for producing, culture used, and l-aspartic acid preparation process using the same
FI110518B (en) Levan sucrose enzyme, process for its preparation, microorganisms producing it and compositions containing it
JP4620405B2 (en) Yeast mutant, method for producing yeast having high glutathione content, culture thereof, fraction thereof, yeast extract, and food and drink containing glutathione
CN100445369C (en) Halobacterium jilantaiense and application thereof
JP3029915B2 (en) Thermostable adenosine-5'-phosphosulfate kinase and method for producing the same
JPH022589B2 (en)
JPS58201992A (en) Preparation of beta-substituted propionic acid or amide thereof by microorganism
JP5010291B2 (en) Method for producing new uricase
JP5053648B2 (en) Method for producing new uricase
JP3078067B2 (en) Thermostable adenosine-5'-3 phosphate sulfurylase and method for producing the same
JPH03277292A (en) Production of optically active 2-hydroxycarboxylic acid
JPH02100674A (en) Culture of bacterium
JPS6228678B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees